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1 Introduction

In the area of numerical solution of partial differential equations (PDEs), a
posteriori error estimates are computable quantities in terms of the approxi-
mate solutions, and provide a reliable and efficient measurement for the errors
of the discrete solution without knowing the exact solution. Reliability is often
referred to as the property that the true error can be bounded from above by
the error estimator (up to some constant) and efficiency implies that the true
error is also locally bounded from below by the error estimator. A posteriori
error estimates have played a very important role in adaptive mesh generation
and algorithm design for numerical PDEs. Theoretical and systematical study
of a posteriori error estimators for finite element approximation began in the
late 1970’s [5], and since then a lot of literature has gradually appeared, see
[2, 4, 6, 7, 9, 11, 14, 29, 40] and the references cited therein. We would like
to point out that elegant analysis on residual-based a posteriori estimates of
finite volume approximations for elliptic equations can be found in [1, 12].

Numerical solution of PDEs defined on smooth surfaces (or manifolds) in R3

recently attracted a lot of attention due to its applications in various areas,
such as surface diffusion, global and local geophysical flows, ice formation,
brain warping and so on [27, 33, 34, 35]. Thus it is of interest to investigate
useful a posteriori error estimates for these types of problems. A lot of a priori
error analysis for second-order and fourth-order problems have been done for
finite element methods [22, 23, 24] and finite volume methods [8, 20, 19].
Recently, a posteriori error estimates of finite element methods for discretizing
the Laplace-Beltrami operator on surfaces were rigorously analyzed in [3, 15,
28] while similar studies for finite volume methods are currently lacking as far
as we know. In this paper, we will rigorously derive a residual-based explicit a
posteriori error estimator (in the sense of energy norm) for the finite volume
discretization of the elliptic equations defined on a smooth surface which is
represented as the zero level set of a signed distance function d to the surface.

The paper is organized as follows: in Section 1.1, we will briefly review the
model problem defined on surfaces and define some notations to facilitate our
analysis. Then a finite volume discretization (generalized central scheme) of
the problem is given in Section 2. In Section 3, we will derive a residual-
based a posteriori estimate for the discretization in terms of the approximate
solution, and prove its reliability and efficiency. Some numerical experiments
are included in Section 4, to verify the theoretical results. In addition, we also
numerically demonstrate that the derived a posteriori error estimator is quite
robust, i.e., the constants in the a posteriori estimates are almost uniform
across all test problems. Finally, concluding remarks are given in Section 5.
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1.1 Model problem

Let S in R3 be an open bounded Ck,α-hypersurface [22, 26] with k ∈ N ∪ {0}
and 0 ≤ α < 1, and we assume that S is represented globally by some oriented
distance function (or say level set function) d = d(x) defined in some open
subset U of R3 such that S = {x ∈ U | d(x) = 0} with d ∈ Ck,α and ∇d &= 0.
The unit outward normal to S (with increasing d) at x is given by

"n(x) = (n1(x), n2(x), n3(x)) =
∇d(x)

|∇d(x)|

where | · | denotes the Euclidean norm and ∇ denotes the standard gradient
operator in R3. Without loss of generality, we assume that |∇d| ≡ 1.

Let ∇s = (∇s,1,∇s,2,∇s,3) = ∇ − "n("n · ∇) denote the tangential (surface)
gradient operator, ∆s = ∇s ·∇s is then called the Laplace–Beltrami operator
associated with S [26]. We use the standard notation for Sobolev spaces Lp(S),
W m,p(S), and Hm(S) = W m,2(S) on S. To make space Hm(S) well defined,
it is customary to assume k + α ≥ max{1, m}, see [32]. To avoid technical
complexities, we further assume that S and ∂S are sufficiently smooth (say,
of class C3) and ∂S &= ∅ for the rest of the paper unless stated otherwise.

We consider the following steady diffusion-convection-reaction equation im-
posed on S,

−∇s · (a(x)∇su(x)) + ∇s · ("v(x)u(x)) + b(x)u(x) = f(x) ∀ x ∈ S, (1)

where the data in (1) is assumed to satisfy:

Assumption 1 f ∈ L2(S), a(x) is uniformly continuous on S, "v ∈ (W 1,∞(S))3,
and b ∈ L∞(S). Additionally, a(x) ≥ α1 > 0, b(x) ≥ 0 and ∇s·"v(x)/2+b(x) ≥
α2 ≥ 0 for any x ∈ S.

For simplicity, we take the homogeneous Dirichlet boundary condition:

u(x) = 0, ∀ x ∈ ∂S. (2)

Note that our discussion here can be extended to more general cases such as
a = a(x) being a symmetric positive-definite tensor.

For any u, φ ∈ H1
0 (S), define the bilinear functional A to be

A(u, φ) =
∫

S
a∇su ·∇sφ ds −

∫

S
u"v ·∇sφ ds +

∫

S
buφ ds. (3)

Based on Assumption 1, we have (for some generic constants c1 > 0 and
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c2 > 0)

A(u, φ) ≤ c1‖u‖H1(S)‖φ‖H1(S), (4)

A(u, u) ≥ c2‖u‖2
H1(S). (5)

The above two conditions guarantee that the expression A(u, u) is equivalent
to the norm in H1

0 (S) under given assumptions. We then define the so-called

“energy” norm as ‖u‖E =
√
A(u, u) [12, 30].

We say that u ∈ H1
0 (S) is a weak solution of the equation (1) if and only if

A(u, φ) = (f, φ)s ∀φ ∈ H1
0 (S), (6)

where

(f, φ)s =
∫

S
f(x)φ(x) ds.

The existence of the weak solution of equation (1) under Assumption 1 follows
from the standard elliptic equation theory [22, 26].

Theorem 2 Under Assumption 1, there exists a unique weak solution u ∈
H1

0 (S) of (1). Moreover, u ∈ H2(S) and satisfies that

‖u‖H2(S) ≤ c‖f‖L2(S) . (7)

for some generic constant c > 0.

We note that in the case of ∂S = ∅, one can also show that, if α2 > 0 in
Assumption 1, then there exists a unique weak solution u ∈ H1(S) of (1).

2 Finite volume discretization

2.1 Piecewise linear approximation of the surface

We assume that S is a connected compact smooth hypersurface which is the
zero level set of a signed distance function |d(x)| = dist(x,S) defined on a
strip (band)

U = {x ∈ R3 | dist(x,S) < δ}, for some δ > 0,

around S such that there is a unique decomposition for any x ∈ U,

x = p(x) + d(x)"n(x) (8)
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Fig. 1. Approximate mesh surface and the control volume.

where p(x) ∈ S, d(x) is the signed distance to S, and "n(x) denotes the unit
outward normal of S at p(x). The parameter δ can be determined by the
surface curvatures (see [24]) if S is sufficiently smooth.

Denote by T = {Ti}m
i=1 the curved triangulation of the surface S. Assume

that S be approximated by a sequence of continuous piecewise linear complex
[38] {Sh ⊂ U}, consisting of a sequence of regular triangulations {T h =
{T h

i }m
i=1} with the mesh size approaching to zero. In order to avoid global

double covering, we further assume that for each point y ∈ S there is at most
one point x ∈ Sh such that p(x) = y, as suggested in [24]. Each T h contains
vertices {xi}n

i=1 on S (i.e., {xi}n
i=1 ⊂ S ∩ Sh), see Fig. 1(left). Clearly, Sh is

globally of class C0,1. We use m(·) to denote the area for planar regions or the
length for arcs and segments. Let hi denote the size of a triangle T h

i ∈ T h and
define h = maxi hi to be the mesh size for T h. We say that T h is shape-regular
if for any T h

i ∈ T h

c1h
2 ≤ m(T h

i ) ≤ c2h
2, (9)

where c1 and c2 are positive constants independent of h. By the uniqueness of
the decomposition discussed above, we define Ti = {p(x) ∈ S | x ∈ T h

i }, and
let T = {Ti}m

i=1, then S = ∪n
i=1Ti. Note that this requires in particular that

p(∂Sh) = ∂S.

Let the tangential gradient operator ∇sh
on Sh be given by:

∇sh
= (∇sh,1,∇sh,2,∇sh,3) = ∇− "nh("nh ·∇) ,

where "nh(x) = (nh1(x), nh2(x), nh3(x)) is the unit outward normal to Sh. Since
"nh is constant on each triangle T h

i , ∇sh
only needs to be locally defined as a

two dimensional gradient operator on the plane formed by T h
i , and the Sobolev

space W m,p(Sh) is well-defined for m ≤ 1.

Denote by U the space of continuous piecewise linear polynomials on Sh with
respect to T h, that is,

U = {Uh ∈ C0(Sh) | Uh|∂Sh = 0, Uh|T h
i
∈ P1(T

h
i )} (10)
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where Pk(D) denote the space of polynomials of degree no larger than k on
the planar domain D.

It is easy to see that U ⊂ H1(Sh) and for Uh ∈ U we have that ∇sh
Uh is

constant on each triangle T h
i ∈ T h. A dual tessellation of T h on Sh can be

defined as shown in Fig. 1 (right). For each interior vertex xi, let χi = {is}mi
s=1

be the set of indices of its neighbors, Qi,ij ,ij+1 (where is+1 = i1 if s = mi) be
the centroid of the triangle .xixijxij+1 and Mi,ij be the midpoint of xixij for
ij ∈ χi. Let Kh

i = ∪ij∈χiΩi,ij ,ij+1 where Ωi,ij ,ij+1 denotes the polygonal region
bounded by xi, Mi,ij , Qi,ij ,ij+1 and Mi,ij+1. In general, Kh

i is only piecewise
planar and we define its projection onto S by Ki = {p(x) ∈ S | x ∈ Kh

i }. Let
σ denote the set of indices of all interior vertices of T h, then, K = {Ki}i∈σ

and Kh = {Kh
i }i∈σ may be viewed as dual tessellations of S = ∪m

i=1Ti and
Sh = ∪m

i=1T
h
i , respectively. In the remaining part of this paper, for simplicity,

we denote i(j−1)mod(mi)+1 by ij, if j > mi and ij ∈ χi (xij is a neighbor vertex
of xi), otherwise denote i(j−1)mod(3)+1 by ij , if j > 3 and xij is a vertex of
T h

i = .xi1xi2xi3 .

Denote by V the space of grid functions on Sh with respect to Kh:

V = {V h | V h|Kh
i
∈ P0(K

h
i )}.

A set of basis functions {Ψh
i }i∈σ of V is given by

Ψh
i (x) =





1 x ∈ Kh

i ;

0, x ∈ Sh − Kh
i .

2.2 Generalized central scheme

We may uniquely extend a function φ defined on S to U by

φl(x) = φ(p(x)), ∀ x ∈ U. (11)

Let P = I − "n ⊗ "n where ⊗ is the outer product defined as "a ⊗"b = "a"bT , and
it follows that

∇sφ = ∇φl − "n("n ·∇φl) = P∇φl, (12)

due to (11).

We then do the similar extension from Sh to U. Given a function φh defined
on Sh, first project it onto S by φh(y) = φ̃h(p(y)) for y ∈ Sh, then we apply
(11) again to extend φ̃h to U, i.e.,

φl
h(x) = φ̃h(p(x)), ∀ x ∈ U. (13)
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Then we successfully extend φh defined on Sh to U in two steps. Since all
extensions of functions to U are constant along normals to S, extensions of
functions defined on S and of functions defined on Sh have the same properties.

With the above preparations, a generalized central finite volume scheme for
the above steady diffusion-convection-reaction equation (1) can be defined as
follows: find uh ∈ U such that

Ah
G(uh, φh) = (f l, φh)sh

∀ φh ∈ V, (14)

where
Ah

G(uh, φh) =
∑

i∈σ

φh,iAh
G(uh, Ψ

h
i )

and

φh,i = φh(xi),

Ah
G(uh, Ψ

h
i ) =

∫

∂Kh
i

(−al∇sh
uh + uh"v

l) · "nKh
i

dγh +
∫

Kh
i

bluh dsh.

The corresponding lifting ul
h constrained on S then can be regarded as the

approximate solution of the model problem (1). For the existence of the ap-
proximate solution uh of (14) and relevant a priori error estimates, see [19]
for details. Specially, for the convection-dominated case, in order to eliminate
non-physical oscillations, an up-wind finite volume scheme was given in [19].
In this paper, we will focus our discussion on the generalized central scheme.

3 A residual-based a posteriori error estimator

Before deriving local a posteriori error estimates for the finite volume dis-
cretization (14), let us present some properties of lifts and extensions of func-
tions defined above.

For x ∈ Sh, define
Ph(x) = I − "nh(x) ⊗ "nh(x), (15)

and then for a function φ defined on U, we have

∇sh
φ(x) = Ph∇φ(x), ∀ x ∈ Sh. (16)

According to (8) and (13), for φh defined on Sh, it holds that

∇φl
h(x) = (P − dH)∇φl

h(p(x)), ∀ x ∈ Sh, (17)

where H : R3 → R3 denotes the Weingarten map. Detailed discussions about
H can be found in [15]. Since "nT · "n ≡ 1, it holds "nH = H"n = 0 and
PH = HP = H [15].
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Then, for any x ∈ Sh, we obtain that

∇φl
h(x) = (I− dH)P∇φl

h(p(x)) = (I − dH)∇sφ
l
h(p(x)). (18)

Combination of (16) and (18) gives us

∇sh
φh(x) = ∇sh

φl
h(x) = Ph(I − dH)P∇sφ

l
h(p(x)). (19)

Correspondingly, for ψ ∈ H1(S), we get

∇sh
ψl(x) = Ph(I − dH)P∇sψ(p(x)), ∀ x ∈ U.

If x ∈ Sh, (18) yields

∇sφ
l
h(p(x)) = (I − dH)−1∇φl

h(x), (20)

We note that the invertibility of I − dH was proved in [15]. Next, we aim to
deduce ∇sφl

h for given φh ∈ Sh. Using (19) and (20), we have

∇sh
φh(x) = Ph∇φl

h(x), ∀ x ∈ Sh. (21)

It is easy to see that for x ∈ Sh

0 = ∇φl
h(x) · "n = ∇sh

φh(x) · "n + ("nh · "n)∇φl
h(x) · "nh,

then it follows that

∇φl
h(x) · "nh = −∇sh

φh(x) · "n
"nh · "n

. (22)

Thus we have

∇φl
h(x) =

(
I −

"nh ⊗ "n

"nh · "n

)
∇sh

φh(x)

and

∇sφ
l
h(p(x)) = (I − dH)−1

(
I− "nh ⊗ "n

"nh · "n

)
∇sh

φh(x).

Define

µh(x) =
ds(x)

dsh(p(x))
, ξh(x) =

dγ(x))

dγh(p(x))
(23)

for any x ∈ Sh. Since S and ∂S are sufficiently smooth, we have (see [19, 22])

|1 − µh(x)| ≤ ch2, |1 − ξh(x)| ≤ ch2.

Finally, we cite the following results from [22] for later use:

Lemma 3 For any φ ∈ H1(S), there exist some generic constants c1, c2, c3, c4 >
0 such that 




c1‖φl‖L2(T h

i ) ≤ ‖φ‖L2(Ti) ≤ c2‖φl‖L2(T h
i ),

c3‖φl‖H1(T h
i ) ≤ ‖φ‖H1(Ti) ≤ c4‖φl‖H1(T h

i )
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for any Ti ∈ T .

With all the above notations, we have

∫

Sh
∇sh

φh ·∇sh
ψh dsh =

∫

S
Al

h∇sφ
l
h ·∇sψ

l
h ds,

where Al
h(p(x)) = Ah(x) =

(
1

µh
P(I − dH)Ph(I − dH)P

)
(x), ∀ x ∈ Sh.

Similarly, it holds that

∫

Sh
∇sh

φhψh dsh =
∫

S
Bl

h∇sφ
l
hψ

l
h ds,

where Bl
h(p(x)) = Bh(x) =

(
1

µh
Ph(I− dH)P

)
(x), ∀ x ∈ Sh.

3.1 An a posteriori estimator and its reliability

In the following, we will derive an energy-type (or H1-type) a posteriori esti-
mate for the discrete solution uh, i.e., to estimate ‖u−ul

h‖E (or ‖u−ul
h‖H1(S)).

Let e be an edge shared by elements T1 and T2 which have normals "nT1 and
"nT2 on e, respectively, then we can define

[[al∇sh
uh − "vuh]] = (al∇sh

uh − "vuh)|T1 · "nT1 + (al∇sh
uh − "vuh)|T2 · "nT2 ,

in particular, if e ⊂ ∂Sh we set [[al∇sh
uh − "vuh]] ≡ 0. By Green’s formula, it
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follows that for any φ ∈ H1(S):

A(u − ul
h, φ) =

∫

S
fφ ds −A(ul

h, φ)

=
∫

Sh
f lµhφ

l dsh −
∫

S
a∇su

l
h ·∇sφ ds +

∫

S
("v ·∇sφ)ul

h ds −
∫

S
bul

hφ ds

=
∫

Sh
f lµhφ

l dsh −
∫

S
a(P − Al

h)∇su
l
h ·∇sφ ds +

∫

S
(I− Bl

h)("v ·∇sφ)ul
h ds

−
∫

Sh
al∇sh

uh ·∇sh
φl dsh +

∫

Sh
("vl ·∇sh

φl)uh dsh −
∫

S
bul

hφ ds

=
∫

Sh
f lµhφ

l dsh −
∫

S
a(P − Al

h)∇su
l
h ·∇sφ ds +

∫

S
(I− Bl

h)("v ·∇sφ)ul
h ds

+
∫

Sh
∇sh

(al∇sh
uh)φ

l dsh −
∑

T h
i ∈T h

∫

∂T h
i

al(∇sh
uh · "nT h

i
)φl dγh

−
∫

Sh
∇sh

("vluh) · φl dsh +
∑

T h
i ∈T h

∫

∂T h
i

uh"v
l · "nT h

i
· φl dγh −

∫

S
bul

hφ ds.

=
∫

Sh

f lµhφ
l dsh −

∫

S
a(P − Al

h)∇su
l
h∇sφ ds +

∫

S
(I − Bl

h)("v ·∇sφ)ul
hds

+
∫

Sh
∇sh

(al∇sh
uh)φ

l dsh −
∫

Sh
∇sh

("vluh) · φl dsh

− 1

2

∑

T h
i ∈T

∫

∂T h
i

[[al∇sh
uh − "vuh]]φ

ld γh −
∫

S
bul

hφ ds. (24)

On the other hand, for any u ∈ C0(Sh), denote by Π(u) the interpolation of
u onto V, i.e. Π(u) ∈ V and Π(u)(xi) = u(xi) for all i ∈ σ. Then it holds that

−
∑

i∈σ

φi

∫

∂Kh
i

al∇sh
uh · "nKh dγh

=
∑

T h
i ∈T h

(
−

3∑

j=1

∫

∂Kh
ij∩T h

i

(al∇sh
uh · "nKh

ij
)Π(φl) dγh

)

=
∑

T h
i ∈T h

(
−

∫

T h
i

∇sh
· (al∇sh

uh)Π(φl) dsh +
∫

∂T h
i

(al∇sh
uh · "nT h

i
)Π(φl) dγh

)

(25)

and similarly

∑

i∈σ

φi

∫

∂Kh
i

uh"v
l · "nKh

i
dγh

=
∑

T h
i ∈T h

(
−

∫

T h
i

∇sh
· (uh"v

l)Π(φl) dsh +
∫

∂T h
i

(uh"v
l · "nT h

i
)Π(φl) dγh

)
.

(26)
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Thus,

Ah
G(uh, Π(φl))

= −
∑

i∈σ

φi

∫

∂Kh
i

al∇sh
uh · "nKh

i
dγh +

∑

i∈σ

φi

∫

∂Kh
i

uh"v
l · "nKh

i
dγh +

∫

Sh

bluhΠ(φl) dsh

= −
∫

Sh

∇sh
· (al∇sh

uh)Π(φl)dsh +
∫

Sh

∇sh
· ("vluh)Π(φl)dsh +

∫

Sh

bluhΠ(φl) dsh

+
1

2

∑

T h
i ∈T h

∫

∂T h
i

[[al∇sh
uh − "vluh]]φ

l dγh. (27)

Applying the equalities (24)–(27), we obtain

A(u − ul
h, φ) = A(u − ul

h, φ) + Ah
G(uh, Π(φl)) −Ah

G(uh, Π(φl))

=
∫

Sh
f lµhφ

l dsh −
∫

S
a(P − Al

h)∇su
l
h ·∇sφ ds +

∫

S
(I− Bl

h)("v ·∇sφ)ul
h ds

+
∫

Sh
∇sh

· (al∇sh
uh)(φ

l − Π(φl)) dsh −
∫

Sh
∇sh

· ("vluh)(φ
l − Π(φl)) dsh

− 1

2

∑

T h
i ∈T h

∫

∂T h
i

[[al∇sh
uh − uh"v

l]](φl − Π(φl)) dγh

−
∫

Sh
blµhuhφ

l dsh +
∫

Sh
bluhΠ(φl)dsh −

∫

Sh
f lΠ(φl) dsh

=
∫

Sh

(
f lµh + ∇sh

· (al∇sh
uh − "vuh) − blµhuh

)
(φl − Π(φl)) dsh

−
∫

S

(
a(P −Al

h)∇su
l
h − (I− Bl

h)"vul
h

)
·∇sφ ds

− 1

2

∑

T h
i ∈T h

∫

∂T h
i

[[al∇suh − uh"v
l]](φl − Π(φl))d γh

+
∫

Sh

(1 − µh)(b
luh − f l)Π(φl) dsh

= I1 + I2 + I3 + I4 (28)

where

I1 =
∫

Sh

(
f lµh + ∇sh

· (al∇sh
uh − "v · uh) − blµhuh

)
(φl − Π(φl)) dsh,

I2 = −1

2

∑

T h
i ∈T h

∫

∂T h
i

[[al∇suh − uh"v
l]](φl − Π(φl))d γh,

I3 = −
∫

S

(
a(P− Al

h)∇su
l
h − (I − Bl

h)"vul
h

)
·∇sφ ds,

I4 =
∫

Sh

(1 − µh)(b
luh − f l)Π(φl) dsh.

Next, we will analyze the above four terms, respectively, to get an appropriate
estimator.
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First, let us define

R = f lµh + ∇sh
· (al∇sh

uh − "vuh) − blµhuh (29)

and
r = [[al∇suh − uh"v

l]]. (30)

Then it follows that

|I1| =
∣∣∣∣

∑

T h
i ∈T h

∫

T h
i

R(φl − Π(φl)) dsh

∣∣∣∣ ≤
∑

T h
i ∈T h

‖R‖L2(T h
i )‖φl − Π(φl)‖L2(T h

i )

≤ c
∑

T h
i ∈T h

hi‖R‖L2(T h
i )‖φ‖H1(Ti), (31)

and

|I2| =
∣∣∣∣ −

1

2

∑

T h
i ∈T h

∫

∂T h
i

r(φl − Π(φl)) dγh

∣∣∣∣ ≤
1

2

∑

T h
i ∈T h

‖r‖L2(∂T h
i )‖φl − Π(φl)‖L2(∂T h

i )

≤ c
∑

T h
i ∈T h

1

2
h

1
2
i ‖r‖L2(∂T h

i )‖φ‖H1(Ti). (32)

Using Cauchy-Schwartz inequality and the trace theorem, we immediately get

|I1 + I2| ≤ c
∑

T h
i ∈T h

(hi‖R‖L2(T h
i ) +

1

2
h

1
2
i ‖r‖L2(∂T h

i ))‖φ‖H1(Ti)

≤ c
( ∑

T h
i ∈T h

h2
i ‖R‖2

L2(T h
i ) +

1

4

∑

T h
i ∈T h

hi‖r‖2
L2(∂T h

i )

) 1
2

‖φ‖H1(S). (33)

As for I3, we have

|I3| ≤
∑

T h
i ∈T h

∥∥∥a(P − Al
h)∇su

l
h − (I −Bl

h)"vul
h

∥∥∥
L2(Ti)

‖∇sφ‖L2(Ti)

≤ c
∑

T h
i ∈T h

∥∥∥a
√

µh(P− Ah)(I − dH)−1
(
I−

"nh ⊗ "n

"nh · "n

)
∇sh

uh

−√
µh[I − Bh]"v

luh

∥∥∥
L2(T h

i )
‖∇sφ‖L2(Ti). (34)

Now set

Ch = a
√

µh(P− Ah)(I − dH)−1
(
I− "nh ⊗ "n

"nh · "n

)
, (35)

then we finally arrive at

|I3| ≤ c
∑

T h
i ∈T h

∥∥∥Ch∇sh
uh −

√
µh(I −Bh)"v

luh

∥∥∥
L2(T h

i )
‖φl‖H1(T h

i )

≤ cβ∗
1

∥∥∥Ch∇sh
uh −

√
µh(I −Bh)"v

luh

∥∥∥
L2(Sh)

‖φ‖H1(S) (36)

12



where β∗
1 > 0 is a generic constant that also depends on the curvature infor-

mation of the surface S. For more discussions about this issue, see [15]. Also
it holds that

|I4| =
∣∣∣∣
∫

Sh

(1 − µh)(b
luh − f l)Π(φl)dsh

∣∣∣∣

≤
∑

T h
i ∈T

∣∣∣∣
∫

T h
i

(1 − µh)(b
luh − f l)Π(φl)dsh

∣∣∣∣

≤
∑

T h
i ∈T

‖(1 − µh)(b
luh − f l)‖L2(T h

i )‖Π(φl)‖L2(T h
i )

≤ cβ∗
2

( ∑

T h
i ∈T

‖(1 − µh)(b
luh − f l)‖2

L2(T h
i )

) 1
2

‖φ‖H1(S) (37)

where β∗
2 > 0 is again a generic constant that also depends on the curvature

information.

Thus, by letting φ = u − ul
h, we get an estimator as follows:

‖u − ul
h‖E ≤ c

( ∑

T h
i ∈T h

R2
T h

i ,1 + R2
T h

i ,2 + R2
T h

i ,3

) 1
2

(38)

where

RT h
i ,1 =

(
h2

i ‖R‖2
L2(T h

i ) +
1

4
hi‖r‖2

L2(∂T h
i )

) 1
2

,

RT h
i ,2 =

√
β∗

1‖Ch∇sh
uh −

√
µh(I −Bh)"v

l · uh‖L2(T h
i ),

RT h
i ,3 =

√
β∗

2‖(1 − µh)(b
luh − f l)‖L2(T h

i ).

Now let us define the local explicit a posteriori error estimator ηT h
i

on each

triangle T h
i ∈ T h by

η2
T h

i
= R2

T h
i ,1 + R2

T h
i ,2 + R2

T h
i ,3 (39)

and the following result is naturally obtained:

Theorem 4 (Reliability of ηT h
i
) Assume that u ∈ H1

0 (S) is the weak solution

of the problem (6), and uh ∈ U is the solution of the discrete problem (14).
Then under Assumption 1, there exists a generic constant c > 0 such that

‖u − ul
h‖E ≤ cηT h , (40)

where ηT h =
( ∑

T h
i ∈T h η2

T h
i

)1/2
.

Remark 5 For any curved triangle Ti ∈ T , one observes that

|1 − µh(x)| ≤ ch2
i , |d(x)| ≤ ch2

i , ‖(P −Ah)(x)‖l2→l2 ≤ ch2
i (41)

13



for any x ∈ Ti, then the following inequalities can be easily obtained

‖Ch‖l2→l2 ≤ c1‖P− Ah‖l2→l2 ≤ c2h
2
i ,

‖I− Bh‖l2→l2 ≤ c3h
2
i .

Thus we know that the last two terms in (40) are of higher order compared
with the first one.

3.2 Efficiency of the a posteriori estimator

In this section, we aim to prove the efficiency of the estimator derived in the
previous section, i.e., ηT h

i
does not overestimate the true error.

Theorem 6 Assume that u ∈ H1
0 (S) is the solution of the problem (6), and

uh ∈ U is the solution of the discrete problem (14). We also assume that T is
shape-regular. Then under Assumption 1, it holds that for any T h

i ∈ T h,

ηT h
i
≤ c

[
‖Ah‖1/2

L∞(T h)

(
‖u − ul

h‖H1(Ti) + ‖Ch∇sh
uh‖L2(T h

i ) + ‖√µh(I −B)"vluh‖L2(T h
i )

)

+ hi‖R − R̄‖L2(T h
i ) + h1/2

i ‖r − r̄‖L2(∂T h
i )

]
(42)

where c is a generic constant, and R̄ and r̄ are piecewise linear approximation
of R and r, with respect to the triangulation T h.

Proof: The proof will follow the well-known framework by Verfürth [39]. First,
we aim to bound ‖R‖L2(T h

i ). Define the bubble function [39] φT h
i

on T h
i =

.xi1xi2xi3 by φT h
i

=
∏3

j=1 ζxij
, where each ζxij

∈ U and ζxi(xj) = δi,j, such

that φT h
i
|∂T h

i
= 0 and φT h

i
= 0 outside T h. Set R̄ ∈ U be a piecewise linear

approximation to R on T h
i . Let us take ψ = R̄φT h

i
in (24), and apply Poincare

inequality and Theorem 2.2 in [2], then we obtain

∫

T h
i

RR̄φT h
i

dsh =
∫

Ti

a∇s(u − ul
h) ·∇s(R̄

lφl
T h

i
) ds −

∫

Ti

(u − ul
h)"v ·∇s(R̄

lφl
T h

i
) ds

+
∫

Ti

b(u − ul
h)R̄

lφl
T h

i
ds +

∫

Ti

a(P −Al
h)∇su

l
h ·∇s(R̄

lφl
T h

i
) ds

−
∫

Ti

(I −Bl
h)"vul

h ·∇s(R̄
lφl

T h
i
) ds

14



and then
∣∣∣∣
∫

T h
i

RR̄φT h
i

dsh

∣∣∣∣

≤
(
‖u − ul

h‖H1(Ti) + ‖a(P − Al
h)∇su

l
h‖L2(Ti) + ‖(I −Bl

h)"vul
h‖L2(Ti)

)

· ‖∇s(R̄
lφl

T h
i
)‖L2(Ti)

≤
(
‖u − ul

h‖H1(Ti) + ‖Ch∇sh
uh‖L2(T h

i ) + ‖√µh[I − Bh]"v
luh‖L2(T h

i )

)

· ‖Ah‖1/2
L∞(T h)‖∇sh

(R̄φT h
i
)‖L2(T h

i )

≤ c
(
‖u − ul

h‖H1(Ti) + ‖Ch∇sh
uh‖L2(T h

i ) + ‖√µh[I − Bh]"v
luh‖L2(T h

i )

)

· ‖Ah‖1/2
L∞(T h

i )
h−1

i ‖R̄‖L2(T h
i ) (43)

where the constant c only depends on the shape regularity of T h.

Use Theorem 2.2 in [2] again, we then get

‖R̄‖2
L2(T h

i ) ≤ c‖R̄
√

φT h
i
‖2

L2(T h
i )

≤ c
( ∫

T h
i

RR̄φT h
i

dsh −
∫

T h
i

R̄(R − R̄)φT h
i

dsh

)

≤ c
( ∫

T h
i

RR̄φT h
i

dsh + ‖R − R̄‖L2(T h
i )‖R̄φT h

i
‖L2(T h

i )

)

≤ c
( ∫

T h
i

RR̄φT h
i

dsh + ‖R − R̄‖L2(T h
i )‖R̄‖L2(T h

i )

)
. (44)

Combination of (43) and (44) results in

‖R̄‖2
L2(T h

i ) ≤ c‖R̄‖L2(T h
i )

(
‖R − R̄‖L2(T h

i ) + h−1
i ‖Ah‖1/2

L∞(T h
i )

(
‖u − ul

h‖H1(Ti)

+ ‖Ch∇sh
uh‖L2(T h

i ) + ‖√µh(I − Bh)"vuh‖L2(T h
i )

))
. (45)

Dividing (45) by ‖R̄‖L2(T h
i ) and applying the triangle inequality, we immedi-

ately get

hi‖R‖L2(T h
i ) ≤ c

(
hi‖R − R̄‖L2(T h

i ) + ‖Ah‖1/2
L∞(T h

i )

(
‖u − ul

h‖H1(Ti)

+ ‖Ch∇sh
uh‖L2(T h

i ) + ‖√µh[I − Bh]"vuh‖L2(T h
i )

))
. (46)

Next, we try to bound the edge residual ‖r‖L2(e) where e is an edge shared

by the triangle T h
i and one of its neighbors, says T h

j . Let Kh = T̄ h
i ∪ T̄ h

j , and
correspondingly K = T̄i ∪ T̄j , let φe be the edge bubble function [39] over Kh,
i.e. φe|∂Kh = 0 and φe = 0 outside Kh, and also let r̄ be a piecewise linear
approximation to r (i.e., r̄ ∈ U). Taking ψ = r̄φe in (24), and applying the
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Poincare inequality and Theorem 2.4 in [2], we obtain

∣∣∣∣
∫

e
rr̄φe dγh

∣∣∣∣ =
∣∣∣∣ −

∫

K
a∇s(u − ul

h) ·∇s(r̄
lφl

e) ds +
∫

K
(u − ul

h)"v ·∇s(r̄
lφl

e) ds

−
∫

K
b(u − ul

h)r̄
lφl

e ds +
∫

Kh
Rr̄φe dsh

−
∫

K
a(P − Al

h)∇su
l
h∇s(r̄

lφl
e) ds +

∫

K
(I − Bl

h)("v∇s(r̄
lφl

e))u
l
h ds

∣∣∣∣

≤ c
(
‖R‖L2(Kh)h

1/2
i ‖r̄‖L2(e) +

(
‖u − ul

h‖H1(K) + ‖Ch∇sh
uh‖L2(Kh)

+ ‖√µh(I −Bh)"v
luh‖L2(Kh)

)
‖Ah‖1/2

L∞(Kh)‖∇sh
(r̄φe)‖L2(Kh)

)

(47)

where the constant c only depends on the shape regularity of the mesh. Again,
using Theorem 2.4 in [2], we have

‖∇sh
(r̄φe)‖L2(Kh) ≤ ch−1/2

i ‖r̄‖L2(e), (48)

and

‖r̄‖2
L2(e) ≤ c

∫

e
r̄2φedγh ≤ c

( ∫

e
rr̄φedγh + ‖r − r̄‖L2(e)h

1/2
i ‖r̄‖L2(e)

)
. (49)

Combining (47)-(49), we then get

h1/2
T h

i
‖r̄‖2

L2(e) ≤ c
(
‖Ah‖1/2

L∞(Kh)

(
‖u − ul

h‖H1(K) + ‖Ch∇sh
uh‖L2(Kh)

+ ‖√µh(I −Bh)"v
luh‖L2(Kh)

)
+hi‖R‖L2(Kh) + h1/2

i ‖r − r̄‖L2(e)

)
‖r̄‖L2(e).

(50)

and consequently

h1/2
T h

i
‖r‖L2(e) ≤ c

(
‖Ah‖1/2

L∞(Kh)

(
‖u − ul

h‖H1(K) + ‖Ch∇sh
uh‖L2(Kh)

+ ‖√µh(I− Bh)"v
luh‖L2(Kh)

)
+hi‖R‖L2(Kh) + h1/2

i ‖r − r̄‖L2(e)

)
. (51)

Notice that RT h
i ,2 and RT h

i ,3 are higher-order terms compared with RT h
i ,1 from

the discussion in Remark 5, and we obtain the efficiency relation (42) directly
from (46) and (51). !

Remark 7 It is obvious that Ch and I−B are of high order (≥ h2
i ). We also

can pick R̄ and r̄ properly such that the last two terms in (42) are again of
high order(≥ h1.5

i ), so that the dominant term in (42) is ‖u − ul
h‖H1(Ti).

Remark 8 Actually, we would like to note that the same theoretical results
can be obtained for closed surfaces (∂S = ∅) with similar analysis as we did
in the previous sections.
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4 Numerical Experiments

In this section, several numerical experiments are presented to verify the re-
liability and efficiency of the a posteriori estimator proposed in the previ-
ous section. All experiments are performed for the model equation (1) with
a given exact solution u(x). Boundary conditions are set correspondingly if
∂S &= ∅. In our experiments, the initial meshes are relatively uniform meshes;
they are generated and optimized using the so-called constrained centroidal
Voronoi Delaunay triangulation (CCVDT) algorithm [16] with a constant den-
sity function. The mesh refinement at each level is done by applying the mark-
ing strategy used in [15, 37] with the parameter θ = 0.3 (θ is used to control
the refinement process [21]). The refinement process stops after the number of
nodes reaches 30,000 for each of the examples. We set β∗

1 = β∗
2 = 1 in (39) for

our numerical experiments. Recently, the study of robustness of a posteriori
error estimates also attracted much attention, i.e., whether the constants in
the a posteriori estimate are almost uniform for a class of similar problems.
We will also numerically address this problem.

4.1 Example 1: Half-sphere

In this experiment, the surface S is taken to be the northern half of the unit
sphere, i.e.,

S = {x ∈ R3 | x2
1 + x2

2 + x2
3 = 1, x3 ≥ 0},

and its boundary is given by

∂S = {(x1, x2, 0) | x2
1 + x2

2 = 0}.

The outer normal at x ∈ S is simply (x1, x2, x3). We set a(x) = 1, "v(x) =
(1, 2, 3), b(x) = 1, and the exact solution u is chosen to be

u(x) =
1

x2
1 + x2

2 + (1 − x3)2 + 0.02
.

Clearly u has a peak at (0, 0, 1), the top of the half sphere. The first experiment
takes all the coefficients to be constant. The initial mesh and the refined meshes
at steps 12 and 16 are shown in Fig. 2. It can be easily seen that the meshes
around the peak of the exact solution are well refined. In Fig. 3(left), we draw
the L2 and energy-norm errors of the approximate solution uh at all steps
and also the a posteriori error estimate ηT h , along with some reference slopes.
From Fig. 3 it can be concluded that the approximate solutions are of the
second-order convergence when measured under L2 norm and the first-order
convergence under energy norm. It is also obvious that our error estimator
has the same convergence rate as the energy-norm error, see Fig. 3(right)
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Fig. 2. (From left to right) The initial mesh with 64 nodes and adaptively refined
meshes with 817 nodes (Level 12) and 4098 nodes (Level 16) for Example 1.
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Fig. 3. Left: comparison of the L2, Energy-norm errors and the a posteriori estimator
ηT h at all levels for Example 1; right: ratio between the error estimator and the exact
energy-norm error for Example 1.

for information on the the ratio between the error estimator and the energy-
norm error at each step of refinements. From this figure, we can easily observe
that the ratio quickly becomes stable after the oscillations at the first few
refinements and converges to a constant around 6.1.

4.2 Example 2: Cornered surface

The surface S is now selected to be

S = {x ∈ R3 | (x3 − x2
2)

2 + x2
1 + x2

2 = 1, x3 ≥ x2
2, x1 ≥ 0 or x2 ≥ 0}

with the boundary

∂S = {(x1, x2, x
2
2 +

√
1 − x2

1 + x2
2) | x2

1 + x2
2 = 1, x1 ≥ 0 or x2 ≥ 0}

∪ {(0, x2, x
2
2 +

√
1 + x2

2) | − 1 ≤ x2 ≤ 0} ∪ {(x1, 0,
√

1 − x2
1) | − 1 ≤ x1 ≤ 0}.

Clearly, the boundary of S is not smooth at (0, 0, 1). The outer normal at
x ∈ S is now given by "n(x) = "t/‖"t‖ with "t = (x1, x2(1− 2(x3 − x2

2)), x3 − x2
2).
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We use variant coefficients a(x) = 2+x1x2, "v(x) = (1+x1, 2+x2, 3+x3) and
b(x) = 1. The exact solution u is set again to be

u(x) =
1

x2
1 + x2

2 + (1 − x3)2 + 0.02
.

Then the peak of error occurs at the corner (0, 0, 1). In this experiment, we
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Fig. 4. (From left to right) The initial mesh with 108 nodes and adaptively refined
meshes with 929 nodes (Level 11) and 3067 nodes (Level 14) for Example 2.
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Fig. 5. Left: comparison of the L2, Energy-norm errors and the a posteriori estimator
ηT h at all levels for Example 2; right: ratio between the error estimator and the exact
energy-norm error for Example 2.

choose coefficients a and "v to be dependent on x, and the boundary is not
globally smooth as that in experiment 1 (there are some corner points). We
can see that the a posteriori estimate is still very effective, as shown in Fig. 4,
where the meshes around the peak of exact solution are refined much more
heavily, as expected. In Fig. 5(left), we see that the estimator ηT h has the
same convergence rate as the energy-norm error, and the L2 error maintains a
second-order convergence. And as in experiment 1, the Fig. 5(right) gives us a
steady almost-constant ratio between the error estimator and the energy-norm
error, after oscillations of the first few steps of mesh refinement. Notice that
the ratio is around 8.3 for this example which is quite close to that of Example
1.
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4.3 Example 3: Torus

In the third experiment, the surface S is taken to be a torus such as

S =
{
x ∈ R3 | (x1 −

(r1 + r2)x1

2ρ
)2 + (x2 −

(r1 + r2)x2

2ρ
)2 + x2

3 =
(r2 − r1)2

4

}

where ρ =
√

x2
1 + x2

2, r1 = 0.5, and r2 = 1. Clearly, this surface has no
boundary, and we will show that our estimator still works well.

The outer normal at x ∈ S is given by "n(x) = "t/|"t| with

"t =




(x1 − x̃1)

(
1.0 − r1+r2

2ρ + (r1+r2)x2
1

2ρ3

)
+ (x2 − x̃2)

(
(r1+r2)x2x1

2ρ3

)

(x2 − x̃2)
(
1.0 − r1+r2

2ρ + (r1+r2)x2
2

2ρ3

)
+ (x1 − x̃1)

(
(r1+r2)x2x1

2ρ3

)



 ,

where x̃1 = (r1 + r2)x1/2ρ, x̃2 = (r1 + r2)x2/2ρ. We let a(x) = 1 + x2
1,

"v = (0, 0, 0) and b(x) = 1 + x2
1 + x2

2 + x2
3, and the exact solution u is set to be

u(x) = e

1

(x1 + 1)2 + x2
2 + x2

3 + 0.25 .

Obviously u has a peak at (−1, 0, 0). Fig. 6 shows that the meshes around
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Fig. 6. (From left to right) The initial mesh with 146 nodes and adaptively refined
meshes with 869 nodes (Level 9) and 4190 nodes (Level 13) for Example 3.

the peak are well-refined. Fig. 7 verifies the expected convergence rates of
L2, energy-norm errors and the a posteriori error estimate, as well as the
almost-constant ratio between the error estimator ηT h and the energy-norm
error. More specifically, the ratio stays around 7.5 with small perturbations
that is again quite close to that of Example 1 and Example 2. This numerical
observation implies that the proposed a posteriori error estimate is also quite
robust in applications. In this experiment, we in particular show that the
proposed error estimator still behaves very well when the domain is a closed
surface.

Remark 9 The robustness of the derived a posterior error estimator is nu-
merically demonstrated through the above examples, while theoretical analysis
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Fig. 7. Left: comparison of the L2, Energy-norm errors and the a posteriori estimator
ηT h at all levels for Example 3; right: ratio between the error estimator and the exact
energy-norm error for Example 3.

still remains open. Readers can refer to [36, 41] for more information on pla-
nar problems.

5 Conclusions

In this paper, we derive a residual-based explicit a posteriori error estimate
for the finite volume discretization of elliptic partial differential equations de-
fined on smooth surfaces in R3. We rigorously prove both the reliability and
the efficiency of the proposed error estimator and verify the theoretical results
through numerical examples. The numerical results also clearly demonstrate
the robustness of the proposed error estimator. We note that the central dis-
cretization scheme will not be appropriate when the equation (1) becomes
convection-dominated (i.e., |a|/|"v| << 1). Under that case an up-wind approx-
imation of the convection term is needed to avoid non-physical oscillations and
similar analysis is still under our study. The on-going and future works also
includes studying a posteriori error estimators on finite volume approximation
for higher-order and time-dependent problems defined on surfaces.

References

[1] M. Afif, A. Bergam, Z. Mghazli and R. Verfürth, A posteriori
estimators for the finite volume discretization of an elliptic problem, Numer.
Algorithm, 34, pp. 127-136, 2003.

[2] M. Ainsworth and J. Oden, A Posteriori Error Estimation in Finite
Element Analysis, Wiley, New York, 2002.

21



[3] T. Apel and C. Pester, Clement-type interpolation on spherical
domains–interpolation error estimates and application to a posteriori er-
ror estimation, IMA J. Numer. Anal., 25, pp. 310-336, 2005.

[4] I. Babuska and A. Miller, A feedback finite element method with a
posteriori error estimates, Comput. Methods Appl. Mech. Engrg., 61, pp.
1-40, 1987.

[5] I. Babuska and W. C. Rheinboldt, Error estimates for adaptive finite
element computations, SIAM J. Numer. Anal., 15, pp. 736-754, 1987.

[6] I. Babuska and W. C. Rheinboldt, A posteriori error estimates for
the finite element method, Internat. J. Numer. Methods Engrg., 12, pp.
1597-1615, 1978.

[7] I. Babuska and W. C. Rheinboldt, A posteriori error analysis of finite
element solutions for one-dimensional problems, SIAM J. Numer. Anal., 18,
pp. 565-589, 1981.
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