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ABSTRACT

The ability to solve the global shallow-water equations with a conforming, variable-resolution

mesh is evaluated using standard shallow-water test cases. While our long-term motivation is

the creation of a global climate modeling framework capable of resolving different spatial and

temporal scales in different regions, we begin with an analysis of the shallow-water system

in order to better understand the strengths and weaknesses of our approach. The multi-

resolution meshes are spherical centroidal Voronoi tessellations where a single, user-supplied

density function determines the region(s) of fine- and coarse-mesh resolution. We explore the

shallow-water system with a suite of meshes ranging from quasi-uniform resolution meshes,

where grid spacing is globally uniform, to highly-variable resolution meshes, where grid

spacing varies by a factor of 16 between the fine and coarse regions. We find that potential

vorticity is conserved to within machine precision and total available energy is conserved to

within time-truncation error. This finding holds for the full suite of meshes, ranging from

quasi-uniform resolution and highly-variable resolution meshes. Using shallow-water test

cases 2 and 5, we find that solution error is controlled primarily by the grid resolution in the

coarsest part of the model domain. This finding is consistent with results obtained by others.

When these variable resolution meshes are used for the simulation of an unstable zonal jet,

we find that the core features of the growing instability are largely unchanged as the variation

in mesh resolution increases. The main differences between the simulations occur outside the

region of mesh refinement and these differences are attributed to the additional truncation

error that accompanies increases in grid spacing. Overall, the results demonstrate support

for this approach as a path toward multi-resolution climate system modeling.
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1. Introduction

A defining feature of the global atmosphere and ocean circulations is their broad range

of temporal and spatial scales. The climate of the atmosphere is determined by both global

patterns of motion, O(104) km, as well as, for example, boundary layer processes with

O(10−1) km characteristic scales (Klein and Hartmann 1993). Similarly the climate of the

ocean is controlled by both basin scales of motions, O(104) km, and sub-mesoscale processes

with O(10−1) km scales. (Boccaletti et al. 2007). As is typical of nonlinear systems, the broad

range of climate-relevant spatial scales in the atmosphere and ocean are highly interacting;

the O(104) km global scales modify and are modified by the O(10−1) km local scales. In

terms of simulating the atmosphere and ocean climate systems, the strong interaction across

scales implies that an accurate representation of the smallest scales is a prerequisite for the

robust simulation of the largest scales.

As a result of the broad scale interaction, the numerical simulation of the climate system is

particularly challenging. For example, we do not presently have the computational resources

to globally resolve all the scales associated with fundamental processes in the atmosphere

and ocean, e.g. clouds and ocean eddies (Randall and Bony 2007). This unfortunate reality

will remain true for decades to come. The corollary is that the numerical simulation of the

global climate system is, and will likely always remain, an under-resolved endeavor.

Given the importance of small-scale processes such as clouds and ocean eddies in the

climate system, numerical models are obligated, either through direct simulation or param-

eterization, to account for how these processes modify and are modified by the larger scales.

Due to the constraint presented by today’s computational resources, climate models are al-
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most always relegated to the latter option of parameterization. Parameterizing a process is

significantly more challenging than directly simulating that same process. When conducting

a direct simulation, the interaction across scales is naturally accommodated. When param-

eterizing a process, we need to know a priori how the larger (resolved) scales act to regulate

the smaller (unresolved) parameterized process and, in turn, how the parameterized process

acts in an aggregate sense to modify the largest scales. In effect, an accurate parameteri-

zation requires significantly greater understanding of the underlying physics than does the

direct simulation of that same process.

The pitfall of parameterization has led to what might be considered the defining tenet of

global climate modeling: increasing model resolution allows for less parameterization and,

thereby, a more accurate simulation of the observed climate system. Faced with the daunt-

ing challenges posed by global climate modeling, the community has embarked on at least

three research paths to address this challenge. The first approach is that of global ultra

high-resolution climate system modeling (McClean et al. 2010, accepted). In this approach,

high-resolution climate system models are paired with the world’s most advanced high perfor-

mance computing systems to conduct climate simulations at unprecedented resolution. The

underlying premise is that as the model resolves more and more of the scales of interests,

less of the system is left unresolved and, thus, less of the systems requires parameterization.

This approach is very much in the theme of traditional climate modeling but at very high

resolution and, as a result, benefits from the decades of experience that this activity has

obtained. The main disadvantage of this approach is that the presently unresolved parts of

the spectrum are resolved at a painfully slow rate. Reducing the horizontal grid spacing by

a factor of two typically requires a factor of 23 increase in computing resources, where lon-
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gitude, latitude and time account individually for a factor of 2. Thus moving from a global

50 km mesh like those presently used for high-resolution IPCC atmosphere simulations to a

global 4 km mesh that would be required for convection-permitting atmosphere simulations

will entail an increase in computing resources of approximately 212, or about 4000 times the

present-day computing capacity. And this, of course, neglects the substantial increase in

vertical resolution that will also be required.

In order to circumvent the tyranny of global, high-resolution climate modeling, a second

approach based on limited-area climate modeling has been explored over the last two decades

(Giorgi and Mearns (1991), McGregor (1997) and Wang et al (2004)). This approach

employs a high-resolution mesh placed only over the area of interest. Since the area of

interest generally spans only a small portion of the sphere, e.g. the continental United States,

the computational demands are significantly reduced as compared to global high-resolution

modeling. As a result of being more computationally accessible, it is much easier to explore

physical processes that might be relevant to regional climate dynamics and regional climate

change (e.g. Diffenbaugh et al. (2005)). The disadvantage of the limited-area approach is the

requirement to impose one-way, non-interactive lateral boundary conditions. These lateral

boundary conditions can be obtained from reanalysis data or coarse-grain global climate

simulations. The imposition of lateral-boundary conditions can lead to inconsistencies in

the physics and dynamics of the limited-area models (see Wang et al (2004) for a review).

Physical inconsistencies can arise when the global and regional models use different physical

parameterizations (e.g. McGregor (1997) Fig. 4). Dynamical inconsistencies can arise from

the lack of well-posedness of the lateral boundary conditions (Oliger and Sundström (1978),

Staniforth (1997)) and mismatch between the solution of the global and regional models in
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the nesting region (Davies (1976), Marbaix et al. (2003), Harris and Durran (2010). These

inconsistencies can result in the regional and global simulations diverging toward different

climate states (Jones et al. 1995). Physical inconsistencies can be ameliorated by using the

same physical parameterizations in both the global and regional model (McGregor (1997),

Lorenz and Jacob (2005)). Dynamical inconsistencies can be mitigated by overwriting the

global model solution with the regional model solution after every time step (Lorenz and

Jacob (2005), Inatsu and Kimoto (2009).

The third option being pursued is that of multi-scale modeling. While this method has

been investigated primarily in the atmosphere modeling (Grabowski 2010), a preliminary

exploration of this approach in ocean modeling is underway (Campin et al. 2010, revised).

As the name suggested, this approach couples models at different scales to create a full

simulation. Efforts to date have focused primarily on coupling global, coarse-grain mod-

els of atmosphere dynamics with embedded high-resolution models of cloud and radiation

processes. As a result, the multi-scale approach significantly reduces the need for physical

parameterizations by resolving those processes directly via truncated large-eddy simulations

(Khairoutdinov and Randall 2001). Multi-scale approaches are constructed on the premise

that there exists a scale separation that can be exploited in the modeling of the physical

system. Essentially, this approach assumes that the fine-scale processes act on temporal

and spatial scales that are sufficiently far away from the coarse-grain processes such that

the fine and coarse scales can be coupled without a representation of the intervening scales.

The extent to which this assumption is valid for the atmosphere and ocean systems remains

unclear.

In this contribution, we start what we hope will be a fourth line of research to address the
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computational challenges in modeling the climate system. This approach, that we informally

refer to as a multi-resolution approach, is essentially a merging of the traditional global

climate modeling approach with the regional limited-area approach. As will be discussed

below, in our multi-resolution approach we maintain a global modeling framework in the

sense that we simulate the entire spatial extent of the atmosphere and/or ocean systems

within a single model, yet we allow for arbitrary regions of local mesh refinement.

In the sense that this method maintains a global, conforming mesh, it is similar to the

stretch-grid or conformal mapping approaches that have been explored over the last two

decades (Fox-Rabinovitz et al. (1997), Déqué et al (2005) and Fox-Rabinovitz et al. (2006)).

Since the stretched-grid approaches require the mesh to be deformed through a continuous

mapping (i.e. the mesh is topologically unchanged as resolution is changed), the increase

in resolution in one region must necessarily come at the expense of decreasing resolution in

another region. Stretched-grid approaches are also limited in their ability to place enhanced

resolution in more than one region. The multi-resolution approach developed below is not

based on a continuous deformation of a mesh, does not require that the increase in resolution

in any region come at the expense of resolution elsewhere and is not limited to resolution

increases in only one region. The stretched-grid approach does highlight a primary challenge

of any method that includes a wide range of spatial scales, namely the lack of access to scale-

aware physical parameterizations. We revisit this challenge, along with the other challenges

that multi-resolution approaches must address, in the last section of the paper.

As illustrated in Figure 1, the multi-resolution approach allows for grid-resolution in one

or more regions to be significantly higher than the grid resolution in other regions. This can

be acomplished in one of two ways. First, a variable density function could be employed
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to redistribute a fixed number of grid points, causing the same effect as a stretched-grid

approach. Second, using a set of grid points, an arbitrary number of refinement nodes can

be added into the grid, causing refinement only in the area of interest, without hindering the

results in other areas. We have the ability to directly simulate processes, such as clouds and

ocean eddies, in the region(s) of high resolution while parameterizing those same processes

in the region(s) of low resolution. This multi-resolution approach is built upon two key

components: a conforming, variable-resolution mesh with exceptional mesh-quality charac-

teristics and a finite-volume method that maintains all of its conservation properties even

when implemented on a highly non-uniform grid.

The first of the two pillars on which this multi-resolution approach is build on is Spherical

Centroidal Voronoi Tessellations (SCVTs). Voronoi tessellations have a long history in the

sciences, probably because Voronoi-like polygons are commonly found in nature (Barlow

1974). In climate modeling, Voronoi-like tessellations were introduced by Sadourny et al.

(1968) and Williamson (1968) due to their uniformity and isotropy in tiling the surface of

the sphere.1 Neither Sadourny nor Williamson refer to their grids as Voronoi tessellations,

but both appeared to use Voronoi tessellations as their base mesh. Even over the last decade

there has been much ambiguity with respect to the terminology used to describe these

meshes (see Ju et al. (2010)). More recently, Voronoi-like meshing of the sphere has found

significant success in global atmosphere modeling (Heikes and Randall (1995), Thuburn

1Voronoi tessellations have been reinvented many times over in the past hundred and fifty years. The

first systematic treatment of what we now call Voronoi tessellations was given by Dirichlet (1850). Voronoi

(1908) generalized the work of Dirichlet to arbitrary dimensions. These tessellations have been given many

different names by their reinventors (see Ju et al. (2010))
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(1997), Ringler et al. (2000), Ringler and Randall (2002), Randall et al. (2002), Tomita

et al. (2005), Weller and Weller (2008)). In each of these examples, the use of Voronoi-like

tessellations is motivated through their ability to produce high-quality meshes of uniform

resolution while at the same time eliminating problematic grid singularities associated with

other meshing approaches. While we certainly agree and appreciate this motivation, recent

work suggests that Voronoi diagrams are equally valuable for the generation of variable

resolution meshes. As will be discussed fully in Section 2, by adding the centroidal constraint

to the construction of Voronoi tessellations we can produce a very regular, high-quality,

variable-resolution meshing of the sphere. A centroidal Voronoi tessellation differs from the

generic Voronoi tessellation by requiring that the generating points (grid points) are the

centroids (centers of mass) of the corresponding Voronoi regions. This seemingly minor

requirement that grid points be the centers of mass of the Voronoi grid cell results in meshes

of remarkably high quality even when the mesh resolution changes (Gersho (1979), Du et al.

(1999)).

The second pillar of this approach is the finite-volume scheme that we pair with the

variable-resolution SCVTs to produce robust simulations of rotationally-dominated geo-

physical flows. A hallmark of robust finite-volume techniques used in global atmosphere

and ocean models has been their ability to constrain the spurious growth of nonlinear quan-

tities, such as potential enstrophy and total energy (Arakawa 1966). While a more nuanced

view of the importance of conserving nonlinear quantities has emerged over the last decade

(Thuburn 2008), anecdotal evidence has continually shown that there is value in developing

numerical schemes that respect certain underlying constraints imposed by the continuous

system. This is a particularly challenging task when the underlying mesh is not uniform
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(e.g. see Perot (2000), Bonaventura and Ringler (2005), Stuhne and Peltier (2006), Ham

et al. (2007), Kleptsova et al. (2009)). The recent contributions from Thuburn et al. (2009)

and Ringler et al. (2010) detail a finite-volume approach that allows for the conservation of

nonlinear quantities, even when the underlying mesh is highly variable. One purpose of this

contribution is a full characterization of this scheme’s performance on variable resolution

meshes.

Our goals for this contribution are modest in the sense that we only wish to character-

ize the ability of this approach to simulate the shallow-water system with multi-resolution

meshes. Such a characterization is, in our view, a prerequisite to performing variable-

resolution simulations of the full atmosphere and ocean systems. We choose to begin with

the analysis of the shallow-water system due to its proven usefulness as a simplified proxy

of the 3D primitive equations. To this end, in Section 2 we provide a brief overview of the

SCVTs, their properties and how these meshes are generated. In Section 3 we provide a

brief summary of the underlying numerical method used in our multi-resolution approach

with special attention toward the method’s properties when the mesh is non-uniform. Re-

sults from a few of the standard shallow-water test cases are shown in Section 4 where the

focus is on geostrophic balance, conservation properties and solution error as a function of

mesh size and mesh refinement. In Section 5 we compare the results obtained herein with

previously published results. The multi-resolution approach that we begin to develop here is

not without its own set of challenges. In Section 6 we highlight the challenges that will have

to be overcome if this approach is to make substantive contributions to the field of global

and regional climate modeling.
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2. Properties and Generation of SCVTs

A full review of SCVTs and their potential benefit in global climate system modeling

is provided in Ju et al. (2010) and Ringler et al. (2008). Our discussion here is restricted

to the most salient aspects of SCVTs with a focus on the practical aspect of the meshes.

The analysis that yields these practical results is not discussed, but is referenced for those

interested in better understanding the mathematical underpinning of this mesh generation

technique.

Voronoi diagrams can be specified as follows: We are given a bounded domain Ω ∈ Rd

and a set of distinct points {xi}ni=1 ⊂ Ω. For each point xi, i = 1, . . . , n, the corresponding

Voronoi region, Vi, i = 1, . . . , n, is defined by

Vi =
{
x ∈ Ω | ‖x− xi‖ < ‖x− xj‖ for j = 1, · · · , n and j 6= i

}
, (1)

where ‖ · ‖ denotes the geodesic distance measured along the surface of the sphere. Clearly

Vi ∩ Vj = ∅ for i 6= j, and ∪n
i=1V i = Ω so that {Vi}ni=1 is a tessellation of Ω, i.e. ∪n

i=1V i

spans Ω with a non-overlapping mesh. We refer to {Vi}ni=1 as the Voronoi tessellation or

Voronoi diagram of Ω associated with the point set {xi}ni=1. In the nomenclature of Voronoi

diagrams, a point xi is called a generator and a subdomain Vi is referred to as the Voronoi

region or Voronoi cell. Each generator is uniquely associated with a single Voronoi region.

For our purposes, generator points are equivalent to grid points and Voronoi regions are

equivalent to grid cells. If the domain Ω ∈ Rd spans all or part of the surface of the sphere,

then we refer to the mesh as a spherical Voronoi tessellation.

A spherical Voronoi tessellation becomes a spherical centroidal Voronoi tessellation when
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the generators are also centers of mass of the corresponding Voronoi region. Given a density

function ρ(x) ≥ 0 defined on Ω, for any region V ⊂ Ω, the standard mass center x∗ of V is

given by

x∗ =

∫
V

xρ(x) dx∫
V

ρ(x) dx
. (2)

This center-of-mass calculation will always result in an x∗ that lies inside the surface of the

sphere. In order to constrain the generator points to lie on the unit sphere, x∗ is radially-

projected on to the surface of the unit sphere. In general, the x∗ for each grid cell does

not correspond to grid point xi of that cell. Only when x∗ ≡ xi is the spherical Voronoi

tessellation also a spherical centroidal Voronoi tessellation.

In practice, finding a SCVT given any SVT is a relatively straightforward, iterative

process based on Lloyd’s algorithm (Du et al. 1999). Given a set of xi, we first find the

corresponding Vi and compute x∗i for each Vi. In general, x∗i 6= xi, so we simply move

generators to be the centroids with xi = x∗i and repeat the process. The iterative procedure

continues until x∗i and xi are deemed sufficiently close based on, say, the L2 or Linf norms. For

a more detailed discussion of this iterative procedure, restrictions on ρ, the guarantees related

to convergence and the optimality of the resulting mesh see, for example, Du et al. (1999),

Du et al. (2003) or Ringler et al. (2008). While we only interested here in the extension of

CVT to SCVT, the CVT-approach can be generalized to any manifold or surface, see Du

et al. (2003).

The power of an approach based on SCVTs resides in the freedom to specify ρ(x) and,

thereby, control the local grid resolution and local grid variation with a high degree of
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precision. If we pick any two Voronoi regions and arbitrarily index them with i and j, then

the conjecture is

dxi

dxj

≈
[
ρ(xj)

ρ(xi)

]1/(d′+2)

(3)

where d′ is the dimension of the manifold on which the tessellation is constructed, ρ(xi) is the

density function evaluated at xi and dxi is a measure of the local mesh spacing in the vicinity

of the xi. Similarly for ρ(xj) and dxj. While (3) remains an open conjecture for d′ ≥ 2,

its validity has been supported through many numerical studies. In our grid generation

examples below, we demonstrate the accuracy of (3) and provide evidence for our assertion

that we have precise control on the relative mesh spacing in different parts of Ω through the

choice of ρ. Equation (3) becomes even more powerful when paired with Gersho’s conjecture.

Asymptotically and for a fixed density function, as the number of generators becomes larger

and larger, Gersho’s conjecture (Gersho 1979) states that the tessellation becomes more

and more regular in the sense that, locally, the tessellation converges to a replication of a

polytope. In other words, Gersho’s conjecture states that if the number of generators n is

large enough and one focuses on a small enough region, then a centroidal Voronoi tessellation

appears to be a uniform mesh involving congruent polytopes. The regular hexagon provides

a confirmation of the conjecture in two dimensions for the constant density case (Newman

1982).

The rigorous application of Gersho’s conjecture to tessellating the surface of the sphere

fails since we know that no regular single polytope can be used to tessellate the sphere (Saff

and Kuijlaars 1997). Yet the spirit of Gersho’s conjecture does carry over to the sphere;
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for a given density function as the number of generators is increased the resulting meshes

are composed, proportionally, of more hexagons that converge uniformly toward regular

hexagons. Both Ju et al. (2010) and Ringler et al. (2008) demonstrate this in a variety of

settings.

In summary, the utility of SCVTs resides in the ability to precisely control grid resolution

through the specification of the density function as described in (3) and the guarantee that

the meshes will become more regular as the number of grid points is increased.

3. Example SCVTs

The simulations discussed below will employ meshes sampled from a three-parameter

density function expressed as

ρ(xi) =
1

2 (1− γ)

[
tanh

(
β − ‖xc − xi‖

α

)
+ 1

]
+ γ (4)

where xi is constrained to lie on the surface of the unit sphere. This function results in

relatively large value of ρ within a distance β of the point xc where β is measured in radians

and xc is also constrained to lie on the surface of the sphere. The function transitions to

relatively small values of ρ across a radian distance of α. The distance between xc and xi is

computed as ‖xc − xi‖ = cos−1(xc · xi) with a range from 0 to π.

The density function is constructed such that it has a maximum value of 1 and a minimum

value of γ, where γ > 0. Based on (3) we know that the mesh spacing in the high resolution
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region, dxf , and the mesh spacing in the low resolution region, dxc, will be related as

dxf

dxc

≈ γ
1
4 . (5)

For this study we fix β = π/6 and α = π/20. For reasons that will be clear below, we

specify the location of xc to coincide with the center of the orographic feature present in

Shallow-Water Test Case 5 (Williamson et al. 1992). Our focus will be on the impact of

γ, i.e. the impact of the relative resolution between the fine-mesh region and the coarse-

mesh region. Figure 1 shows meshes that were generated with 2562 grid points based on γ

values of (1)4, (1/2)4, (1/4)4 and (1/16)4. We refer to these meshes as the X1, X2, X4 and

X16 meshes since fine-mesh and coarse-mesh resolutions vary by ratios of 1, 2, 4 and 16,

respectively. The simulations discussed below will also use a X8 mesh that is not shown in

Figure 1. The X1 through X16 meshes are generated with 2562, 10242, 40962, 163842 and

655362 grid points. As a result of this choice of grid points, the X1 meshes are very similar

to other Voronoi-like meshes that are derived from the recursive bisection of the icosahedron.

We made this choice in order to facilitate comparison of the error norms computed below to

error norms already found in the published literature. Table 1 summarizes the resolutions

of all of the meshes used in this study.

Figure 2 shows the distribution of mesh resolution measured in the vicinity of each grid

cell as a function of geodesic distance from xc. At each grid cell we define the local grid

resolution, dxi as

dxi =
1

ni

ni∑
j=1

‖xj − xi‖ (6)

where xj are the across-edge neighbors of grid cell i (see Figure 3). dxi represents the average
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distance between grid point xi and all of its nearest neighbors. Also shown in Figure 2 is the

theoretical estimate of local mesh resolution for the X1, X2, X4, X8 and X16 meshes based

on (3).

Figure 2 confirms that the theoretical estimate of local grid resolution is remarkably

accurate; the mesh spacing as computed from the meshes essentially falls on top of the

theoretical estimate.

4. Summary of Numerical Method

This study focuses on the nonlinear shallow-water equations expressed as

∂h

∂t
+∇ · (hu) = 0, (7)

∂u

∂t
+ ηk× u = −g∇ (h+ b)−∇K, (8)

where h represents the fluid layer thickness and u represents the fluid velocity along the

surface of the sphere. The absolute vorticity, η, is defined as k · (∇× u) + f and the kinetic

energy, K, is defined as |u|2 /2. At all points on the surface of the sphere the vector k points

in the local vertical direction and we require k · u = 0 at all points. The three parameters

in the system are gravity, g, Coriolis parameter, f , and bottom topography, b.

For our application, a more appropriate form of the continuous equations is expressed as

∂h

∂t
+∇ · F = 0, (9)

∂u

∂t
+ qF⊥ = −g∇ (h+ b)−∇K, (10)
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where F = hu, F⊥ = k× hu and η = hq where q is the total potential vorticity.

A numerical method used to model the shallow-water system is discussed at length in

Thuburn et al. (2009) (T09 hereafter) and Ringler et al. (2010) (R10 hereafter). In T09 an

analysis of the linearized version of (7) and (8) is conducted in order to derive a numerical

method that is able to reproduce stationary geostrophic modes found in the continuous

system, even when the numerical method is implemented on variable resolution meshes such

as those shown in Figure 1. In R10, the analysis is extended to the nonlinear shallow-water

equations shown in (9) and (10) in order to derive a method that conserves total energy and

potential vorticity while allowing for a physically-appropriate amount of potential enstrophy

dissipation. While the analyses and derivations in both T09 and R10 are for any mesh that

is a Vororoi tessellation, the numerical simulations presented in both of those papers only

evaluate the method when implemented on a quasi-uniform mesh.

The numerical scheme is a standard finite-volume method with a C-grid staggering as

shown in Figure 3. The thickness field is defined on the Voronoi cells while all vorticity-

related fields, such as relative vorticity, absolute vorticity and potential vorticity, are defined

on the Delaunay triangles. The discrete thickness equation is obtained by simply supplying

a discrete approximation to the divergence operator (See R10 Figure 3). As with all C-grid

methods, only the component of velocity in the direction normal to the thickness finite-

volume cell is prognosed. To derive this normal-component velocity equation, the inner

product of ne (shown in Figure 3) and (10) is computed at each edge location. The resulting

discrete system of equations is then expressed as
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∂hi

∂t
= − [∇ · Fe]i , (11)

∂ue

∂t
+ F⊥e q̂e = − [∇ (g(hi + bi) +Ki)]e (12)

where Fe = heue represents the mass flux across the edge of a Voronoi cell and F⊥e represents

the mass flux across the edge of each Delaunay cell. The discrete approximations of the

divergence and gradient operator are shown in R10 Figure 3. In (11) and (12) the yet-

to-be-defined fields are Ki, he, q̂e and F⊥e . These fields are defined following R10 without

exception. Also following R10, we use the anticipated potential vorticity method (Sadourny

and Basdevant 1985) to dissipate potential enstrophy.

The culmination of the derivations in T09 and R10 is a numerical method that conserves

total energy to within time-truncation error, conserves total potential vorticity to within

machine round-off error and dissipates potential enstrophy at a rate that depends on a

single parameter. This derivation was carried out for a general Voronoi mesh; the results in

Section 5 are intended to confirm this analysis.

5. Results

Through the use of three shallow-water test cases, we confirm the derivations in T09

and R10 related to system energetics, geostrophic balance and potential vorticity dynam-

ics. Shallow-Water Test Case 5 (SWTC5) and Shallow Water Test Case 2 (SWTC2) from

Williamson et al. (1992) (hereafter W92) are used primarily to confirm the numerical meth-

ods ability to mimic conservation properties and maintain geostrophic balance, respectively.
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A final test case, the Barotropic Instability Test Case, is used to illustrate the method’s

ability to allow prototypical structures of the atmosphere and ocean to enter and exit mesh

transition zones (Galewsky et al. 2004).

Along the way we compute L2 error norms of the thickness field, hi, in order to better

understand how the solution error varies with the amount of mesh variation. The L2 norm

is computed as

L2 =

{
S
[
(hi − hr

i )
2]} 1

2{
S
[
(hr

i )
2]} 1

2

. (13)

The field hr
i is the reference solution that has been calculated at or interpolated to xi posi-

tions. The reference solution represents either an analytic solution or, if an analytic solution

is not available, a high-resolution solution. The function S [f ] computes the area-weighted

average of f over the entire sphere.

Twenty-five simulations are conducted for each test case, thus filling the [grid points ×

mesh variation] matrix shown in Table 1. Every simulation in every test case is conducted

with the exact same executable with the exact same parameter settings. The spatial dis-

cretization discussed above is paired with a 4th−order Runge-Kutta time stepping method

using a time step of dt = 25 s. Each simulation employs the anticipated potential vorticity

method with the upwind-bias parameter θ set to dt/2 (see Sadourny and Basdevant (1985)

Eq. 8). All simulations are conducted with 64-bit floating point arithmetic.
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a. SWTC5

As explained in the Introduction, our long-term goal is the creation of full-physics, multi-

resolution models of the global atmosphere and ocean systems. Our motivation for evaluating

this approach in the shallow-water system is to identify, to the extent possible, the strengths

and weaknesses in an idealized setting. We begin the analysis with SWTC5 because it offers

an analog to what we hope to accomplish in more realistic settings. SWTC5 contains a

single feature (orography) that is completely responsible for the transient evolution of the

system. While the orography is large-scale, it is localized and, in that sense, is conducive to

local mesh refinement. To greater and lesser extents, all of the meshes depicted in Figure 1

and Table 1 enhance resolution in the vicinity of the orography.

SWTC5 prescribes an analytic initial condition of large-scale geostrophic flow that would

be in steady state, if not for the presence of an orographic feature. The orographic feature

is centered at xc and extends π/9 radians in latitude and longitude. Recall that the variable

resolution meshes developed in Section 3 are also centered at xc and extend the fine-mesh

region a distance of π/6 radians; the fine-mesh region includes all of the orography.

The analytic initial condition is mapped to the discrete model by sampling Eq. (95), with

the appropriate constants for SWTC5, from W92 at Voronoi grid points (i.e. xi locations)

to determine the initial thickness fields. The initial ue field is obtained by determining the

streamfunction via Eq. (92) from W92 at Delaunay grid points (i.e. xv locations), then

computing ue as k × ∇ψ. Even though errors in ue are present at t = 0, this approach

guarantees that the discrete divergence is identically zero at t = 0.

As a result of the orography, the geostrophically-balanced zonal flow impinges on the
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mountain at t = 0, resulting in the radiation of gravity and Rossby waves as the flow adjusts

to the presence of the orographic feature. The interaction between the zonal flow and the

orography leads to strong nonlinearity, which is why this test case is chosen to assess the

numerical method’s conservation properties.

We begin with a qualitative assessment of SWTC5 by showing in Figure 4 the fluid height

field, hi + bi, at day 15 for the X1, X2, X4 and X16 meshes using 40962 cells. Broadly, the

simulations are identical as depicted by Figure 4. Since the flow is characterized by large-

scale Rossby waves that are well resolved by the full suite of meshes using 40962 cells, we

would expect that the simulations to be qualitatively similar. The coarse grid resolution

in regions far removed from the orography is clearly seen in Figure 4. Note that while the

simulation with the 40962/X16 mesh ranges in resolution from 40 km in the vicinity of the

orography to 611 km elsewhere, there is not hint of noise in the mass field, even through the

mesh transition zone.

Two quantities are conserved to round-off error in every simulation: the area-weighted

global sum of thickness and the volume-weighted potential vorticity. Specifically we find

∂

∂t
V =

∂

∂t

Ni∑
i=1

hiAi = 0, (14)

∂

∂t

Nv∑
v=1

qvhvAv =0, (15)

to within round-off error in all simulations, where the quantity V represents the total fluid

volume.

In order to evaluate the energetics of the system, the total energy is computed following
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R10 Eq. (70) as

E =
∑

e

Ae

[
ĥeu

2
e

2

]
+
∑

i

Ai

[
ghi

(
1

2
hi + bi

)]
− Er. (16)

In the computation of total energy, the unavailable potential energy, Er, with the form

Er =
∑

i

g H̄iAi

[
H̄i

2
+ bi

]
(17)

where

H̄i =

∑
iAi (hi + bi)∑

iAi

− bi (18)

has been subtracted; hereafter references to “total energy” imply “total available energy”.

Er represents the potential energy of the fluid at rest. Figure 5 demonstrates the degree to

which total energy is conserved in the simulations. The figures show log10
|(E(t)−E(0))|

E(0)
over the

15 day integration for the X1, X2, X4, X8 and X16 meshes with 40962 grid points. Figure

5 measures the extent to which the sum of available potential energy and kinetic energy is

conserved. At day 15, all solutions conserve total energy to within 1.0×10−8 relative to total

energy present at t = 0; this is orders of magnitude better than is required when considering

the dissipation mechanisms present in the real atmosphere and ocean (Thuburn 2008).

The total energy is conserved in the physically-appropriate manner; the nonlinear Coriolis

force neither creates nor destroys kinetic energy and the exchange of energy between its

potential and kinetic forms is equal and opposite. We evaluate the degree to which the

nonlinear Coriolis force is energetically-neutral by computing the time it would take for

the nonlinear Coriolis force to double the kinetic energy in the system. With 40962 grid
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points, the time required for the nonlinear Coriolis force to double the kinetic energy is

approximately 104 years for all meshes. This finding is consistent with Figure 4 of R10.

The other important component in the total energy budget is the conservative exchange

of energy between its potential and kinetic forms. The potential and kinetic energy equations

each have a source term. These source terms are equal and opposite (see, for example, Eqs.

(15) and (16) of R10). We evaluate the source term for kinetic and potential energy following

Eqs. (65) and (67), respectively, from R10. Since these RHS sources are algebraically

equivalent in the discrete system, we expect a very high degree of cancellation between the

sources. All 25 simulations show that the time scale for doubling the kinetic energy of the

system due to the imperfect cancellation of KE and PE sources terms to be approximately

1010 years. This is essentially machine precision round-off error.

In regards to conservation, the final quantity of interest is potential enstrophy. Figure 6

shows log10
|(R(t)−R(0))|

R(0)
where R is the global-integrated potential enstrophy defined as

R =
1

V

Nv∑
v=1

q2
vhvAv −Rr. (19)

Just as energy has an unavailable reservoir, potential enstrophy has a unavailable reservoir

that is equal to the amount of potential entrophy that exists when the fluid is at rest.

This unavailable reservoir, Rr is removed from the computation in order to obtain a more

representative evaluation of potential enstrophy conservation.

Figure 6 shows the relative change in globally-averaged potential enstrophy for the X1,

X2, X4, X8 and X16 meshes with 40962 nodes. At day 15, the relative changes in globally-

averaged potential enstrophy vary between 10−4 and 10−2.5 for the X1 and X16 meshes,
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respectively. In these simulations, the X1 and X2 simulations show a monotonic decrease on

globally-averaged potential enstrophy, while the X8 and X16 simulations show a monotonic

increase in globally-averaged potential enstrophy. The X4 simulation fluctuates about its

initial globally-averaged value. Clearly the amount of potential enstrophy dissipation pro-

vided by the anticipated potential vorticity method needs to vary with mesh resolution; this

is discussed further in Section 7.

In terms of formal L2 global error norms, previous work using local mesh refinement with

the shallow-water system all find that the solution error is relatively unchanged when adding

resolution in a specific region (e.g. Weller et al. (2009), St-Cyr et al (2008) and Chen et al

(2011); see next section for a full discussion). Stated alternatively, previous work has found

that the solution error is primarily controlled by the coarse region of the mesh when using

static mesh refinement. In order to test if this is the case in our simulations, we plot the

global L2 error norm for each of the 25 simulations as a function of coarse-mesh resolution in

Figure 7. Since SWTC5 does not have a known analytic solution, error norms are computed

with respect to a T511 global spectral model (Swarztrauber 1996). For TC5 at T511, the

global spectral model requires a scale-selective ∇4 dissipation of 8.0× 1012m4/s in order to

prevent the accumulation of energy and potential enstrophy at the grid scale.

Figure 7 shows that the solution error is controlled by the mesh resolution in the coarse

region. All of the simulations show the same convergence rate of approximately 1.5. Note

that we have plotted these errors norms on a log− log scale to emphasis the primary finding

that the L2 error is controlled by the coarse-mesh resolution. If we parse the results more

closely, we find that the variable resolution meshes provide a small, but measurable, im-

provement in solution error, i.e. adding degrees of freedom in the vicinity of the orography,
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while holding the coarse-mesh resolution fixed, results in a small reduction in the error norm.

b. SWTC2

Having confirmed the ability of the numerical model to simulate transient flows in a robust

manner with SWTC5, we now use SWTC2 to measure the method’s ability to maintain large-

scale geostrophic balance. SWTC2 prescribes an analytic initial condition that is an exact,

steady-state solution to (9) and (10). The analytic initial condition is mapped to the discrete

model by sampling Eq. (95) from W92 at Voronoi grid points (i.e. xi locations) to determine

the initial thickness fields. As with SWTC5, the initial ue field is obtained by determining

the streamfunction via Eq. (92) from W92 at Delaunay grid points (i.e. xv locations), then

computing ue as k×∇ψ. Any deviation of the numerical solution from its initial condition

is considered to be numerical error.

While SWTC5 offers a plausible reason for mesh refinement, no comparable reason

is present in SWTC2. The motivation for evaluating our multi-resolution method using

SWTC2 is not to demonstrate the approaches utility, but rather to measure the cost of mesh

refinement. Maintaining large-scale balance is an important property of any numerical model

of the atmosphere or ocean. SWTC2 provides the opportunity to precisely measure, through

the L2 error norm, the impact of mesh refinement on maintaining geostrophic balance.

Following our finding in SWTC5 that global error is controlled by the coarse mesh reso-

lution, Figure 8 plots the global L2 error for all 25 simulations against the resolution in the

coarse-mesh region. As found with SWTC5, essentially all of the variation in the L2 error

in the simulations is controlled by the coarse resolution grid spacing. For a given coarse
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resolution, solution error increases by approximately a factor of 2 between the X2 and X16

meshes. In contrast, the solution error for the X1 mesh is approximately a factor of 10

smaller, regardless of the coarse mesh resolution.

Each grid point in the X1 mesh is uniquely associated with a node produced when

generating a mesh through the recursive bisection-projection of an inscribed icosahedron2

(Heikes and Randall 1995). This method results in a particularly uniform distribution of

grid points resulting in a relatively small solution error. This special distribution of nodes is

lost when producing the variable-resolution meshes. As a result, we incur a relatively large

cost, in terms of global error, by choosing to move away from the special quasi-uniforms

meshes, but incur very little additional cost by increasing the extent of the mesh variation.

The rate of convergence for SWTC2 is not uniform. Meshes with minimum grid resolu-

tions above 100 km show a convergence rate of approximately 1.9 with respect to the coarse

mesh resolution. As the minimum resolution of the mesh becomes smaller and smaller, the

rate of convergence becomes smaller. The likely culprits for this reduction in convergence

rate are the following: deficiencies in the structure of the grids, deficiencies in the manner

in which we compute the error norms, deficiencies in the numerical model. We have been

unable to definitely rule out any of these possibilities and continue to seek the underlying

cause of this issue. We full expect that 2nd-order convergence rate to continue indefinitely

as resolution is increase.

2While the X1 meshed is topologically equivalent to a mesh produced through the recursive bisection-

projection of an inscribed icosahedron, the actual positions of the nodes on the unit sphere differ because in

our system we move the nodes so that the resulting mesh is a SCVT.
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c. Barotropically-Unstable Zonal Jet

The final test case to be discussed is the growth a barotropic instability on a zonally-

symmetic zonal jet (Galewsky et al. 2004) (G04 hereafter). In order to generate the initial

conditions for this test case, we derive a streamfunction from G04 Eq. 2. This streamfunction

is sampled at vertex locations and the initial ue field is computed analogous to SWTC2 and

SWTC5. The initial thickness field is computed based on G04 Eq. 3 and we include the

height perturbation shown in G04 Eq. 4.

Figure 9 shows the relative vorticity field at day 6 for the X1, X2, X4, X8 and X16

meshes with 655362 cells. The fine-mesh region is coincident with the center of each panel.

In addition, the envelope of the growing barotropic instability is roughly coincident with the

fine mesh region at day 6, with parts of the wave system entering and exiting the fine-mesh

region at this point in time.

Conducting test cases based on instabilities that grow on a zonally-symmetric base state

is particularly challenging for our modeling system. Specification of the test case is zonally

symmetric and the instability is triggered by a small amplitude perturbation. The meshes

used in this study are not zonally-symmetric and, as a result, lead to truncation error

projecting onto non-zero zonal wave numbers. This truncation error serves as an additional

trigger for the instability and can lead to wave growth that is either too fast or not in

the correct location. As the resolution is increased, the amplitude of the spurious forcing

by truncation error diminishes and the instability is solely controlled by the perturbation

contained in the initial conditions.

In addition, the growth of the unstable waves depends strongly on the type and strength

26



of the sub-grid scales closures that are either implicit in the underlying numerical formulation

or explicitly added to the numerical models. For example, the X1 panel in Figure 8 agrees

very closely with panel D in Figure 17 of Ii and Xiao (2010), but is significantly different

than panel D in Figure 9 of G04. This is because the simulations presented here and in Ii

and Xiao (2010) do not use any explicit closure, whereas G04 uses hyper-diffusion on the

RHS of the momentum equation.

The strong correspondence of our X1 simulations with panel D in Figure 17 of Ii and

Xiao (2010) indicates that the X1 simulation is broadly representative of the instability when

simulated in a minimally or undamped system. Our primary purpose here is to understand

how the use of variable resolution meshes alters the growth of the barotropic instability.

First, if we focus on the deep, tilted trough just right of center in each panel along with

the ridge-trough-ridge system just upstream to the west we find that these dominate fea-

tures are present in all simulations with the same amplitude and phase. The X2 simulation is

qualitatively equivalent to the X1 simulation in all respects. In addition, the X8 simulation

is qualitatively equivalent to the X4 simulation in all respects. The X4 simulation differs

from the X2 simulation only along the edges of the panels that corresponds to the center

of the coarse-mesh regions. The primary difference between these two groups of simulations

is that the X4/X8 simulations produce an additional ridge in the upstream wave. The X16

simulation is qualitatively different from the other simulations in all regions other than the

fine-mesh region. The X16 simulation produces a relatively strong ridge-trough systems in

the coarse-mesh region that are not present in the other simulations. It is important to note

that the fine-mesh resolution of the X8 and X16 simulations is essentially the same at approx-

imately 10 km, yet the coarse-mesh resolution between these same two simulations differ by
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a factor of two (see Table 1). The X16/655362 simulation is more similar to the X1/40962

simulation (not shown) than any of the other simulations with 655362 nodes. Since the

coarse resolution of the X16/655362 simulation is comparable to the X1/40962 simulation,

this finding is consistent with Figures 7 and 8 which demonstrate that the accuracy of the

simulation is controlled primarily by the resolution in the coarse-mesh region.

6. Comparison to Previous Results

Our introduction emphasized that there are several approaches to regional climate sim-

ulation that are being actively explored. Given the diversity of existing approaches and the

novelty of the approach discussed herein, an obvious question is how the results obtained in

the previous section compare to other published results.

Unfortunately, the literature is sparse with respect to the evaluation of regional modeling

approaches using the standard shallow-water test cases. For example, while full-physics,

3D, regional climate simulations employing the limited-area modeling approach have been

conducted over the last two decades, we have been unable to find any results where the

limited-area method has been evaluated using of the standard shallow-water test cases.

With regard to the stretched-grid and conformally-mapped grid approaches, we are also

unable to find evaluations of the methods within the context of the shallow-water modeling

system. We note that the situation is exactly the opposite with respect to numerical methods

evaluated using global, quasi-uniform meshes in the shallow water system; in this case the

literature is extremely rich. But the comparison of the numerical scheme proposed here,

when paired with quasi-uniform meshes, has already appeared in R10. Furthermore, the
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literature that does exist is primarily focused on dynamic adaptivity, whereas our focus is on

static adaptivity. In what follows, we compare our multi-resolution simulations to previously

published findings presented in three manuscripts: Weller et al. (2009), St-Cyr et al (2008)

and Chen et al (2011).

The cleanest and most useful comparison of our results is with Weller et al. (2009) (W09,

hereafter). W09 focuses on static mesh refinement, employs a finite-volume approach based

on AtmosFOAM (Weller and Weller, 2008) and utilizes variable-resolution meshes based

on Voronoi tessellations, Delaunay triangles and quadilateral polygons. In addition, the

spatial location of the mesh refinement used in W09 and herein is the same; both place mesh

refinement in the vicinity of the orographic feature present in SWTC5 (e.g. see W09 Fig.

4). One difference between our work and W09 is the extent of mesh refinement; we employ

meshes that vary in resolution by a factor of 16, whereas W09 use meshes that vary in

resolution by a factor of 2. We also explore meshes with approximately 5×105 cells, whereas

W09 uses meshes of significantly lower resolution with 1 × 104 cells. In terms of accuracy,

the results presented in Figures 7 and 8 show error norms that are approximately a factor of

five more accurate than W09 for SWTC5 and SWCT2, respectively. While Figure 7 shows

that the error is controlled almost entirely by the coarse mesh resolution with a small gain

received for adding more degrees of freedom in the fine mesh region, W09 find that errors

increase slightly for all meshes when extra resolution is added around the mountain.

St-Cyr et al (2008) (S08, hereafter) evaluate two numerical methods in the context of

dynamically-adaptive mesh refinement. One method uses a high-order, spectral element

method while the other uses a standard finite-volume method. S08 conduct SWTC2 with

static mesh refinement resulting a mesh that varies in resolution by a factor of 4 in grid
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spacing, with a coarse mesh grid spacing of approximate 250 km. The extent of the refined

region is 30 degrees in latitude and 45 degrees in longitude and covers approximately 3% of

the surface of the sphere. This region of grid refinement is placed at two latitudes (30N and

45N) and the simulation error norms are compared to the errors from global simulations with

no mesh refinement. The two numerical methods perform markedly different in SWTC2 with

mesh refinement. Mesh refinement with the spectral element method reduces the global error

by 30% regardless of where the refined region is positioned, whereas mesh refinement with the

finite volume method increases the global error by between 60% and 300% with the amount

of increase sensitive to the location of the refined region. S08 contains no discussion with

regards to how a refinement over an arbitrary 3% of the sphere can lead to a 30% reduction

in global error in SWTC2. Our multi-resolution simulations of SWTC2 fall in between the

results in S08. In terms of absolute accuracy, the global error norms that we present for

SWTC2 are marginally lower than the errors produced by the finite-volume method in S08,

but are nearly a factor of ten larger than the errors produced by the spectral element method

in S08. When the flow is infinitely differentiable, as is SWTC2, spectral element methods

are hard to match in terms of global error. The advantage that spectral element methods

have on infinitely smooth flows is largely lost when discontinuities in the flow or forcing are

present, such as in SWTC5. Since S08 only evaluate SWTC5 with static, quasi-uniform

meshes and dynamically adapting meshes, it is not possible to make a close comparison to

our results. We do note that our results are very much consistent with S08 when making

a comparison of the global errors based on quasi-uniform meshes. With a uniform grid

resolution of approximately 240 km we obtain a normalized global error of approximately

1.0e-3, whereas S08 show normalized errors of approximately 7.5e-4 and 2.0e-3 when using
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the spectral element and finite-volume method, respectively.

The recent results of Chen et al (2011) (hereafter, C10) are also focused on dynamic

adaptivity. Similar to S08, C10 evaluates SWTC2 with static mesh refinement and SWTC5

with dynamic mesh refinement. The numerical method used in C10 is a multi-moment

method that utilizes both a cell average equation (similar to finite-volume methods) and

a large number of point values (similar to spectral element methods). For SWTC2, C10

statically refines over a region that spans 22.5 degrees in longitude and 15 degrees in latitude.

The grid spacing in the coarse and fine mesh zone is approximately 120 km and 15 km,

respectively. Similar to S08, C10 places the refinement in arbitrary regions. C10 finds that

using a refined mesh leads to an increase in error norms by between 5% and 35% as compared

to the unrefined mesh. Qualitatively this result is consistent with our finding that the global

error is controlled by the coarse mesh resolution. C10 evaluate SWTC5 with static, quasi-

uniform meshes and dynamically adapting meshes, thus making a close comparison of the

results difficult. We do note that when comparing errors based on the uniform meshes, our

results are consistent with C10; on a mesh with a resolution of approximately 240 km we

obtain a normalized global error of 1.0e-3 whereas C10 obtains a normalized global error of

5.0e-3.

The above comparison to W09, S08 and C10 focuses on each methods ability to minimize

the global error in the shallow-water test case suite. In this comparison, the results obtained

herein compare respectably to previously published results. At the same time, in our opin-

ion the global error tells only a part of the story. The fact remains that long-term, robust

solutions that are analogous to climate simulations are far more sensitive to conservation

properties of the numerical scheme than to absolute accuracy. In terms of conservation of
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mass and tracers, the finite-volume schemes presented in W09, S08 and C10 are all con-

servative. The spectral element scheme in S08 does not conserve mass or tracer substance.

In terms of conserving potential vorticity, potential enstrophy or total energy, none of the

schemes presented in W09, S08 or C10 have formal guarantees on conservation or bound-

edness. Furthermore, no anecdotal evidence comparable to Fig 5 and Fig 6 are presented

in W09, S08 or C10 that would better illuminate each of the numerical methods character

with respect to conservation. In this respect, the numerical scheme presented in T09, R10

and evaluated herein appears to be unique.

7. Discussion

Using a suite of shallow-water test cases, we evaluate the numerical scheme presented

in T09 and R10 when implemented on variable resolution meshes. We produce a set of

variable resolution meshes (see Figure 1 and Table 1) with grid-resolution spacing varying

from quasi-uniform (X1) to highly-variable (X16). The simulations are conducted over a

range of mesh sizes from 2562 to 655362 nodes.

The analysis included in T09 indicates that the numerical scheme evaluated herein sup-

ports geostrophic balance, even on variable resolution meshes. Since SWTC2 provides an

initial condition in exact, nonlinear geostrophic balance, it provides an excellent means for

evaluating the analysis in T09. We find that regardless of the mesh variation, geostrophic

balance is maintained in the numerical simulations.

The analysis included in R10 indicates that the numerical scheme should maintain all

its conservation properties on variable resolution meshes. We use SWTC5 with its large
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transient forcing at t = 0 to measure conservation of mass, energy, potential vorticity and

potential enstrophy. We find that both mass and potential vorticity are conserved to machine

precision. Normalized total available energy is conserved to within 1.0 × 10−8 over the

standard 15 day integration. We evaluate the spurious sources of energy stemming from

the nonlinear Coriolis force and exchanges of energy between its kinetic and potential forms

by measuring the time required for these spurious sources to double the globally-averaged

kinetic energy. Consistent with the finding from R10 using quasi-uniform meshes, we find

doubling times to be on the order of 104 years, regardless of the variation in mesh resolution.

The numerical scheme uses the anticipated potential vorticity method developed in

Sadourny and Basdevant (1985) and explored further in R10. This numerical technique

allows for the generation of physically-appropriate levels of potential enstrophy dissipation

without dissipating kinetic energy. The simulations with SWTC5 show changes in globally-

averaged potential enstrophy betweeen 10−4 and 10−2.5 for the X1 and X16 meshes, respec-

tively. In some of those simulations (X1 and X2) the globally-averaged potential enstrophy

decreased over time. In other simulations (X8 and X16) the globally-averaged potential en-

strophy increased over time. We conducted all simulations with the same parameter setting

θ = dt/2 (see Sadourny and Basdevant (1985) Eq. 8). This parameter was chosen arbitrarily

and, in retrospect, somewhat naively. We have confirmed that different choices for θ can

lead to monotonically decreasing values of globally-averaged potential enstrophy in any of

the simulations presented here. Instead of engaging in an ad hoc tuning exercise for θ, we

plan to implement the scale-aware formulation of the anticipated potential vorticity method

developed in Chen et al. (2011, accepted).

The rate of convergence for SWTC5 is approximately 1.5 with respect to the coarse mesh
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resolution (see Figure 7). This rate of convergence is consistent across all meshes used in

this study, regardless of the ratio between the minimum and maximum resolution. This rate

of convergence is consistent with that found in T10 using quasi-uniform meshes. The rate of

convergence for SWTC2 is not uniform. Meshes with minimum grid resolutions above 100

km show a convergence rate of approximately 1.9 with respect to the coarse mesh resolution

(see Figure 8). Meshes with minimum grid resolutions less than 100 km show a continual

reduction of convergence rate as the minimum grid resolution deceases. We have analyzed the

mesh quality, the manner in which we compute the error norms and the numerical algorithm

in an attempt to identify this shortcoming. We are uncomfortable with this reduction in

convergence rate and will continue to seek its source.

We have carefully compared the results obtained herein to the works of Weller et al.

(2009), St-Cyr et al (2008) and Chen et al (2011) (See Section 6). We find that the

conservation properties demonstrated herein have not been demonstrated elsewhere. In this

sense, the results produced in Section 5 are notable. In terms of the global normalized L2

error norms obtained from SWTC2 and SWTC5, we find that our results are competitive in

the sense that we obtain error norms that are both smaller and larger than those found in

these other works.

We find that the mesh resolution in the coarse-mesh region is the primary factor con-

trolling solution error. Figures 7 and 8 show that for SWTC5 and SWTC2, respectively,

nearly all of the variation in the global L2 error norm can be explained by the coarse-mesh

resolution. This should not be surprising because in terms of reducing solution error, grid

refinement is most advantageous when the solution in one part of the domain contains struc-

tures with relatively large derivatives and the solution in another part of the domain contains
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structures with relatively small derivatives. Under this circumstance, it is plausible to re-

duce the solution error by a judicious rearrangement of a fixed number of grid cells. This

situation is certainly not present in SWTC2 and, at least for this numerical scheme, is not

sufficiently strong in SWTC5. As a result, the increase in solution error that accompanies

the coarsening of the mesh in the coarse-mesh region exceeds any reduction in solution error

that accompanies the refinement in the fine-mesh region. The larger error in the coarse-mesh

region is propagated to all other regions, including the fine-mesh region, via advection and

wave phenomena.

Fortunately, our motivation for exploring grid refinement is not a formal reduction in

solution error. Rather, our motivation is to employ multi-resolution meshes so that certain

phenomena like clouds or ocean eddies can be resolved in certain regions of interest. In

this respect, Figures 7 and 8 are very promising. These figures indicate that we can specify

the resolution in the coarse-mesh region(s) by determining what is an acceptable level of

accuracy. From that starting point, we can increase resolution in region(s) of interest in order

to simulate new phenomena while knowing that we will not degrade the formal accuracy of

the solution. In practice we expect that the resolution of the coarse-mesh region(s) will be

chosen to match typical IPCC-class resolutions and the fine-mesh region(s) will be chosen

based on the phenomena to be simulated and the availability of computational resources.

While we recognize that conclusions based on the idealized simulations discussed above must

be regarded as tentative, we see no reason not to pursue this multi-resolution technique in

more realistic systems.

We also evaluate the method using a standard barotropic instability test case. Similar

to SWTC2, this test case specifies a zonally-symmetic zonal jet that is in exact non-linear
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geostrophic balance. Different from SWTC2, this jet is barotropically-unstable. The test

case specifies a small perturbation in the height field at t = 0 that triggers the instability.

None of the meshes used in this study are zonally-symmetic. As a result, truncation error

projects onto non-zero zonal wavenumbers and acts as an additional trigger for the barotropic

instability. As shown in Figure 9, the impact of the truncation on the growth and position

of the instability increases with mesh variation. For the suite of meshes with 655362 nodes,

we find the X1, X2, X4, and X8 simulations to be qualitatively similar. The outlier is the

X16 simulation that compares more closely to a X1 simulation with 40962 nodes.

We only examine one parameter in our three parameter density function shown in (4).

The suite of meshes shown in Figure 1 is produced by varying γ, the parameter that controls

the relative mesh spacing between the fine and coarse regions. Another critical parameter

that needs to be examined carefully is α, the parameter that controls the width of the

transition zone between the fine and coarse regions. As α gets smaller the width of the

transition zone is reduced, the mesh transition becomes more abrupt and the local mesh

distortion is increased. This, in turn, leads to an increase in truncation error and a reduction

in the accuracy of the simulation. We expect that future studies will identify an “optimal”

rate of mesh variation that balances the conflicting desires to minimize α and maintain local

accuracy.

While we motivate this work based on the challenges encountered in global climate mod-

eling, the application of this approach extends beyond the domain of climate simulation.

For example, numerical weather prediction faces most of the same daunting challenges as

global climate modeling, especially with regard to our inability to directly simulate all of

the important spatial and temporal scales in the system. With the gap between atmosphere
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climate models and numerical weather models closing, we expect that the multi-resolution

approach developed here will find applications in both arenas.

Given the tentative progress demonstrated above, it is appropriate to consider the over-

arching challenges that will need to be overcome before a robust multi-resolution approach

to climate system modeling is successful. In our view, the creation of a robust approach to

multi-resolution climate system modeling requires success on two fronts; an accurate simu-

lation of resolved scales of motion on an underlying mesh that varies in resolution and the

creation of scale-aware parameterizations.

While we demonstrated some ability with respect to model stability and formal accuracy

of simulations on variable resolution meshes, substantial challenges remain on several fronts.

In particular, we have not yet addressed issues related to transport and wave propagation

through mesh transition zones. With respect to the transport of tracer constituents, we

expect that the recent high-order transport schemes (Skamarock and Menchaca (2010, ac-

cepted), Skamarock and Gassmann (2011), Ii and Xiao (2010)) along with a new analysis of

flux-limiters (Mittal and Skamarock 2010, accepted) should be sufficient to maintain tracer

field structure and amplitude through highly variable mesh transition zones.

Issues related to wave propagation are likely to be more difficult to address. One of the

main motivations for this approach is to allow phenomena, including wave dynamics, to be

better resolved in certain portions of the domain. By construction, a part of the wavenumber

spectrum resolved in the fine-mesh region will not be resolved in the coarse-mesh region. As

these high-wavenumber waves propagate out of the fine-mesh region, special care will be

required to insure that these waves exit into the coarse mesh region in a sensible manner.

Since we view this as the major outstanding challenge within the context of accurately
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simulating resolved scales, our efforts will be directed to this problem immediately.

Developing scale-aware parameterizations for the atmosphere and ocean will be a much

harder endeavor. While the venerable closures for clouds in the atmosphere (Arakawa and

Schubert 1974) and eddies in the ocean (Gent and McWilliams 1990) have been remarkable

in their success over the last decades, neither has been generalized across spatial and/or

temporal scales (Randall et al. (2003), Gent (2010, in press)).

Both limited-area domain and stretched-grid simulations have had to address the lack of

access to scale-aware parameterizations, i.e. parameterizations that function appropriately

across a wide range of spatial and temporal scales without ad hoc tuning. Those conducting

full physics simulations on stretched-grids are more acutely aware of this problem simply due

to the fact that these deficiencies are manifest in a single, global simulation. One remedy

pursued by the stretched-grid community has been to compute all physical parameterizations

on an quasi-uniform mesh of intermediate resolution (Fox-Rabinovitz et al. 2006). While this

remedy certainly removes biases in parameterizations due to their lack of scaling, the ap-

proach is antithetical to our motivation. Our motivation for this multi-resolution approach

is founded on the principle that there is scientific value in directly resolving (i.e. not param-

eterizing) certain processes in certain regions. As a result, remedies found in the stretched

grid community only highlight the extent of the challenges ahead of us.

In the short term, say over the next three to five years, we expect that careful choices in

the positioning of the mesh transition zone(s) along with ad hoc scaling of closure parameters

across mesh transition regions will allow the approach developed here to produce scientifically

valuable results. In turn, we expect that this modeling approach can be used as a testbed for

the evaluation of proposed parameterizations that are intended to be scale-aware. Over the
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long term, the broad success of this modeling approach depends upon the development of a

full suite of scale-aware parameterizations.

This modeling approach could potentially benefit all physical components included in

global climate and weather prediction system models, including the atmosphere, ocean, land

ice, sea ice and land surface components. Given the broad applicability of this approach, we

have codified the technique through the creation of the Model for Prediction Across Scales

(MPAS) project. The purpose of the MPAS project is to produce a suite of models based on

a common conceptual and algorithmic foundation. The project has already produced this

shallow-water model as well as prototype global atmosphere and ocean models based on the

primitive equations. Since the numerical method evaluated above forms the core for both

the primitive equation atmosphere and ocean models, this contribution serves as a scoping

exercise for the identification of the successes and challenges in developing global primitive

equation models based on a multi-resolution approach.
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Table 1. Approximate mesh resolutions (km) of the fine-mesh (dxf ) and coarse-mesh (dxc)
regions of the global domain for the X1 through X16 meshes as a function of the number of
grid points.

Grid Points X1(dxf , dxc) X2(dxf , dxc) X4(dxf , dxc) X8(dxf , dxc) X16(dxf , dxc)
2562 (480, 480) (282, 537) (196, 737) (169, 1293) (163, 2419)
10242 (240, 240) (141, 169) (98, 368) (85, 648) (81, 1222)
40962 (120, 120) (70, 134) (49, 184) (42, 324) (40, 611)
163842 (60, 60) (35, 67) (25, 92) (21, 162) (20, 305)
655362 (30, 30) (16, 32) (12, 48) (10, 78) (9, 148)
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Fig. 1. Four members of a family of meshes constructed from Eq. (4). Each mesh uses
2562 grid points and only differ in the setting of the parameter γ to produce ratios in local
grid resolution between the fine-mesh and coarse-mesh regions of 1, 2, 4 and 16 shown in
the top-left, top-right, bottom-left and bottom-right, respectively.
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Black lines show theoretical estimate based on Eq. (3).
Dots are actual results.
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Fig. 2. Distribution of local mesh resolution as a function of geodesic distance from the
center of the fine-mesh region. The x-axis measures the distance along the great circle arc
between the center of the fine-mesh region, xc, and every grid point, xi. The y-axis measures
the local mesh resolution in the vicinity of each xi grid cell based on (6). Each open circle
represents one cell on the X1, X2, X4, X8 or X16 meshs. Also shown for each mesh is the
theoretical estimate of mesh resolution as a function of distance from xc based on (4) with
β = π/6, α = π/20 and γ varies as described in (5).
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pography and kinetic energy are defined at the center of each Voronoi cell. The normal
component of the velocity field, ue, is defined at the mid-point of line segments connecting
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Fig. 4. The fluid height, hi + bi, at day 15 for SWTC5. Starting at the upper left and
moving clockwise shows results from the X1, X2, X16 and X4 meshes using 40962 cells. The
black oval denotes the location of the orography. The figures are generated by filling each
Voronoi cells with a single color, i.e. there is no interpolation due to rendering. This allows
the far-field grid resolution to be seen in the X4 and X16 simulations.
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Fig. 9. Each panel depicts the relative vorticity field at day 6 for a barotropically-unstable
jet using 655362 cells. The panels differ only in the mesh used in the simulation. The
vertical extent of each panel covers the northern hemisphere. The horizontal extent covers
all longitudes starting at -90 degrees such that the fine-mesh region is approximately centered
on each panel. The color scales are identical for every panel and saturate at ±1.0× 10−4.
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