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Abstract

As a part of the abrupt climate change model (IMPACTS), we proposed a fully three-
dimensional coupled ice-sheet model to explore how ice-sheet changes under realistic conditions.
The governing equations for the thermo-mechanical ice-sheet modeling were formulated as a
three-dimensional nonlinear full-Stokes system for momentum, an advective-diffusive energy
equation for temperature evolution, and a mass-conservation equation for ice thickness change.
Finite element approximations and parallel algorithms based on domain decomposition were
employed to solve these respective sub-models. The solvers were integrated by a well-designed
coupler for exchange of parametric data in these sub-models, such as ice velocity, temperature
and ice thickness. By taking advantages of the up-to-date high-performance computing power,
the elaborately designed parallel solvers for the coupled system was able to handle the large-
scale realistic data from land and space-based observatories and laboratory experiments. In
particular, our implementation utilized the high-quality variable-resolution centroidal Voronoi
Delaunay triangulation (CVDT) meshing technology and existing parallel linear system solvers.
Efficiency and scalability of our parallel solvers were demonstrated by extensive numerical tests.

1 Introduction

Over the past decades, glacier and ice-sheet simulation has been a subject of growing interest be-
cause of the influential role they play in global sea-level and climate change studies [7-9, 16, 47].
Among the numerous different types of approaches employed, the full three-dimensional Stokes
ice-sheet approximation appears to be a widely adopted method owing to its capability for dealing
with realistic parameters and boundary conditions [19,26,34,35]. A complete solver for the 3D full-
Stokes ice-sheet modeling requires the integration of effective numerical approximation schemes and
elaborately designed couplers for data exchange between different sub-models. Finite difference,
finite volume, and finite element methods have been proven successful for high-resolution simula-
tions based on the 3D full-stress equations with free surface evolution [20,32,35]. Although many
numerical methods have been utilized for ice-sheet modeling, the question arises as to whether they
are also applicable to large scale, high-resolution simulations of realistic glaciers. Given the realistic

*This work was partially supported by the DOE Office of Science’s Climate Change Prediction Program through
DE-FG02-07TER64431, DE-FG02-07ER64432 and DOE 07SCPF152, and by the National Science Foundation under
grant number DMS-0913491.

fCorresponding author (juCmath.sc.edu).



data from land and space-based observatories [6,28-30], another key component is a high-quality,
adaptive, variable resolution meshing scheme that can often significantly reduce the computational
costs while maintaining comparable solution accuracy relative to quasi-uniform grids. Recently,
centroidal Voronoi tessellation (CVT) based mesh generation techniques have been widely incor-
porated into finite volume and finite element approximation schemes for convection-diffusion equa-
tions [14,24], the Navier-Stokes equations [25], and the shallow water equations [36]; CVT-based
mesh generation offers significant advantages, compared other meshing algorithms, for improving
discretization /solution accuracy and controlling local mesh sizes.

Current work focuses on the development of an efficient, parallel finite element solver package
for 3D full-Stokes ice-sheet modeling. The flow of the ice-sheet is greatly influenced by temporal
and spatial temperature patterns and the ice-sheet topography evolves along with the velocity and
velocity gradient. The tightly coupled thermo-mechanical processes are numerically approximated
by a scalable system using Message Passing Interface (MPI) that is computing intensive and is
capable of performing large amount of data transfer during the simulation processes. In this paper,
we first present the governing equations and their numerical approximations. We then validate
our numerical schemes and corresponding parallel implementations by performing benchmark tests
put forward by the ice-sheet simulation community. The feasibility of our parallel solvers is then
demonstrated by applying our package to realistic simulations of the Greenland ice sheet. We then
apply our parallel solvers to investigate the influence of, e.g., ambient temperature changes, on flow
and thickness changes of that ice sheet.



We consider the evolution of momentum, temperature, and thickness of an ice sheet; Figure
1 provides a sketch of what an ice sheet looks like. However, we consider a simpler situation for
which we only have ice-atmosphere and ice-bedrock boundaries. Moreover, we consider a simplified
set of boundary conditions along those boundaries. These simplifications are in concert with the
main goals of this paper which are as follows:

e develop and test a finite element discretization of the full, three-dimensional Stokes model for
ice-sheet dynamics coupled to an energy equation for the temperature in the ice sheet and a
conservation equation for the advance or retreat of the ice-atmosphere boundary;

e implement high-quality, variable-resolution prismatic grids based on centroidal Voronoi De-
launay triangulation surface grids;

e develop and test efficient parallel solvers for the discretized system;

e demonstrate through the above ingredients that the combined package of finite element dis-
cretizations, high-quality variable-resolution grids, and efficient parallel solvers results in pow-
erful tool for ice-sheet modeling.
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Figure 1: Sketch of the cross section of an ice-sheet.

2 The coupled 3D full-Stokes ice sheet model

In this section, we present the set of governing equations along with associated initial and boundary
conditions that define the thermo-mechanical ice sheet mathematical model we consider.

2.1 The full-Stokes equations for ice-sheet dynamics

The dynamical behavior of the ice sheet is modeled by the full-Stokes equations for a viscous fluid
in a low Reynolds-number flow over the time interval (0, ¢,,4,] and in the three-dimensional spatial
domain €2; occupied by the ice sheet. Note that the ice sheet domain changes in time due to
the variation of the ice thickness. The system is considered incompressible so that the dynamic
momentum equation and the kinematic continuity equation are given by

ou

Par = V-o+pg in QX (0,tma] (2.1)

Vou=0  inQ x (0, fmas), (2.2)



respectively, where u(x,t) = (u1,us,u3)” denotes the velocity, o the full stress tensor, p the
constant density of ice, and g = (0,0, —|g|) the gravitational acceleration. The stress tensor o can
be decomposed into the viscous stress 7 and the static pressure p as

O =T — pI or Uij = Tij — péij, (23)

where ¢;; denotes the Kronecker tensor and I the identity tensor. The convective contribution
u - Vu has been neglected from the acceleration term due to the very slow motion of the ice flow.
Because the time scale of variations of the velocity and pressure fields is large compared to that for
the temperature field, we also assume that the remaining acceleration term pdu/dt is negligible,
i.e., we assume that the dynamical behavior of flow in the ice sheet is quasi-static with respect to
the evolution of the temperature. Thus, we obtain from (2.1) the instantaneous momentum balance
equation

-V -1+ Vp=ypg in Q x (0, tmaz)- (2.4)

The strain rate tensor &, is defined in terms of the velocity u by

(2.5)

_l’_
&Tj &Tz
The constitutive law for ice connects the viscous stress tensor 7 to the strain rate tensor &, by the
generalized Glen’s flow law [31,33]

T = 2Ny 1€u or Tij = 2Nu,T€i; (2.6)
with 1
R @7)

where 7,7 denotes the temperature and strain rate-dependent rheology coefficient (referred to as
the effective viscosity), n the power-law exponent, A the inverse deformation rate factor, and e,
the equivalent strain rate defined as

1
€e = §su:€u:

For the ice evolution, A depends on the temperature through an Arrhenius relation defined by

A=AT)=aexp(—Q/RT), (2.9)

3

1 1

3 d et = \/5 (631 + €3, + €35 + 2e2, + 2e35 + 2¢3)). (2.8)
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where T' denotes the absolute temperature measured in Kelvin, ¢ an empirical constant often used
as a model tuning parameter, ) the activation energy, and R the universal gas constant. Obviously,
the constitutive coefficient (2.7) is a function of both the strain rate and the thermodynamic state.

Let I'; denote the outer boundary of the ice which consists of two parts: the ice-bedrock
boundary I';;, which we assume to be fixed in time and the ice-atmosphere boundary I';., i.e.,
I't = Ty UL, At the ice-bedrock boundary I'j,, we impose the no-slip boundary condition

u=_20. (2.10)
At the ice-atmosphere boundary I'j,.¢, we have
o-n=-—-pn—+T- 0= —Peumh, (2.11)

where put, denotes the standard atmospheric pressure. Note that, due to the quasi-static assump-
tion about the dynamics of the ice sheet, no initial condition is required for the velocity field; instead
the initial velocity field is determined from the initial temperature field and initial ice thickness
distribution by solving the system (2.2), (2.4), (2.10), and (2.11).



2.2 Evolution of temperature

The second prognostic equation describes the evolution of temperature and is given by

T
pca +pcu-VT =V - (KVT)+ 20y 1764 : €u + ¢ in Q¢ x (0, tmaz),s (2.12)

where T'(x,t) denotes the temperature, ¢ the constant heat capacity, x the constant thermal con-
ductivity, ¢(x,t) a volumetric heat source, and p the constant density of ice. Note that for the two
tensors € and T, € : 7 denotes the sum of the element-wise products, i.e., € : 7 = Zf’ ; EijTij- Strain
heating is included through the second to last term in (2.12).

We assume that the temperature is known at the initial time ¢ = 0 at every point in the ice
sheet,! i.e., we have, for a given function Tp(x), that

Tt=0 = To(x) in Q. (2.13)
The boundary condition at the ice-sheet boundary takes the form
T =T (x,1) on gy, (2.14)
where T, denotes a given temperatire on I';4;;, and

orT 1
K(‘)_n = EQib(X’t) on [y, (2-15)

where ¢;;, denotes a given geothermal flux on I'j.

2.3 Evolution of ice thickness

The coupled ice-sheet system also includes a prognostic equation describing the evolution of the
top free surface of the ice-sheet. The ice-sheet domain 2; at a time ¢ can be defined as

Qt = {(‘Tayaz) ’ Szb(xay) <z< Sm(fl',y,t) for (-’L’,y) € QH7 te [07tma1’]}7 (216)

where Qp denotes the horizontal extent of the ice sheet and where S;,(z,y,t) and S (z,y) denote
the elevation of the top and fixed bottom surfaces of the ice-sheet, respectively. Thus, the ice
thickness is given by

H(x,y,t) = Sia(z,y,t) — Spp(x,y) for (z,y) € Qg and t€[0,tma

The prognostic equation for the evolution of the ice thickness is given by the hyperbolic equation

OH OH 0H
A 0% U= Hp  for () € Qp and € (0, bypan 2.17
(%—I- 18x+ 28y 3 7l or (z,y) € Qy and t € ( ] (2.17)

along with the initial condition
H’t:O = HO(xvy) = Sia(xaya 0) - Szb(xay) for (‘Tay) € QH (218)
and the obvious constraint equation

H(xz,y,t) >0 for (z,y) € Qm and t € [0, tinaz), (2.19)

! Assuming that the temperature at the top and bottom surfaces and the thickness distribution of the ice-sheet
are known at ¢ = 0, the initial temperature at every location within the ice sheet is determined through an smoothed
interpolation process; see Section 7.3.



where Sj,(z,y,0) is given, U = (Uy, Us, Ug)T denotes the vertical average of the ice-sheet velocity
u (that is determined from the full-Stokes system (2.2), (2.4), (2.10), and (2.11)), and Hp,, is
a given source term, i.e., an accumulation-ablation function and/or the known annual average
precipitation, that, in general, embodies non-zero contributions to the ice thickness at the ice-
atmosphere boundary.

Note that there is two-way coupling between each of the ice-thickness evolution system (2.17)—
(2.19), the full-Stokes system (2.2), (2.4), (2.10), and (2.11), and the temperature evolution system
(2.12)—(2.15).

3 CVDT-based prismatic meshes

Constructing a high-quality variable-resolution mesh for a three-dimensional ice-sheet with realistic
geometry is a critical and challenging task in computational ice-sheet modeling. Our approach
is to first to generate a variable-resolution triangular grid for the two-dimensional domain Qg
that defines the horizontal extent of the ice sheet. For this purpose, we use centroidal Voronoi
tessellation (CVT) based meshing techniques [12,13]. CVTs are special Voronoi tessellations having
the property that the gemerators of the Voronoi tessellations are also the centroids, with respect to
a given density function, of the corresponding Voronoi cells. The dual mesh of a CVT is referred to
as a centroidal Voronoi Delaunay triangulation (CVDT) which can then be used for finite element
approximations. The CVT-based meshing methods have proven to be very useful in producing
high-quality grids; the local mesh size can be precisely controlled through the use of a point density
function; see [22,24] for details about CVDT construction algorithms and related properties. The
point density function could be determined, as demonstrated in [36], from the ice topography and /or
velocity data according to practical needs for reducing the computational costs; for example, in
our Greenland ice-sheet simulations, we use an ice thickness-related density to generate a two-
dimensional CVDT horizontal grid for Greenland. The point density function can also be used to
refine so that boundaries are adequately resolved. In the sequel, we denote the two-dimensional
CVDT of Qg as 7.

The two-dimensional CVDT grid is then transformed to a three-dimensional surface triangular
grid of the top surface of the ice sheet by adding the z-coordinate obtained from the topography
of the bedrock plus the ice thickness. We note some smoothing process can be applied to improve
the quality of the stretched two-dimensional grid. Finally, at any time ¢, we produce a full three-
dimensional prismatic mesh of the ice sheet domain §2; by mapping the surface meshes linearly
along the z-direction down to the bedrock; see Figure 2 for a sample three-dimensional prismatic
mesh generated for Greenland based on realistic topography data with 5 km resolution, where the
local mesh size of the layered CVDT grid is inversely proportional to the ice thickness. In the
sequel, we denote the three-dimensional prismatic grid of §2; as Pj; note that because €); changes
in time, so does Py.;.



Figure 2: A three-dimensional prismatic mesh of the Greenland ice-sheet with 26 layers and 33,343 nodes
per layer; the colors display the local ice thickness and, to aid visualization, the z-direction of the ice sheet
is enlarged by a factor of 15.

4 Variational formulations of the governing equations and their
discretizations

4.1 Variational formulations

Taking the dot product of (2.4) with a vector function v and the product of (2.2) with a scalar
function 7 and then integrating both results over €2; results in

{ —(V-7,¥)a, + (Vp,V)a, = (g, V)o,

(V-u,r)g, =0, (41)

where (-, -)p denotes the L?(D) inner product. For example, for pairs of scalars, vectors, and tensors,

we have (f,g9)q, = th fg dx, (u,v)q, = th u-vdx, and (e,7)q, = th € : T dx, respectively. At

this point, the only requirements of the test functions v and r are that the integrals we encounter

below are well defined and that v satisfies the boundary condition (2.10), i.e., v.=0 on I'j.
Integration by parts on the first two terms of the first equation in (4.1) results in

(Tv vv)Qt - (p, V- V)Qt - (T 1, V)Ft + (pn, V)Ft = (,Og, V)Qt
(4.2)
(V -u, Q)Qt =0.
Using the symmetry of 7 and (2.6), we have
1 T
(1, Vv)q, = (’T, §(VV + (Vv) ))Qt = (T,EV)Qt = (277u,T€u,€v)Qt- (4.3)
Using (2.11) and the fact that v =0 on I'j,, we also have
(—pn +7-n, V)Ft = (U ‘n, V)Ft = (U ‘n, V)Fm;t + (U -1, V)Fib = _(patm7 v n)Fm;t' (4'4)
Substituting (4.3) and (4.4) into (4.2) results in the variational problem we discretize:
(277117T’€U7 EV)Qt - (p7 V : V)Qt = (pg7 V)Qt - (patma v n)Fw;t (4 5)
—(V-u,r)g, =0. .
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In addition to (4.5), u is required to satisfy (2.10). However, u and p are not required to explic-
itly satisfy the boundary condition (2.11); that boundary condition is natural to the variational
formulation and thus is automatically satisfied.

Through a similar process as that led from the Stokes system to (4.5), we can recast (2.12)—(2.15)
into the variational formulation

or 1
(eg8) g, + (BVT.¥S)a, + (peu- VT, S)a, = (a:S)a, + (2uren: cu, S)o, + - (g, S)r
(4.6)

At this point, the only requirement on the test function S is that the integrals encountered are
well defined and that S = 0 on I';,. In addition to (4.6), T is required to satisfy the initial
condition (2.13) and the boundary condition (2.14) but is not required to explicitly satisfy the
natural boundary condition (2.15); that condition is automatically satisfied by solutions of the
variational formulation (4.6).

We also define a variational formulation of the ice-thickness equation (2.17):

(8H

0 0
=iy H H )H.

V)QH = (Hptuo + Us = 1 - 25V .

o 3y (4.7)

The only requirement on the test function V is that the integrals encountered are well defined. In
addition to (4.7), H is required to satisfy the constraint (2.19) and the initial condition (2.18). If
H and V are chosen to belong to the same function space, the (4.7) simply defines a least-squares
projection onto that space.

4.2 Discretized system

At any time ¢, let P denote the prismatic subdivision of the ice domain €2; into finite elements
described in Section 3. Here, h is a measure of the spatial grid size, e.g., the maximum diameter
of any of the prismatic finite elements. The finite element space P.; used for approximating the
components of the velocity, the pressure, and the temperature consists of functions that, within each
prismatic element, are the product of a two-dimensional linear polynomial in the two horizontal
directions and a linear polynomial in the vertical direction, e.g., in z,y, z space, they are functions
of the form ag + a1 + asy + asz + asxz + agyz for constants a;, i = 1,...,6. Such functions
are uniquely determined by their values at the six vertices of a prismatic element. In addition, the
functions in P, are required to be continuous across element faces. This continuity requirement
is automatically met by specifying the value of the functions in Pj.; at the nodes of the prismatic
subdivision Pj.¢. We also define the constrained space P,?.t to consist of functions in Py, that vanish
on I';. Such functions are characterized by setting their values at the nodes located on T';p to zero.
Note that because €); and therefore the prismatic grid Py change in time, the corresponding finite
element space Pj.; also changes in time.

For the approximation of the height field H(x,y,t), we use the finite element space V}, consisting
of continuous piecewise linear polynomials defined with respect to the two-dimensional CVDT
triangulation 7, of the horizontal extent of the ice sheet, i.e., of Qf7, into finite elements described
in Section 3. Note that because we are assuming that Qg is fixed that the corresponding finite
element space V), is also fixed in time.

We also divide the time interval [0, t,,4,] into K subintervals {[tk_l,tk]}szl, where t;, = kAt
and At = tpq. /K. Then, for each k = 0,..., K, let up, (%), pp (%), Thr(x), and Hy y(z,y) denote
the approximations to u(x,tz), p(x,tx), T(X,tx), and H(z,y, 1)), respectively. 2

2Because any update of the domain §2; requires recomputing the grid, in practice, one does not update the domain



We need to define an approximation T} o(x) € Py of the initial data Ty(x) and, for each
k = 1,...,K; this issue is discussed in Section 7.3. We also need to define an approximation
Tia:n,ix(x) of the boundary data Ti,(x,tx). We do so by, for each k =1,..., K, setting each nodal
value of the discrete temperature Tj,.p, (%) along the boundary I'jq., to be the value of Tj,(x, ty)
at that node. In same way, we define an approximation Hyp o(x,y) € V" of the initial data for the
height field Ho(z,y) by setting the nodal values of the former equal to those of the latter over the
nodes of the CVDT triangulation 7.

The choice we made for the finite element spaces for the velocity and pressure does not satisfy
the LBB stability condition [17] required for mixed finite element methods. Thus, to circumvent
the LBB condition, we discretize the Stokes equation using a penalty method, i.e., we add a penalty
term to the variational formulation (4.5). Thus, for each £ = 0,1,..., K, given Q;, and T}, 1(x), we
seek functions uy, j € (P}?;tk)3 and pp . € Py, such that

(2nuh,k7Th,kEuh,k’€Vh)Qt (P, V - Vh)th = (pg, Vh)th

k
—(Patm> V- 0)ry,,,  forallvy, e (P, ) (4.8)
(V- uh,k,rh)ﬂtk + €(Vpn ks VTh)th =0 for all ry, € Py,

where € > 0 denotes a penalty parameter that is usually chosen so that € = O(Ax? + Ay? + Az?).
We use a direct Picard iteration algorithm to solve the nonlinear discrete system (4.8). Specifically,
at each time step £k =0,1,..., K and for j = 1,2,..., we solve the linear system

(277u;zj;;1)7Th,k€u§Z)k’Evh)th B (pglj)c’ V- Vh)th - (pg,Vh)th

—(Patm: Vi - D)1y, for all vy, € (P}?;tk)3 (4.9)

—(V- Uﬂarh)mk + E(Vpﬁf}, Vry)a,, =0 for all rj, € Py, ,

and pgi The iteration over the index j is terminated when L?(£2) norm of the difference
between two successive iterates uglj,;l) and uﬁf}v is smaller than some prescribed tolerance or if
a prescribed maximum number of iterations is reached. Upon terminating the iteration, we set
up = ugi and pp = pgi For k = 0, the iteration over the index j is initialized by setting

uﬁ% = 0 almost everywhere and, for k£ > 0, by setting ugloi = uy ;1. We expect that this nonlinear

for U-;L]L

iteration is linearly convergent with a contraction constant ”T_l, where n denotes the exponent in
the Glen’s flow law.

We use the implicit backward-Euler method to effect the temporal discretization of the energy
equation; however, the velocity field appearing in this equation is treated explicitly. Thus, for
kE=0,1,...,K, given Q, Thr(x), and upy, we seek a function Tj y1(x) € Ppy, such that

every time step; instead, one may update the domain every M time steps, where M > 0 is a specified integer.
Correspondingly, we only have to update the prismatic grid Pn;; and the finite element space P, every M time
steps. Thus, in the sequel, we have, for k =0,1,..., K,

Q, =y, Phiti = Phity and Prityy = Phity»

where k' = M [ﬁ] with [%} = greatest integer less than or equal to%.



Thk+1(X) = Tiazh kt1(x) on gy and

( Thigt1 — Thk
pe—rt

A7 ,5h>Q + (kVThk+1, VSh)a,, + (peuni - VI k11, S0)a,, = (¢ Sh)a,
t

k

1
+ (2nuh,k€uh,k ST Sh)th + E(Qifh Sh)Fu, for all S € Ph;tk'

(4.10)
For the discretization of the free-surface equation, we use the explicit forward Euler method so
that for £ =0,1,..., K, given uy, j, we solve the linear system
(Hh,k+1,Vh)QH = (Hh,k,Vh)QH
0H 0H
+ At (Hfluw-k + Usipp — Uppp =t — Uy p— Vh) for all Vj, € V"
) 310y [LAZ) ax s3Il 8y QH
(4.11)

for Hp, ji1(x,y) € VP, where (-,-)q, denotes the L?(Qp) inner product. To enforce the H > 0
constraint, we simply post process the result of (4.11) by setting any negative nodal values of Hp, ;41
to almost zero. In (4.11), we determine the vertical average velocity approximation Uy x(x,y) €
(V)3 from the solution uy, x(z,y, 2) of (4.8) by evaluating, at each node of the triangulation 7",
the integral of the latter with respect to the vertical coordinate z which is easy to do because, for
fixed values of x and y, up (2, y, 2) is a piecewise linear function of z. Once Hj, j+1, we can define
the new domain €y, .

5 Parallel implementation

Parallel computations often apply a divide and conquer strategy to solve large-scale problems. In
our parallel solvers, we adopted the domain decomposition method (DDM) [11,49], i.e., we divide the
modeling domain into sub-domains and solve for the unknowns in the sub-domains simultaneously
on distributed computer processors. The finite element meshes are first partitioned into a number
of sub-meshes whose number is consistent with the number of processors to be used in the parallel
calculation. This results in dividing the computing domain ), into interconnected sub-domains.
By doing so, the original large-scale computing problem is decomposed into a group of relatively
simpler and smaller problems that can be simultaneously solved on different processors. The sub-
domains could overlap or could be non-overlapping depending on the specific scheme employed. A
variety of preconditioners [2] can used to tackle the inner interfaces [10,39,46,50]. An variety of
methods, including Lagrange multiplier-based substructuring methods [43], preconditioned Krylov
subspace iterative methods [4, 5,21, 45|, parallel direct solvers [1], and multi-grid [11, 37, 42] and
multi-level [5] solvers, can be used to solve the linear systems introduced in Section 4.2.

To decompose the model domain for parallel computing, either edge- or vertex-based partition
methods can be used. In addition, we also need to define variables for both local and global inter-
faces, i.e., as the computing domain is partitioned, local variables have to be re-ordered, and then
the global ordering of the variables also must be updated systematically. In our implementation,
the mesh partition is fulfilled by the multi k-way partitioning algorithm (the package “METIS”)
in order to obtain good load balance [38]. The partitioned sub-domains have one layer of elements
overlapping. We have developed a parallel subsystem to directly generate unstructured sparse
graph [44] from hybrid finite element meshes that can be separated from the parallel package as a
preprocessor. A partitioning of the Greenland CVDT mesh into 16 sub-meshes is shown in Figure
3. The inner-boundaries are needed in our implementation for data communication during the
solution processes.
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Figure 3: Partition of the Greenland CVDT mesh into 16 sub-meshes and inner boundary formation.
Left: the two-dimensional CVDT grid of Greenland. Middle: the mesh is transformed into an
unstructured graph which is used as input into the METIS package for partitioning. Right: all
sub-domains are expanded by one layer to form the inner interfaces between sub-domains.

The large, sparse linear systems arising in many geoscience problems and models often have
millions of unknowns to obtain high resolution in the numerical simulations. Solving such large-
scale systems is a challenging task due to the high demand on computing power and memory.
Iterative solution techniques for massive linear systems based on Krylov subspace methods as well
as preconditioning techniques (such as multi-grid and incomplete LU factorization preconditioner)
[40]) are commonly used because the Krylov subspace iteration methods require only matrix-vector
products. In recent years, many parallel solvers for large-scale linear systems have become available
in public domain. These include MUltifrontal Massively Parallel sparse direct Solver (MUMPS) [3],
SuperLU [40], AZTEC [48], and parallel Algebraic Recursive Multilevel Solvers (pARMS) [41].
Basically, there are two types of parallel iterative linear system solvers: the GMRES type for
nonsymmetric systems and conjugate gradient type (such as CG stabilized or BiCG stabilized) for
symmetric systems [27]. Message Passing Interface (MPI) is used as the parallel environment and
we also chose to use the parallel ILU(g) preconditioned GMRES solver for solution of the linear
systems resulting from our numerical discretizationsl; in particular, the popular package AZTEC2.0
is employed in our implementation due to its reliability and robustness.

6 Verification of the 3D full-Stokes solver

We verify our parallel, three-dimensional full-Stokes solver using two of the test cases considered
in [34]. We use the parameters given in that paper; see Table 1.

Table 1: Parameters and constants for validation experiments for the 3D full-Stokes solver.

Name Symbol | Value | Units
inverse deformation rate factor A 10716 | Pa="a~!
power law exponent n 3 -

ice density p 910 | kgm™3
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The first test (Experiment A in [34]) considers ice flow over a bumpy bed in and idealized
geometry, i.e., we have a parallel-sided slab of ice having a mean thickness of 1000m lying on a
sloping bed with a mean slope @ = 0.5°. The basal topography of the ice-bedrock boundary is then
defined as a series of sinusoidal oscillations with an amplitude of 500m:

zin(,y) = zia(x,y) — 1000 + 500 sin(wz) sin(wy),
where the ice-atmosphere boundary is given by
2ia(2,y) = —wtan(a).

Here, (z,y) € [0, L] x [0, L] and we consider the cases L = 40, 80, and 160 km. Note that the basal
bumps have a frequency of w = 27/L. The no-slip boundary condition u = 0 is imposed at the
ice-bedrock boundary. At the lateral boundaries, periodic boundary conditions are imposed on the
velocity u and a free-surface condition is imposed at the top boundary, i.e., we set pg = 0 in
(2.11). The set-up for the second test (Experiment B in [34]) is the same except that the basal
topography does not vary in y, i.e., we have

ziv(z,y) = zia(z,y) — 1000 + 500 sin(wx).

For both Experiments A and B, we use a prismatic mesh having 41 layers; the horizontal CVDT
mesh is uniform and consists of 15,739 nodes and 30,972 triangles. Thus, the three-dimensional
prismatic grid has 645,299 nodes and 1,238,880 prismatic elements. The penalty parameter is set
to € = 5 x 107°. Because it is difficult to apply periodic boundary conditions in a finite element
approximation on unstructured meshes, we use a larger domain of size 3L x 3L and set the lateral
boundary conditions to u = 0; for display purposes, we then focus attention on a center area of
size L x L.

For the linear system solver, we use a preconditioned GMRES method with an ILU(0)) pre-
conditioner. We set the maximum number of iterations to 2,500 and the tolerance for the residual
is 10719, For the nonlinear solver, we found the relative error reduced by roughly a factor of 2/3
at each step of the Picard iteration as was expected for the value of n = 3 of the Glen’s flow rate
exponent. We stopped the iterative nonlinear solver whenever the relative error reached 10~%. The
CPU running times of our parallel, three-dimensional full-Stokes solver for the case L = 160km are
given in Table 2.

Table 2: Running times of the parallel 3D full-Stokes solver for Experiments A and B with L =
160 km.

‘ H Experiment A H Experiment B ‘

Number of processors || 20 40 80 20 40 80
CPU time in seconds || 4796 | 2304 | 1024 || 4773 | 2315 | 1019

Numerical simulation results for the ice velocity u = ('LLl,UQ,Ug)T at the top surface are pre-
sented in Figures 4 and 5. With the same geometric settings and parameters, the numerical results
produced by our parallel, three-dimensional, full-Stokes solver show excellent agreement with the
benchmark results given in [32,34] for the higher-order and full-Stokes ice sheet models (ISMIP-
HOM). This is illustrated in Figure 6 where the horizontal surface speed us = y/u? + u3 is plotted
vs. x for y = L/4. The results from [34] are the background of Figure 6 and our results are given
by the red curve. In that figure, PFEM denotes our parallel finite element, three-dimenaional,
full-Stokes solver and FS and NFS denotes the full-Stokes and higher-orders models from [34].
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Figure 4: Numerical simulation results for Experiments. From left to right: the components u,
ug, and ug of the top-surface velocity; from top to bottom: L = 40, 80, 160 km.

7 Preliminary results of Greenland ice-sheet simulations

In this section, we present the results of some preliminary Greenland ice-sheet simulations based on
the full-Stokes model, using our parallel, finite element, three-dimensional solvers for the velocity,
pressure, temperature, and ice-sheet thickness.

7.1 Input data and parameters

Observational data with 5 km-resolution of current bedrock topography and ice thickness of the
Greenland ice-sheet are presented in Figure 7. We use the observational data to define the horizontal
extent Qg of the ice sheet. We also use the observational bedrock topography data to define the
ice-bedrock boundary z;(x,y), then add the observational thickness data to define the initial ice-
atmosphere boundary z;,(z,y, 0), and, of course, use the thickness data to define the initial ice-sheet
thickness Hy(x,y). The maximum and minimum values of the ice thickness are 3340.553 m and 5m,
respectively. The peak values of bedrock topography and ice thickness do not occur at the same
location; the largest value of the ice elevation, i.e., of the ice-atmosphere boundary, is 3536.0m.
The observational data of the average ice surface temperature is also given in Figure 7. We note
that the temperature field is a NPEC re-analysis product. As shown in the right of Figure 7, it is
also clear that the current temperature in some boundary areas of the Greenland ice-sheet is over
2.0°C, already in the melting state.

We first generated a two-dimensional CVDT grid of the Greenland ice-sheet horizontal domain
Qg as determined from the observational data. The CVT point density function is chosen such that
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Figure 5: Numerical simulation results of Experiments B. From left to right: the components u,
ug, and ug of the top-surface velocity; from top to bottom: L = 40, 80, 160 km.

Figure 6: The horizontal speed of the ice flow at the top surface vs. x at y = L/4 for Experiments
A (top row) and B (bottom row) and for L = 40, 80, 160 km (from left to right).
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Figure 7: Observational data with 5 km-resolution of the Greenland ice sheet. From left to right:
topography of the bedrock (the color indicates the elevation), ice thickness, elevation of the ice
surface, and the ice surface temperature.

the local mesh size is inversely proportional to the ice thickness. The resulting two-dimensional
grid has 33,343 nodes and 64,125 high-quality triangles. Then, a three-dimensional prismatic finite
element mesh was produced by dividing the ice-sheet into 26 layers along the z-direction, resulting
in a total total 866,918 nodes and 1,603,125 prismatic elements; see Figure 2 for an illustration.
Note that at each grid point of the horizontal CVDT mesh, the layers have equal thickness but
that, because the thickness of the ice sheet is not constant, the layer thickness change from one
horizontal grid point to another. In Table 3, we list all the parameters and constants used for our
Greenland ice-sheet simulations.

7.2 Simulations for a temperature-independent effective viscosity

We first test our three-dimensional full-Stokes solver by simulating the velocity field in the Green-
land ice sheet for a constant (temperature-independent) Glen’s flow law rate A = 10716 and the
power law exponent n = 3. This case also provides a baseline for comparing, in Section 7.3, with
results for a temperature-dependent effective viscosity.

The no-slip boundary condition at the bedrock boundary and the zero Dirichlet condition on
the lateral boundaries are imposed. We note that the zero Dirichlet boundary condition for the
Greenland ice-sheet simulation was first used in [35] as a tentative choice, but it is not realistic.
Thus the resulting approximate velocity is not accurate for regions very close to the Greenland
ice-sheet lateral boundaries. We set the convergence criteria of the ILU(0)-preconditioned GMRES
parallel linear solver to 1.0 x 10~8. We found that 10 Picard iterations are enough for the solutions
to converge well.

Numerical results for the surface speed are presented in Figure 8; specifically, we display the

quantity
via = log;, (1.0 +\/ud + u%) ) (7.1)

where the horizontal velocity components u; and uy are evaluated at the ice-atmosphere boundary.
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Table 3: Parameters and constants for the Greenland ice-sheet simulations.

Name Symbol | Value Units
power law exponent n 3 -

penalty parameter € 1x1074~5x107° | -

absolute zero temperature = To —273.15 °C
activation energy (T < 263K) Q 60 x 103 Jmol ™!
activation energy (T' > 263K) Q 139 x 103 Jmol !
flow law constant (T < 263K) a 1.3 x107° Pa=3a7!
flow law constant (1" > 263K) a 6.26 x 1010 Pa3a™1
second per year spy 31556926 s/a

ice density p 918.0 kgm=3
gravitational constant g 9.81 ms™?2
initial equivalent strain rate o 1x1074 -
minimum equivalent strain rate Emin 1x10730 -
geothermal heat flux from seabed | 3 0.055 W /m?
universal gas constant R 8.314 Jmol 1K1
thermal conductivity of ice K 2.2 W(m°C)~!
heat capacity of ice c 2093.0 J(kg°C)~!
heat source term of ice q 0.0 Wm™3

Note that in (7.1), \/u% + u% is the surface speed. Comparing v;, with the bed-rock topography
and ice thickness data shown in Figure 7 shows that, to a large extent, it is closely related to the
elevation of the ice sheet and its thickness distribution, as expected. This has already been observed
by the ice-sheet modeling community [32,34-36].

= 5 raceVelosity

3l

26567

25
L7

Figure 8: Distribution of v, for the Greenland ice-sheet by using the full-Stokes model with a
constant Glen’s flow law rate A = 10716 and the power law exponent n = 3. For better visualization,

we set the upper limit of the values displayed to each of the values 1.75, 2.25, 3, and max v;, which
correspond to surface speeds of 55.23, 176.83, 999, and 6,600 ma™!, respectively.
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7.3 Simulations for a temperature-dependent effective viscosity

To start, we need a good approximation of the current temperature field throughout the Greenland
ice sheet. As mentioned above, we have the observational and re-analysis data for the ice surface
temperature. The bottom bedrock temperature is set to be —36°C everywhere. Thus, we can
obtain an approximate temperature field of the Greenland ice sheet by using linear interpolation
on the prismatic mesh based on these data. However, this approximation is prone to roughness and
is not physically realistic. In order to obtain a better approximation, the interpolated temperature
field is adopted as an initial conditions for (4.10) and we also set u = 0 and assume that there ¢ = 0
and ¢; = 0. We then solve (4.10) which is now a pure diffusion problem with the fixed Dirichlet
boundary condition determined from the observational data and use a time step At = 0.5 year until
a steady state is obtained. We found that this takes about 10 years in our simulations [18]. This
results in the smoother temperature field shown in the left of Figure 11 which we use as the initial
condition for the temperature for our subsequent temperature-dependent evolution simulations.

As a preliminary experiment, we ran a one-year evolution simulation for the Greenland ice
sheet. The simulation procedure is described as follows.

e We use the current Greenland ice-sheet thickness to define the initial computational domain
and the smoothed initial interpolated temperature field described above as inputs into the
discretized full-Stokes system (4.8). We apply the no-slip boundary condition at the bedrock
and zero Dirichlet condition on the lateral boundaries. The parallel ILU(0)-preconditioned
GMRES method is used to solve the the linear system. The convergence criteria is 1.0 x 1078,
the maximum number of linear solver iterations is set to 2,500, and the maximum number of
nonlinear Picard iterations is set to be 12. This step results in new approximate velocity and
pressure fields.

e Next, We use the approximate velocity field determined in the previous step as input into the
discrete energy equation (4.10). The heat source term ¢ and the strain heating term are set
to zero. We take a time step of two months and run a one-year simulation. The values of the
parameters used for (4.10) are ¢ = 2093 J(kg°C)~! and k = 2.2 W(m°C)~!. The geothermal
heat flux from the bedrock is given by a = 0.055W/m?. We used the parallel biconjugate
gradient stabilized (BiCG_stab) method as the solver for the resulting linear system. Ten
iterations of a Gauss-Seidel preconditioner for each sub-domain is used and the convergence
criteria for solving the linear system is set to 1.0x 102, This step results in a new approximate
temperature field.

e Then the new height of the ice sheet is updated from (4.11), again using the approximate
velocity field determined in the first step as input.

We are specially interested in the current rate of change of the Greenland ice-sheet movement,
temperature, and thickness.

7.3.1 Surface velocity

We want to examine how the temperature affects the surface speed by comparing to the results of
Section 7.2. The power-law exponent n is still set to 3, but now the Glen’s flow law coefficient A is
temperature-dependent as in (2.9). The rheology coefficient a and ice activation energy @ are also
fully temperature dependent as shown in Table 3. When the temperature is below 263 K, a¢ and
are 60 x 103 and 1.3 x 1075, respectively. However, when the temperature is greater than 263 K,
they are 139 x 103 and 6.26 x 10'0, respectively. The simulation results for v;, in such a setting
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are displayed in Figure 9. As was the case for Figure 8, we again use different ranges for display
purposes.

Figure 9: Distribution of wv;, for the Greenland ice-sheet using the full-Stokes model with a
temperature-dependent Glen’s flow law rate A with power law exponent n = 3. For better vi-
sualization, we set the upper limit of the values displayed to each of the values 1.75, 2.25, 3, and
max v;, which correspond to surface speeds of 55.23, 176.83, 999, and 9,617ma ™", respectively.

For the most part, the values of the surface speed obtained using the temperature-dependent
Glen’s flow rate model are even far below 55.23ma~"! (shown on the left of Figure 9); for the temper-
ature independent rate, the surface velocity values within this range are only located at the center
region of the Greenland ice-sheet (shown in the left of Figure 8). At locations of the Greenland
ice sheet where the bedrock topography has large gradients and high surface temperatures, the ice
velocity is relatively large. We found the largest surface speeds are v;, = 3.98 and v;, = 3.82 for
the full-Stokes model with the temperature-dependent and constant flow rates, respectively. These
values appear at some tiny spots very close to the Greenland boundary as shown by Figure 9.
We also note that these values very possibly overestimate the real ice-sheet velocity at these spots
partially caused by the zero Dirichlet condition on the lateral boundary and some inaccuracies of
the observation data we used due to low resolution.

To more clearly clarify their difference, we calculated the surface speed differences between the

two cases
vagiff = logyg <1.0 + 4/ Au% + Au%) , (7.2)

where Au; and Awusy are the difference in the velocity components in x and y-directions, respectively,
between the two models. The values of vg; s are visualized in Figure 10.

It seems that the temperature distribution does have strong effects on the surface velocity. A
small surface velocity change (vgiff = [0 ~ 5ma~!']) occurs in the low-temperature region in the
interior of the Greenland ice-sheet where the gradient of the elevation is relatively small and at
the marginal rim where the ice thickness is relatively small (shown in the left of Figure 10). When
the gradient of the ice-sheet elevation is large and the temperature in these areas is relatively high,
the surface velocity change becomes large as well. As shown in the middle-left of Figure 10, the
surface velocity difference is approximately vg;rs = [5.0 ~ 10.0ma~1]. If the ice sheet is thick and
the elevation gradient is small and if the ice temperature is high, the difference in surface speed will
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Figure 10: Distribution of vg; sy between the surface velocities computed using the full-Stokes models
with the temperature-dependent and constant Glen’s flow law rate. For better visualization, we set
the upper limit of the values displayed to each of the values 0.779, 1.045, 1.7076, and 2.0044 which
correspond to surface speed differences of 5, 10, 50, and 1,000 ma!, respectively.

be dramatically large. This is typically displayed by the middle-right plot of Figure 10; the surface
speed difference can reach up to vg;rf = [10.0 ~ 100.0ma~!]. However, the effect of the temperate
on the surface speed seldom exceeds 100.0ma~"! as shown in the right plot of Figure 10. For more
details on the role of the temperature, see the discussions in Section 7.4.

7.3.2 Temperature evolution

We conducted several numerical experiments to test our parallel solver for the discretized energy
equation (4.6). In [33], it was suggested that the temperature dependence of both ¢ and k is
small over the range of temperature expected in polar ice sheets. We thus assume that both
these parameters are constant, as listed in Table 3. As mentioned above, the computed stablized
temperature field is adopted as the initial condition for (4.6) and the discretized convection velocity
field is obtained from (4.8). We also assume there are no internal heat sources due strain heating
and focus on examining the effects that convection and the basal heat flux have on the evolution
of the temperature field. Adiabatic conditions are imposed on the top surface.

We first tested our parallel solver assuming there is no bedrock heat flux. The corresponding
simulated temperature field after one year is shown in the middle-left of Figure 11; its difference
from the initial temperature is shown in the middle-right of Figure 11. We see significant changes in
the temperature profile only at small spots where the peak values of the surface speed are located.
For the second case, we also compared the evolution of temperature field guided by (4.6) without
and with a basal heat flux term but with the convection term activated. In this experiment, a
specified geothermal flux kK0T /On is imposed at the bedrock boundary. It is set to be an uniform,
upward (into the ice) flux with a value of 0.055 W/m?. We found that the maximum value of
the temperature difference of these two cases is only about 0.0492K and the average temperature
difference is 5.7087 x 107°K. The detailed differences are displayed in the right plot of Figure
11. Thus, it seems that the influence of basal heat flux may actually be very small, relative to
convection effects, and could be neglected over short time periods.
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Figure 11: Simulation results for the temperature evolution of the Greenland ice-sheet after one
year. Left: the initial temperature field after stabilization by a pure difussion process; middle-left:
the simulated evolved temperature field after one year with convection only; middle-right: the
variation between the inital temperature field and the simulated evolved temperature field after
one year with convection only; right: the differences between the simulated evolved temperature
fields after one year with and without the bedrock heat flux.

7.3.3 Free surface evolution

We next computed the free surface evolution of the Greenland ice-sheet using (4.11) with the
discretized output velocity obtained from (4.8). The time step 6t = 1 year. We find that, for
the most part, the ice-sheet thickness change is negative. To clearly display the change of the
free ice-sheet surface, we only display the decreasing part of the ice-sheet change in Figure 12. Is
is easy to see that the average ice-sheet thickness change per year is mostly within the range of
[0.0 ~ 1.5)ma~! (the first two figures in Figure 12). There are lots of small regions close to the
Greenland boundary for which the ice-sheet thickness change is much larger than 1.5ma~".

As the viscosity, pressure, and velocity fields converge over the course of the iterative process, we
can update the domain geometry at one-year time steps. We note that this frequency is adequate
to model the evolution of the ice-sheet surface topography. Small interpolation errors occur during
the re-gridding of the existing finite element mesh but the topology of the mesh remains unchanged.
Finally, some elements of the ice sheet will vanish because of the successive loss of the ice mass.
Then, the total number of finite element cells is reduced and the numerical calculation process is
started over from the point at which the mesh and data partition procedures are invoked. As a
result, the whole precess of the ice-sheet evolution simulation becomes self-consistent.

7.4 Sensitivity of the temperature

To investigate how temperature affect the ice-sheet surface speed and thickness evolution, we carried
out several further numerical experiments. We consider uniform decreases of 1.0°C', 1.5°C', and
2.0°C from the current observational temperature field of the Greenland ice-sheet. We repeated
the simulations of the previous section with the new modified temperature fields; the computational
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Figure 12: Simulated ice-thickness change of the Greenland ice-sheet after one year; the values plotted are
restricted to different ranges to aid in the visualization and interpretation.

results are displayed in Figures 13 (which should be compared to Figure 10) and 14 (which should
be compared to Figure 12). Note that we did not test cases with an increased temperature field
because we found the nonlinear coefficient of 7y to be extremely temperature sensitive. The current
temperature in some areas of the Greenland ice-sheet is over 2.0°C, already in the melting state
shown in the right Figure 7. Even a 1.0°C increase in the temperature field results in the divergence
of our parallel, three-dimensional full-Stokes solver. Note that in these calculations, the geometry
and thermal properties of the ice sheet are held fixed over time.

From Figure 13, we can see that the speed increases with increasing temperature. Although the
overall configurations of the surface velocity field for each temperature field are almost the same, as
the temperature increases becomes higher, this tendency will be further intensified. With the same
limits on the values plotted, the surface speed difference vg; sy within the range of [0.0 ~ 2.5]ma1
is clearly shown in the first column of Figure 14.
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Figure 13: Distribution of vg;r¢ with a —2.0°C' (top row) and —1.0°C' (bottom row) drop in the
current observational temperature data. In the plots, the limits on the values plotted are 0.545,

0.779, 1.045 and 1.7076 which represent surface speed differences of 2.5, 5.0, 10.0, and 50.0ma~",
respectively.
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Figure 14: Simulated ice thickness change of the Greenland ice sheet after one year with —2.0°C' (top row)
and —1.0°C (bottom row) drop in the current observational temperature data.
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8 Concluding remarks

We put forward and analyzed the parallel finite element schemes for the discretization of govern-
ing partial differential equations on ice-sheet evolution model. We introduced and discussed finite
element approximations of the boundary conditions of the momentum, energy and free surface evo-
lution equations. The full 3D high-quality nonuniform CVDT meshes were utilized to construct the
realistic model of the Greenland ice-sheet. We conducted computational experiments to illustrate
the accuracy and good performance of our parallel solver developed in conjunction with the finite
element methods and their flexible numerical schemes. For complicated boundary conditions and
geometries, the model compares well with full-stress solutions obtained by previous authors. Our
numerical experiments showed that our parallel finite element simulations agreed well with the
benchmark results of the current ice simulation community.

An unique aspect of our parallel finite element solvers of the ice-sheet evolution modeling is its
feasibility of using the realistic data from observations, which simplifies the implementation of com-
plex boundary conditions of different kinds of partial differential equations, leads to straightforward
numerical investigations, and finally results in intuitive visualization of the scientific calculation
data. This can enable us to perform the realistic case study of the ice-sheet evolution on ice-sheet
or glaciers, such as Greenland and etc.
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