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1 Introduction

1.1 Motivation

A pressing problem in engineering is the modeling of fluid interactions involving an immiscible interface. For
instance, inside a jet turbine where fuel is dispersed and atomized into air, the quality of the resulting mixture has
a direct impact on the overall performance of the engine and pollutant production. Unfortunately, experiments are
difficult or impossible to perform at operating conditions, simply because optical access is obstructed by engine
structure and the “haze” of liquid droplets surrounds interesting structures. Furthermore, there is no known way of
solving the nonlinear governing equations analytically. erefore, numerical simulations become vital to the design
process as well as to deepening our understanding of the physics, and having a high order solver becomes essential
to accurately representing the material interface.

Here, the approach to this problem and benefit of utilizing GPUs to handle numerical algorithms is described.
Here, sparsity becomes a noteworthy issue. Taking advantage of sparse data structures can be quite beneficial in
CPU code. In a GPU implementation, however, it becomes crucial.

is paper begins by describing the problem in question, followed by a basic overview of the level set solution
method and discontinuous Galerkin (DG) numerical method. e discussion of the scheme will involve noting the
sparse nature of the system, followed by the GPU implementation (including some tricks that help in the process).
Finally, results for the overall speedup are shown and discussed.

1.2 Governing Equations

Herrmann [3] gives a good overview for the governing equations of a fluid interaction involving immiscible
interfaces. ese are the Navier-Stokes’ equations, along with a surface tension term 𝑻𝜎 that is nonzero only at the
interface location 𝒙𝑓 .

𝜕𝒖
𝜕𝑡 + 𝒖 ⋅ ∇𝒖 = −1

𝜌∇𝑝 + 1
𝜌∇ ⋅ (𝜇 (∇𝒖 + ∇T𝒖)) + 𝒈 + 1

𝜌𝑻𝜎 (1)

𝑻𝜎 (𝒙) = 𝜎𝜅𝛿(𝒙 − 𝒙𝑓 ) 𝒏̂ (2)

Here, 𝒖 is the velocity, 𝜌 is density, 𝑝 is pressure, 𝜇 is dynamic viscosity, 𝒈 is the gravitational body force, 𝜎 is the
surface tension constant, 𝜅 is the local surface curvature, and 𝒏̂ is the local surface normal. As a result of this coupling
from surface tension, an accurate method for tracking the phase interface location in such a way that allows us to
also calculate the local curvature and normal at high order is vital. e level set method is selected to accomplish
this goal.

1.3 e Level Set Method

ere are several approaches to interface tracking, volume of fluid methods (VOF) and level set methods being
the most common. e VOF approach has the benefit of discretely conserving mass, while traditional level sets
do not share this property. On the other hand, level sets have the benefit of high order accuracy and having the
ability to compute high order normals and curvature. Recently, Olsson and Kreiss [7], Olsson et al. [8] developed
a conservative level set method that treats the level set scalar as a conserved variable, greatly improving the mass
conservation of the method.

e concept of level sets is to model the fluid interface, shown in Fig. 1, as the 0.5-isosurface of some scalar
function 𝐺(𝒙, 𝑡). en, 𝐺 > 0.5 on one side of the interface and 𝐺 < 0.5 on the other. e 0.5-isosurface is then
transported via the advection equation, which is found from the fact that the material derivative of 𝐺(𝒙𝑓 ) is equal
to zero. For incompressible flows, this can be wrien in conservative form as

𝜕𝐺
𝜕𝑡 + ∇ ⋅ (𝐺𝒖) = 0. (3)

Combining this approach with an arbitrary order discontinuous Galerkin method further improves the accuracy and
mass conservation of level set methods.
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(a) Fluid Interface (b) Finite Volume (c) Discontinuous Galerkin

Figure 1: Interface Discretization

2 e Discontinuous Galerkin Method
e numerical approach used is an arbitrary-order discontinuous Galerkin method, as described by Cockburn

and Shu [1]. It can be thought of as a generalization of the finite volume method, which assigns average values of
the solution variables to each cell. e discontinuous Galerkin method, on the other hand, allows sub-cell variation
by performing a spectral decomposition of the solution variables in each cell. at is, we project 𝐺 and 𝒖 into the
basis {𝑏𝑖} as

𝐺ic =
𝑁g

∑
𝑖=1

𝑔𝑖,ic𝑏𝑖, 𝒖ic =
𝑁u

∑
𝑖=1

𝒖̂𝑖,ic𝑏𝑖, (4)

where the series is truncated at 𝑁𝑔 and 𝑁𝑢 terms for 𝐺 and 𝒖, respectively (however, for this paper, we take 𝑁𝑢 =
𝑁𝑔). In this sense, a finite volume method is equivalent to a discontinuous Galerkin method with 𝑁𝑔 = 𝑁𝑢 = 1.
e normalized Legendre polynomial basis is selected for their orthonormality property, and they are constructed
by performing Gram-Schmidt orthonormalization on the space of 3D monomials 𝑥𝛼𝑦𝛽𝑧𝛾 . en, for a maximum
monomial degree 𝑘, we find 𝑁𝑔 = (𝑘 + 1)3. It has been shown by LeSaint and Raviart [5] that this method can then
formally achieve a 𝑘 + 1 convergence rate.

ese expansions are then substituted into Eq. (3). By performing an inner product with 𝑏𝑛 (integrate over the cell
domain 𝛺), taking advantage of orthonormality, and using the divergence theorem, we arrive at a system of coupled
ordinary differential equations describing the time evolution the coefficients 𝑔𝑛 for all cells. A simple upwind flux
is used to handle integration along cell interfaces, and a 𝑘 + 1 order Runge-Kua (RK) time stepping mechanism is
used.

d𝑔𝑛,ic
d𝑡 = 𝑢𝑗

𝑘,ic𝑔𝑖,ic ∫𝛺
𝑏𝑘𝑏𝑖

𝜕𝑏𝑛
𝜕𝑥𝑗

d𝑉 + 𝑢𝑗,up
𝑘,ic 𝑔up

𝑖,ic ∫𝜕𝛺
𝑁𝑗𝑏up𝑘 𝑏up𝑖 𝑏𝑛 d𝑆 (5)

Note that the two integrals are entirely in terms of our basis functions and the cell domain. ese can therefore
be pre-computed analytically using symbolic soware such as Mathematica, Maple, or SymPy, and stored in a 3D
array for reference later. is avoids the use of quadrature, saving computation time. Furthermore, note that the
orthogonality of the Legendre polynomial basis produces sparse arrays (see Table 1 and Fig. 2). For reference, the
volume integrals are denoted Ax, Ay, and Az, and the “-” face surface integrals are denoted SAxm, SAym, and SAzm.
Together, the high number of operations with comparatively few solution variables and the sparsity of the integral
arrays make this method ideal for GPU computation.
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Table 1: Matrix Fill Fraction

Polynomial 2D Simulation 3D Simulation
Degree Volume Integrals Surface Integrals Volume Integrals Surface Integrals

1 12.5% 50.0% 6.25% 25.0%
2 10.6% 40.7% 4.30% 16.6%
3 10.1% 35.9% 3.63% 12.9%
4 9.68% 33.6% 3.25% 11.3%
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Figure 2: Sparsity illustration for 2nd degree polynomials in 3D. Cubes are placed at array locations containing
nonzero elements. Visualized by Mathematica.

It is highly beneficial to store these arrays in a manner that takes advantage of their sparse structure. A format
similar to compressed row storage (CRS) [2] was chosen, allowing the integrals to be stored in 1D arrays along with
three corresponding 1D arrays of ints giving nonzero element locations. By doing so, we limit the amount of data
that must be sent to the GPU, and make parallelization on the GPU a simpler maer.

3 GPU Programming Model
Using OpenCL terminology, a GPU operates by executing a function called a kernel in parallel on a cluster of

work-items, which are organized into work-groups with an associated memory space we call tiles. Each work-item
then has a global id and local id, and each work-group has a group id. ere are several nuances of this model to take
advantage of, the most important of which is how workloads are managed. For instance, if work-items inside the
same work-group are given drastically different workloads, the entire work-group must wait for the slowest member
to complete its task before moving on to the next portion of the problem. As a result, it is highly advantageous to
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assign uneven workloads to different work-groups, rather than within work-groups. Although the code is wrien
with GPUs in mind, it can be effectively implemented on other architectures using the OpenCL model.

Work-Item

}} Work-Group

Figure 3: OpenCL Execution Model

To take advantage of this aspect of parallelism, and avoid thread divergence, Eq. (5) is solved by assigning a single
𝑔𝑛,ic to each tile. en, work-items share the workload of tensor-vector multiplication and summation, avoiding
uneven workload distributions between work-items (called thread divergence). is way, if an integral array has a
largely zero row 𝑛, the entire work-group is given a lighter workload. is allows it to finish earlier and execute a
new work-group rather than waiting for individual work-items to finish their work.

In Listing 1, Eq. (5) is considered a series of equations of the form 𝛥𝑔𝑛,ic += ∑𝑁𝑢
𝑘=1 𝑢𝑘,ic ∑𝑁𝑔

𝑖=1 𝑔𝑖,ic𝑍𝑛,𝑘,𝑖. Each
work-item has its own instance of the variable my_dg. Work-items then proceed to sum together a subset of the
above equation, that is, products of elements of velocity u, level set scalar g, and the integral array, denoted Z for
generalization in the code. Instead of looping over both 𝑘 and 𝑖, we loop over a single integer 𝑙 that corresponds to
nonzero elements of the compressed array Z. Two arrays Zi2 and Zi3 give the values of 𝑘 and 𝑖 associated with 𝑙
for each iteration. Finally, each work-group has its own value of 𝛥𝑔𝑛,ic to compute, with a unique combination of 𝑛
and ic. Since each work-group only has one value of 𝑛, it only needs to loop through a subset of the integral array
Z. As a result, it is necessary to pass in two integers Znstart and Znend that give the bounds of this subsection.

In order to take advantage of memory coalescence and evenly distribute the workload, and hence reduce runtime,
the local group of work-items align their access to the array Z by their local id number. For example, the work-item
with local id 7 will access the array element immediately aer the work-item with local id 6 and immediately before
the work-item with local id 8.

Listing 1: GPU Implementation
1 const uint tiX = get_local_id(0); // get local work-item id

const uint ntX = get_local_size(0); // get local work-group size
3

// initialize summation variables
5 double my_dg=0.0;

__local double partialsum[TILE_SIZE];
7

for (uint l=Znstart+tiX; l<Znend; l+=ntX) {
9 uint k = Zi2[l]; uint i = Zi3[l]; // multiply by associated u and g

my_dg += u[k]*g[i]*Z[l];
11 }

partialsum[tiX] = term; // save private result to local array
13 my_dg = reduction_sum_within_tile(partialsum); // sum the partialsum elements
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On the next iteration, 𝑙 is updated with a step size equal to the number of work-items in the work-group. Finally,
aer each work-item has saved its result in an array stored in local memory, the elements of the array are summed
together via a simple parallel reduction routine.

4 Tris and Workarounds
Programming GPUs comes with the added challenge that OpenCL (and CUDA) currently do not support Fortran

[9]. It is, however, possible for Fortran to call C functions. Since OpenCL readily supports host code wrien in C,
functions in C can easily act as a staging area between Fortran and OpenCL. is is done by first giving C access
to data allocated in Fortran, which is achieved by creating pointers to that data and sending them as arguments to
a C function. Since Fortran natively sends pointers rather than the data itself, this is as simple as writing the first
element of an array as the argument to a C function, which C then receives as a pointer to an array contiguous in
memory.

Passing more complex data structures, such as arrays nested within arrays of derived data types, is more compli-
cated, but still manageable. Because Fortran pads arrays in such a way that can be difficult to predict, it is simplest
to send to C a pointer to the start of each array. is process can be made more compact by defining a derived data
type in Fortran containing only a pointer, thereby allowing Fortran to generate an array of pointers (which is not
natively available). A pointer to the first element of this array of pointers is then sent to C, which allows C to find
the data associated with each variable within an array of derived data types.

Finally, OpenCL does not accept multidimensional arrays. To avoid bulky or obscure code, multidimensional
arrays are sent to the GPU as 1D arrays (so long as they are contiguous in memory), and a macro is defined on the
OpenCL side to simulate multidimensional behavior.

5 Results
e OpenCL algorithm for DG advection was executed on a Nvidia Tesla C2050 GPU (with a work-group size

of 128) and compared to the original algorithm running in serial on a a 1.9GHz AMD Opteron 6186 CPU. Both
algorithms take advantage of sparsity and are implemented on equidistant Cartesian meshes in unit sized domains.
Verification of the method has been performed for the CPU algorithm previously [4], so the emphasis of this work
is limited to compute times and assurance that the CPU and GPU give equivalent results (within 105 times machine
epsilon at double precision). As such, the test problem is arbitrary. For robustness, the solution variable coefficients
are randomized, and activating or deactivating terms of the equation can be used for debugging and additional
assurance that each term is being evaluated correctly.

Table 2: Results for Compute Time of One RK-Step

Polynomial 1/𝛥𝑥 2D Simulation 3D Simulation
Degree CPU time (s) GPU time (s) Speedup CPU time (s) GPU time (s) Speedup

1
10 6.37e-4 2.12e-3 0.30x 2.25e-2 6.96e-3 3.23x
20 2.52e-3 3.11e-3 0.81x 1.79e-1 3.99e-2 4.49x
40 9.47e-3 6.28e-3 1.51x 6.18e-1 2.83e-1 2.18x

2
10 2.45e-3 2.45e-3 1.00x 3.24e-1 2.56e-2 12.7x
20 9.63e-3 4.57e-3 2.11x 1.18 1.41e-1 8.37x
40 3.85e-2 1.15e-2 3.35x 8.82 1.05 8.40x

3
10 8.81e-3 2.87e-3 3.07x 1.08 8.30e-2 13.0x
20 3.38e-2 6.52e-3 5.18x 8.34 6.20e-1 13.5x
40 1.34e-1 1.89e-2 7.09x 6.67e+1 4.78 14.0x

4
10 3.47e-2 4.34e-3 8.00x 1.15e+1 4.16e-1 27.6x
20 1.38e-1 1.03e-2 13.4x 1.32e+2 3.03 43.6x
40 3.92e-1 3.06e-2 12.8x 1.36e+3 2.40e+1 56.7x

ese tests produce several interesting trends. First, low degree polynomials show lile benefit from the GPU,
and sometimes even slower runtimes. is is simply because of the parallelization scheme, where we delegate work
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for a single 𝑔𝑛,ic coefficient across a work-group. If there are not enough terms for all of the work-items, we lose
much of the benefit of parallelization on the GPU, since some of the threads then do no work. One way to remedy
this in practice is to use smaller work-group sizes when dealing with smaller polynomials. However, this solution
has limitations since GPUs are most efficient when the work-group size is a multiple of 32 [6]. A similar drawback
arises if sparsity is not exploited, where the GPU sees a ∼2x slow-down for 3rd order polynomials. is results
from parallelizing along the tensor multiplication loop, where many threads end up multiplying zeros together and
appending them to a sum, again wasting effort.

Second, the data indicates the GPU is increasingly advantageous as it is given more work. As the degrees of free-
dom and number of operations increases, whether from refining the grid or increasing the number of polynomials,
the speedup increases. is reflects the streaming memory model on the GPU, where floating-point operations are
almost free.

Using OpenCL event timers, we can further break down the GPU execution time, to investigate where the GPU
is spending most of the execution time. is is shown in Table 3 for the degree 3 polynomial, 40x40x40 grid case. As

Table 3: GPU Event Timing

Event Time (ms)
Kernel Create 0.1628
Data Send 336.9
Compute 4763

Data Receive 20.14
Total 4784

a perhaps unexpected result, the computations overwhelmingly dominate the execution time. In other applications,
memory transfer operations take up a significant portion of the runtime. However, this case involves a high work
to data ratio, since the method involves a high number of operations relative to the amount of data transferred.
As a result, optimizations that focus on decreasing compute time are more beneficial than memory optimizations,
contrary to the usual case for GPU algorithms.

Note: these times may overlap, so the total compute time is not necessarily the sum of event times.

6 Concluding Remarks
iswork has demonstrated that taking advantage of sparsity, whenever possible, is crucial to developing efficient

algorithms, especially on the GPU. Furthermore, an overall speedup ranging from 2-60x for GPUs over CPUs was
found, advocating the applicability and benefit of GPUs in numerical algorithms, especially for independent segments
of code that benefit from parallelism. ese speedups indicated that more work given to the GPU results in more
speedup, especially when increasing the number of basis functions used. is compliments the results in [4], where it
was found that the discontinuous Galerkin conservative level set method is more effective whenmore basis functions
are used. erefore, accelerating that method via GPUs reaps benefits from multiple angles, making it an excellent
candidate for high order interface tracking and modeling atomization.

Future work to further develop this approach would involve an improved implementation, for instance, ensuring
memory alignment. Porting more segments of code to OpenCL would also be valuable. is is especially true when
there is a direct benefit from GPU architectures, but is also true for code that would not be improved by parallelism,
since it avoids passing data to and from the GPU as much as possible. For instance, it may be beneficial to handle
ghost cell updates on the GPU, allowing multiple time steps to be executed before returning to the CPU. Finally, to
complete the conservative level set method it is necessary to implement a similar scheme for reinitialization, Eq. (6).

𝜕𝐺
𝜕𝜏 + ∇ ⋅ (𝐺 (1 − 𝐺) 𝒏̂) = ∇ ⋅ (𝜀 (∇𝐺 ⋅ 𝒏̂) 𝒏̂) (6)

Reinitialization is best described as a nonlinear companion to the advection equation solved in pseudo-time which
greatly improves mass conservation.
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