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Introduction
Arbitrary Lagrangian Eulerian (ALE) codes combine the Lagrangian and Eulerian techniques. 

The Lagrangian approach is used to evolve the mesh, and the Eulerian approach is used to remap 
physical quantities after the mesh has been relaxed.  This project focuses on the development of a 1D 
Lagrangian code as a testbed for ALE techniques; various hydrodynamic methods can be compared 
within a single framework. Remapping and ALE have not yet been implemented, and the code remains 
fully Lagrangian. The development and use of this code will aid in the understanding of the 
mathematics behind these types of algorithms.  

Code Details
The code requires user inputs stored in a text file that is called by the input function in the code. 

Having a separate text file containing user inputs allows for the inputs to be changed easily and 
eliminates the need to compile the code after a slight change in the inputs.  The use of a separate text 
file for inputs also requires the development of a parser.  The parser used in this code was developed 
with the help of Dr. Vincent Chiravalle.  The parser reads in the input text file and separates each word, 
variable, and value and then stores them in an array of strings.  The input function then queries the 
array and extracts user-defined values and assigns them to the simulation parameters.  These simulation 
parameters include mesh density, domain length, boundary conditions, thermodynamic quantities, and 
output options.

Once the simulation parameters defined by the user are collected, the initialize function in the 
code uses them to populate 1D arrays that will be used in the simulation.  The code utilizes these arrays 
to represent the spatial distributions of thermodynamic quantities.  The arrays can represent multiple 
materials.  For the simulations of interest in this project, the property that differentiates materials is the 
ratio of the specific heats, i.e. gamma.  Each element in an array represents an individual control 
volume containing a single material.  Once ALE is implemented in the code, individual elements will 
have to represent multiple materials because of remapping procedures.  This will be done using 
dynamic link lists.

The physics of the simulations are carried out in separate functions called “CCH”, “PCH”, 
“MPC”, “SGH”.  These functions contain the Runge-Kutta time integration steps which include the 
majority of the calculations involving the conservation equations and the equation of state.  At the end 
of these functions, the maximum speed of sound in the computational domain is computed.  This value 
is fed back into the main function to compute the next time step.  The main function serves to calculate 
the next time step and print out current simulation information including the current time, time step, 
and the minimum Δx across the domain.

At user-specified time intervals, the output function records the spatial distributions of 
thermodynamic quantities in data files.  The data files are named using the name of the input file with 
the time information appended to it.  Output files are generated for both point and cell arrays.  These 
data files can then be plotted using third party plotting software such as GNUplot.

3



Source Code Files
The source code files are presented and described in Table 1.

Table 1.  Source code file names and descriptions.

Source code 
file name

Description

program.c Contains the main function as well as optimization functions used for the computations. 
The main function calls the subsequent functions and organizes their respective inputs 
and outputs.  The main function also calculates the next time steps to input into the 
hydro packages.

header.h Spacial arrays and other simulation parameters are declared in this file in order to be 
used globally.  This file is included in each of the source code files.

setDefaults.c Contains the function that establishes simulation parameters to be used if the user does 
not include them in the input file.  It provides additional robustness to minimize user 
frustration.

input.c Contains the function that parses the user input file and saves to variables for further 
use. If inputs are omitted, the default values are used.

initialize.c Contains the function allocates memory and defines arrays and variables included in 
header.h, based on values from the user input file.

CCH.c Contains the cell-centered hydrodynamics function.  This funtion calls a separate 
function that performs a Riemann solution and steps the simulation parameters forward 
in time.  Separate volume and area have also been included.  See CCH Description.    

PCH.c Contains the point-centered hydrodynamics function.  This function is used for the 
PCH and PCHA methods.  It includes various functions for the Riemann solution and 
the time integration.  It also contains a functions that compute a volumes and areas. 
See PCH Description and PCH Method Comparison.

SGH.c Contains the staggered-grid hydrodynamics code.  There is also a separate function that 
performs a Riemann solution and steps the simulation parameters forward in time. 
Volumes and areas are also computed in separate functions.  See SGH Description.

MPC.c Contains the modified point-centered hydrodynamics code.  This function also calls a 
separate function that performs a Riemann solution.  Volumes and areas are also 
computed in separate functions.

output.c Contains a function that generates output files at specific time intervals defined by the 
user.  This time interval is referred to as dtdump.  Values for relevant properties such as 
density, pressure, etc. are output at each point or cell location, depending on the hydro 
method selected by the user.
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Each source code file includes the header.h file.  When the source code is compiled using the makefile, 
an executable file named code is created.  The executable file is run with an input file using the 
following syntax:

./code ExampleInput.inp
  

The flowchart in Figure 1 details the overall procedure of the 1D hydrocode.

Input
The user provides inputs to the hydrocode using a separate text file.  If the user omits any 

inputs, default values will be used in their place.  A list of the available user inputs along with the 
default values is shown in Table 2.
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Figure 1.  Flowchart of code structure.



Table 2.  User inputs and default values.

Input Default 
Value

Comments

General Inputs

mats 2 Number of Materials

np 20 Number of points used in the simulation

L 10 Length of domain (this is also the radius in curvilinear coordinates)

init-ie? 0 Initializes the simulation using specified internal energy (1) or pressure (0)

init_from_cell 0 Initializes point values based on the user inputs (0) or on cell values (1).  Use (1) 
to smooth the shock front.

BC1 0 Fixed (0), Free (1)

BC2 0 Fixed (0), Free (1)

BCu1 0 Fixed wall velocity

BCu2 0 Fixed wall velocity

Method CCH

VelOpt 0 Computes density and total energy change from averaged point velocities (0) or 
from Riemann velocities (1)

AvgOpt 0 Averages the nodal velocities in space (0) or in space and time (1)

NodePosOpt 0 Updates the nodal positions based on the nodal velocities (0) or the averaged 
control volume boundary positions (1)

Coordinate_System car Planar (car), Cylindrical (cyl), Spherical (sph)

Material Inputs

u 0 Initial velocity of each material

p 1.0 and 0.1 Initial pressures of material 1 and material 2, respectively

rho 1.0 and 0.1 Initial densities of material 1 and material 2, respectively

ie 1.0 and 0.1 Initial specific internal energies of material 1 and material 2, respectively

x1 0.0 and 5.0 Start locations of material 1 and material 2, respectively

x2 5.0 and 10.0 End locations of material 1 and material 2, respectively

gamma 1.4 Gamma of each material

I/O Parameters

dt0 1e-9 Initial time step

tstop 30.0 Stop time

dtdump 5.0 Time interval to write output files

CFL 0.5 CFL parameter for time step control

CFLV 0.01 CFLV parameter for time step control

It is important to note that the materials must be entered in the order they appear in the domain from 
left to right.  The 1D hydrocode assumes a consistent set of units.  A typical system of units used for 
these problems is cm (length), μs (time), megabar (pressure), cc (volume), g (mass), megabar cc/g 
(specific energy).
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CCH Description
Cartesian Coordinates

In CCH, all parameter values are stored at the cell's center.  A Riemann-like solution is used to 
determine the velocity and pressure at the interface between cells, called points or nodes.  See Figure 2.

For 1D, the CCH method uses the following governing equations.  The continuous equations are on the 
right, and the discretized approximations are shown on the right.

Continuous 1D Discrete

where M is the mass, V is the volume, u is the velocity, P is the pressure, j is the specific total energy, 
and n is the surface normal vector that points in either the positive or negative direction in 1D.  The 
superscript * indicates the Riemann solution which is discussed in a later section.  The subscript z 
indicates a zone or cell centered quantity.  The superscript n+1/2 indicates the time integration scheme. 
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Figure 2.  CCH mesh.
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The time integration scheme is discussed in more detail in a later section.  In 1D, the change in the x-
location of the points is used to compute the change in volume.  The change in the x-location of a point 
is determined by

The density is updated using the volume change.  The internal energy is determined using the equation

where ez is the specific internal energy in the zone.  Using the updated density and the internal energy, 
the pressure is updated using the equation of state for a gamma-law gas.  A constant gamma is assumed. 
P is given by

Cylindrical Coordinates
For cylindrical coordinates in 1D, the same governing equations are used as in Cartesian 

coordinates.  The difference is in the volume and area calculations.  The volume is computed as the 
volume per radian and is given by

where dz, the depth of the cylinder, is understood to be of unit length.  The area that is used to compute 
the forces on the individual control volumes is computed in order to preserve consistency with the 
divergence relationship.  The divergence relationship is 

The right side can be expressed as

simplifying, one obtains

\frac{1}{V_z}\frac{\delta V_z}{\delta t}=\frac{1}{V_z} \left [ \frac{\delta V_z}{\delta r_{p+1}}\frac{\delta r_{p+1}}{\delta t}+\frac{\delta V_z}{\delta r_p} \frac{\delta r_p}{\delta t}  \right ]= \frac{1}{\frac{1}{2}(r_{p+1}^2-r_p^2)}\left [ r_{p+1}u_{p+1}-r_pu_p \right ]
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Simplifying again yields

and

Therefore, using the average radius at a control volume to determine the area will be consistent with the 
divergence relationship.  The area per radian used to determine the forces acting on the cell is given by

where dz is understood to be of unit length.

Spherical Coordinates
For spherical coordinates in 1D, the same governing equations are used as in Cartesian 

coordinates.  However, the volume and area calculations are different.  The volume is computed as the 
volume per steradian and is given by

The area used to compute the forces acting on the individual control volumes is computed in order to 
preserve consistency with the divergence relationship presented in the previous section.  Similar to the 
derivation in the previous section, it can be shown that

Simplifying yields

\frac{1}{V_z}\frac{\delta V_z}{\delta t}= \frac{1}{\frac{1}{3}(r_{p+1}^2+r_{p+1}r_p+r_p^2)}\frac{\left [ r_{p+1}^2\:u_{p+1}-r_p^2\:u_p \right ]}{r_{p+1}-r_p}

and
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From this derivation, the area per steradian is given by

Boundary Conditions
Two different types of boundary conditions are available in the code.  The first is a fixed or 

reflective boundary, the second is a free boundary condition.  The details of the mathematics used to 
simulate these conditions are presented below

CCH: Fixed (Reflective) Boundary Condition

For a fixed boundary, the velocity at the boundary is set to a specific value set by the user. 
Figure 3 illustrates mesh at the boundary.

The fixed velocity at the boundary is u*
p.  The pressure at the boundary is determined by the equation

where n is the normal vector pointing in the positive or negative direction.  μ at the boundary cell can 
be approximated by 

where the density and the speed of sound are evaluated at the boundary cell.  Also, for a first order 
approximation,

Once the pressure and velocity at the boundary are known, the governing equations for the boundary 
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Figure 3.  CCH boundary mesh.
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cell can be implemented normally.

CCH: Free Boundary Condition

For a free boundary condition, the pressure at the boundary must be maintained at zero.  The 
velocity at the boundary must be determined.  By manipulating the equation for P* in the previous 
section, the following equation is obtained.

Where the approximations used for μ and the projected velocity and pressure are the same as for the 
fixed boundary condition.

SGH Description
In the SGH approach, the pressure, internal energy, and density are stored at the cell center.  The 

velocity is stored at the points.  The momentum and energy equations are solved on two separate 
control volumes.  See Figure 4.  

The momentum control volume is designated MCV, and the energy control volume is designated ECV. 
The discrete Lagrangian governing equations for SGH are shown below on the right and the continuous 
equations are shown on the left.
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Figure 4.  SGH mesh.
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Continuous 1D Discrete

M_z\frac{\Delta e_z}{\Delta t}=-P_z^{*(n+\frac{1}{2})}\sum_{ECV} \left ( \mathbf{n}A\: u_p\right )^{n+\frac{1}{2}}

where Mp is the mass of the MCV centered at a point, and Mz is the mass of the ECV at a cell.  ez is the 
specific internal energy.  The volume and density of the cell are updated based on the change in the 
locations of the points.  The location of the points is updated using a time averaged velocity as in the 
equation.

A pressure is computed using the equation of state for a gamma-law gas where a constant gamma is 
assumed.  

A Riemann-like problem is solved at the center of the each cell.  In 1D, the velocities are projected 
from the points to the cell centers.  The pressure stored at the cell center is the pressure used to 
determine u* and P*.

Curvilinear Coordinates
The equations implemented for curvilinear coordinates in SGH are derived similarly to those 

used for CCH.  However, the area used in the momentum equation is evaluated at the center of the 
momentum control volume.  This same area is then used in the energy equation.  A predictor-corrector 
scheme was implemented in SGH.  This procedure is explained in [1].  First, the nodal positions are 
estimated at the next time step using a time averaged velocity.  The velocity is then updated using the 
areas computed from the predicted nodal positions.  New nodal positions are then computed using the 
updated velocity and these values are compared to the predictions.  The process is repeated until the 
difference in the predicted and computed nodal positions is negligible.

Boundary Conditions

SGH: Fixed (Reflective) Boundary Condition

The SGH approach utilizes a momentum control volume centered on the points and an energy 
control volume centered on the cells.  To simulate a fixed boundary condition, the change in the 
velocity with respect to time for the boundary node is set to zero.  To illustrate this concept, a 
customized momentum control volume is established for the boundary node as shown in Figure 5.
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For the momentum control volume at the boundary, the pressure on the right side must be equal to the 
pressure on the left side.  Therefore, the change in velocity with respect to time for the boundary node 
must be zero to satisfy the governing equation

SGH: Free Boundary Condition

The free boundary condition for SGH is simulated by using the momentum control volume at 
the boundary and setting the pressure at the boundary node equal to zero.  The rate of change of the 
velocity at the boundary node is then given by

PCH Description
Using a point centered approach (PCH), pressure, energy, density, and velocity are stored at the 

points and each control volume is centered on a point. The Riemann-like solution is used to compute a 
P* and u* at the interfaces between the control volumes as shown in Figure 6.
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Figure 5.  SGH boundary mesh.
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In 1D, the governing conservation equations reduce to following discretized forms:

where Mp is the point centered mass and 

The internal energy is computed by subtracting the kinetic energy from the total energy, and the 
pressure is computed using the equation of state for a gamma-law gas assuming a constant gamma.  For 
PCH, three different methods were used to update the density of each control volume.  The governing 
equations presented in this section represent the first method used.  Details regarding the other methods 
are presented in a later section.

14

Figure 6.  PCH mesh.
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Curvilinear Coordinates
The equations used to compute volumes and areas in PCH are similar to those used in CCH. 

The differences are that the volume is computed for the point centered control volumes rather than the 
cell centered control volumes, and that the areas are computed at the nodes rather than at the cell 
centers.

Boundary Conditions
At the boundaries, a control volume is not centered on a point, as it cannot extent past the 

domain, as seen below.  The governing equations are then applied to a control volume that is typically 
half the size of an ordinary control volume in the domain.  Figure 7 illustrates the PCH mesh at the 
boundary.

PCH: Fixed BC

The fixed boundary is subject to the following conditions:

\left. \frac{\Delta j}{\Delta t} \right |_{wall}=\frac{1}{M_p}\sum_{CV} F^*u=\frac{1}{M_p}\left [\left ( \left. F^* u_{wall} \right )\right |_{wall}+\left. \left ( F^*u_{avg} \right ) \right |_z \right ] 

where Mp is the mass of the control volume at the boundary and 

u_{avg}=\frac {u_{wall}+u_{p}}{2}
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Figure 7.  PCH boundary mesh.
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\left. F^* \right |_{wall}=\left. -F^* \right |_z

The wall velocity, uwall, is fixed.  The magnitude of the forces on either side of the boundary control 
volume are assumed to be equal as the gradient of the pressure is set to zero for this condition.

PCH: Free BC

For a free boundary condition, the edge velocity is not fixed.  The free boundary is subject to the 
following conditions:

\left. \frac {\Delta x}{\Delta t}\right |_{edge}=\left. u \right |_{edge}

\left. \frac {\Delta u}{\Delta t} \right |_{edge}=\frac {1}{M_p}\sum_{CV}F^*=\frac{1}{M_p}F^*_z

\left. \frac{\Delta j}{\Delta t} \right |_{edge}=\frac{1}{M_p}\sum_{CV} F^*u=\frac{1}{M_p}\left  F^*_z u_{avg} 

where

u_{avg}=\frac {u_{edge}+u_{p}}{2}

The three different point centered methods discussed in this report vary slightly in the implementation 
of boundary conditions.  For example, uavg in the energy equation above is replaced by the zone-
centered Riemann velocity, u*.

Solver Details
Riemann Solution

As presented in [2], a linear relationship between the shock velocity and the material velocity 
(the U-u curve) can be a good approximation for many materials.  This simplifies the Riemann 
solution.  As pointed out in [3], the Riemann-like solution can be used to determine a viscous force 
acting on the material experiencing a shock.  The Riemann-like solution solves the shock problem 
across the interface between two cells.  This solution simulates the dissipation effects that characterize 
a shock.  In 1D, the Riemann-like solution yields a velocity and pressure at the cell interface that are 
given by
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Where Pc and uc are the projected values, and μ is the shock impedance.  The + and – superscripts 
denote the positions of the quantities relative to the interface of interest.  For simplicity, a first order 
projection is used for the velocity and pressure.  In CCH, these values are projected from the zone 
center to the points.  In SGH, the velocities are projected from the points to the zone center.  The shock 
impedance is determined based on the linear approximation of U-u curve.  For a gamma law gas, the 
slope of of the shock impedance relation can be approximated by  [4].  Therefore, the shock 

impedance is computed by

where c is the acoustic wave speed.  For a gamma-law gas, the acoustic wave speed is approximated by

Time Integration
The code uses a fourth order, explicit Runge-Kutta time integration scheme.  The Taylor series 

expansion of any function is 

If the higher order terms are neglected, the above equation can be represented by

The code uses the quantities at “n” to compute a slope and step the quantities forward to “n+1/4”.  The 
code then uses the quantities at “n+1/4” to compute a new slope and step the quantities forward from 
”n” to “n+1/3”.  This process is repeated until the quantities are stepped forward from “n” to “n+1”.  At 
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each of these stages, a Riemann-like problem is solved at the control volume interfaces, and all the 
simulation parameters are stepped forward in time.

Time Step Control
Two methods are used in order to control the time step during the simulation.  The first method 

is the Courant Stability Condition.  The Courant stability condition requires that 

where u is the maximum speed of the fluid in the domain.  The CFL parameter is chosen by the user. 
For explicit schemes, CFL must be less than or equal to 1.  The maximum speed of sound, cmax, can be 
used in the place of the maximum speed of the fluid in the domain.  cmax  is used with the minimum Δx 
of a cell in the domain to calculate a new time step.  The code calculates a new time step before each 
iteration by applying the formula

The user can set an initial time step in the input file.  The code allows the time step to grow by a 
maximum of 10% at each step.

The second method restricts the volume change of a cell in a single time step.  The requirement 
is expressed by

CFLV\geq\frac{V^{n+1}-V^n}{V^n}

where V is the volume, and CFLV is a parameter set by the user.  By restricting the volume change, 
other parameters, such as the density and pressure, are allowed to develop in the cell before the cell 
collapses and yields unphysical results.  This adds stability to the computations.  The fundamental 
formula is the divergence relationship.

In 1D, the finite difference form of this equation can be expressed as

\frac{\Delta V}{\Delta t}=\frac {V^{n+1}-V^n}{\Delta t}=\frac {\Delta u}{\Delta x} V^n

By rearranging and substituting, the following formula gives a suitable time step.  
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The hydrocode uses a CFLV parameter set by the user and finds the maximum velocity gradient in the 
domain.  A new time step is then calculated using these values.

The time step used in the next calculation is the minimum of the time steps computed using 
these two methods.

PCH Method Comparison
The PCH method that was implemented in the code had difficulties on test problems with strong 

shocks, such as the Sod problem.  As a results, a variety of PCH methods were explored.  The first 
method is the canonical PCH method (PCH).  In 1D, it was found that this method allowed the collapse 
of zones at shock discontinuities.  The collapse of a cell causes the time step to approach zero and 
prevents the simulation from reaching the required time.  It was found that by “smoothing” the shock 
interface initially eliminates the cell collapse issues.  The smoothing was accomplished by averaging 
the thermodynamic quantities at the discontinuity.  A second method seeks to solve the issue by 
updating the volume of each control volume using the averaged velocities at the control volume 
boundaries.  This method is denoted by PCHA.  This method allows the simulation to complete but 
does not update the nodal positions directly from the nodal velocities.  Rather, the method updates the 
control volume boundaries and moves the nodal positions based on the new control volume boundaries. 
A third method uses the Riemann velocities at the control volume boundaries to calculate the density 
and total energy change.  This method is denoted by MPC.  This method is effectively identical to the 
CCH method, only shifted by half of a cell.  The equations for each method are presented below.

PCH     PCHA    MPC

where the area used to compute the volume is understood to be equal to 1 in planar coordinates.  uavg is 
the average of the neighboring nodal velocities.  The procedures used to compute the volume change in 
PCH and PCHA are algebraically equivalent.  The difference is that, in PCHA, the control volume 
boundary locations are updated using the averaged nodal velocities.  These values are then used to 
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update the nodal positions after the time integration is complete.  In PCH, the nodal positions are 
updated throughout the time integration using the nodal velocities.  

Smoothing
In the Sod problem, the PCH method moves the individual points too quickly and causes the 

cell ahead of the shock discontinuity to collapse.  This causes the time step to approach zero because 
the maximum allowable time step is based on the distance between individual points.  One strategy to 
prevent this from happening is to smooth the shock discontinuity.  This technique smooths out the 
shock interface by placing a point directly between the high and low density regions of Sod problem 
and assigns to the point the average of the two densities.  The same technique is applied to the initial 
pressure and energy distributions.  Figure 8 illustrates this technique.

This technique allows the simulation to run past 20 µs.  The simulation results at 20 µs are compared to 
the analytical solution in Figure 9.
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Figure 8.  PCH: Smoothing technique concept.



The smoothing technique allows the simulation to run up to 41.72 µs.  The results for pressure at this 
time are shown in Figure 10.
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Figure 9.  PCH Results for the Sod problem at 20 μs with smoothing applied.



At 41.72 µs, the shock has been reflected off of the boundary at 100 cm and has begun to move to the 
left.  A new shock interface has formed, observed in the figure above at approximately 90 cm.  This 
new interface has not been smoothed since no algorithm to automatically smooth shocks has been 
implemented.  Therefore, the points move too close together and the time step approaches zero which 
stops the simulation.

Space and Time Averaged
For the PCHA method, the control volume boundaries are moved using the averaged nodal 

velocities.  Two different approaches were investigated for this method.  The first approach averages 
the nodal velocities in space, and the second approach averages the nodal velocity in space and time. 
For the second approach the governing equations for the control volume boundaries, volume, and total 
energy become

\frac{\Delta x_z}{\Delta t}=\left. u_{avg} \right |_z^{k+ \frac{1}{2}}

\frac{\Delta V_p}{\Delta t}=\sum_{CV} \mathbf{n} \cdot \left. u_{avg} \right |_z^{k+ \frac{1}{2}}
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Figure 10.  Maximum extent of PCH simulation with smoothing applied 
for the Sod problem. 



\frac{\Delta j_p}{\Delta t}=\frac{1}{M_p}\sum_{CV}\left. F^*_z u_{avg} \right |_z^{k+\frac{1}{2}}

where

\left. u_{avg} \right |_z^{k+ \frac{1}{2}}=\frac{1}{2} \left ( \frac{u_p^{n}+u_{p}^{k+1}}{2}+\frac{u_{p+1}^{n}+u_{p+1}^{k+1}}{2} \right )

The different averaging approaches have little to no effect on the results.  The results from a simulation 
using 100 zones and both averaging methods are compared to the analytical solution for the Sod 
problem at 20 μs in Figure 11.
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Figure 11.  Comparison of results for the Sod problem.  The PCHA simulation was run using the time averaged 
velocities as well as the time and spacial averaged velocities.

The approach used to calculate the average velocity, whether a space or a both space and time averaged 
velocity, does not change the results of the 1D simulation significantly.  Even as the mesh is refined, 
there is no noticeable difference in the plotted results.  For both approaches with 100 zones, a 
numerical ringing is produced at the contact discontinuity, located between 50 and 75 cm in Figure 11. 
The PCHA method used in the remainder of this report utilizes spatially averaged velocities.  The effect 
of mesh refinement on the ringing is shown in Figure 12.
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Figure 12. Effect of mesh refinement on the numerical ringing observed in the PCHA method.



PCH Comparison to PCHA
The PCH method experiences cell collapse for the Sod and Sedov test problems.  However, for 

the Piston and Noh test problems, the PCH and PCHA methods produce similar results.  These results 
are shown in Figure 13.

Figure 13.  Comparison of the PCH and PCHA methods on the Noh and Piston test problems.

The two methods, PCH and PCHA, yield essentially identical results in the case of the the Noh and 
Piston test problems.
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MPC Comparison to CCH
The MPC method uses an approach very similar to CCH.  The results from these two different 

methods are compared in Figure 14.  Both the Sod and the Piston problems were used to compare the 
two methods.

The MPC and CCH methods give similar results.  The most notable difference is at the fixed boundary 
for the Piston problem.  The differing boundary conditions in MPC and CCH cause considerable 
differences in the density at this boundary.  
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Figure 14.  Comparison of the CCH and MPC methods.



Convergence Analysis
The code results from the four methods for the Sod, Piston, and Noh test problems were 

analyzed at various mesh resolutions to ensure that the calculated results converged to the analytical 
solutions. Since only first-order methods were used in the 1D hydrocode, near first order convergence 
is to be expected. For the Piston and Noh test problems, the analytical solutions for pressure, density, 
and internal energy are piecewise constant functions. For the Sod test problem, portions of the 
analytical solution are not piecewise constant or linear. For comparison to the hydrocode results, these 
portions of the analytical solution were resolved using a fixed mesh analytic code [6].  The analytical 
code produces data points that represent the analytical solution.  The results of the hydrocode at various 
resolutions were mapped to the fixed mesh from the analytical code for comparison. The procedure for 
this mapping algorithm is as follows.

Since the exact code uses a fixed mesh, the position of any point is given by 

where xex is x-position for the analytical data points, i is the index (0, 1, 2, 3,...) and h is the constant 
mesh spacing. The appropriate position for a point mapped from the hydrocode mesh, is then 

Since the C language always rounds down in float to integer conversion (i.e. 2.24 and 2.99 both round 
to 2), this equation always ensures that i is the index of the fixed mesh point just below the calculated 
value, and i+1 is the index of the analytical data point just above the calculated value. The expected 
analytical value and the error are then determined from linear interpolation of the analytical data points. 
A sample of this algorithm for pressure is as follows.

where

Figure 15 illustrates this procedure. This same method can be used for analytical solutions without a 
functional representation, such as the horizontal segments with discontinuities, but this results in a 
slope of infinite magnitude, making linear interpolation unnecessary. 
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Convergence is measured by comparing the volume-weighted combination of all ΔP over the 
domain with the mesh resolution. Two combinations are common, the L1 and L2 norms.  The volume 
weighted L1 norm is given as:

where Vi is the volume of the Lagrangian element at index i. The volume weighted L2  norm is

To measure convergence, the rate of decrease in the error with respect to the increase in mesh density is 
measured.  The error is quantified using the L1 and L2 norms.  The rate decrease of the error should be 
comparable to the order of the approximations used in the hydrocode.  That is, a second order scheme 
should show a quadratic decrease in error with increasing mesh density. The first order scheme that has 
been implemented in the 1D hydrocode should show a first order decrease in error with increasing 
mesh density.  Each method is expected to converge according to the following general equation.

where ε is the error, A is the convergence coefficient, n is the number of cells, and k is the convergence 
rate.  A power law fit was used to determine the values of A and k that correspond to each method for 
each test problem given a variety of mesh densities.  These results are presented with the corresponding 
test problem results in the following section.

29

Figure 15.  The calculation of error from analytical data points.
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Test Problems
Sod Problem

The SOD problem simulates the interactions of two materials, one in the first half of the 
domain, and the other in the second half of the domain.  The first material has an initial density of 1 
g/cc and internal energy of 2.5 megabar cc/g.  The second material has an initial density of 0.125 g/cc 
and internal energy of 2.25 megabar cc/g. The boundary conditions on both sides of the domain are 
fixed and the domain is 100 cm in length.  The gamma of both materials is set to 1.4.  Both materials 
have an initial velocity of zero and the imaginary barrier between them is removed at t=0.  100 zones 
were used across the domain to simulate the problem.  The results at 20 μs for the four different hydro 
methods are compared to the analytical solution in Figure 16.  SGH and CCH are shown on the left, 
and MPC and PCHA are shown on the right.  The SGH results are slightly more accurate compared the 
CCH results.  The SGH method follows the density discontinuity more accurately than the CCH 
method at approximately 70 cm.  The PCHA method shows numerical ringing about the density 
discontinuity, while MPC tracks the analytical solution without numerical ringing.  

 The analytical solution is known [5] and a computer code was used to calculate analytical data 
points [6].  Convergence studies were carried out for each method.  Table 3 shows the results of these 
convergence studies.

Table 3.  Convergence data for the Sod test problem.

Method Parameter L1 

Convergence 
Rate

L1 

Convergence 
Coefficient

L2 

Convergence 
Rate

L1 

Convergence 
Coefficient

CCH Pressure -0.756 0.7821 -1.1207 0.8325

Density -0.715 0.5559 -1.0763 0.5727

Specific Internal Energy -0.7652 1.8149 1.3086 -1.0401

MPC Pressure -0.7589 0.7968 -1.1206 0.8285

Density -0.7223 0.5937 -1.0704 0.5581

Specific Internal Energy -0.7829 2.1553 -1.0441 1.5312

PCHA Pressure -0.844 1.1623 -1.1174 0.7582

Density -0.8112 0.8217 -1.0903 0.5526

Specific Internal Energy -0.8755 3.17 -1.0642 1.7875

SGH Pressure -0.7926 0.6336 -1.1439 0.6956

Density -0.7672 0.5212 -1.1025 0.5006

Specific Internal Energy -0.8122 1.6637 -1.0348 1.0958
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Figure 16.  Comparison of the results from four methods for the Sod test problem.
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Piston Problem
The piston problem consists of one material across the domain.  The initial velocity, initial 

pressure, and initial internal energy of the material is zero. The initial density of the material is 1 g/cc. 
The boundary condition on the right is fixed with zero velocity.  The boundary condition on the left is 
fixed with a velocity of 1 cm/µs.  The domain is 1 cm in length and 50 zones were used to simulate the 
problem.  The gamma of the material was set to 5/3.  The results after 0.6 µs for the four hydro 
methods are shown in Figure 17.  SGH and CCH are shown on the left, and MPC and PCH are shown 
in the right.  The analytical solution to this problem is known.  Table 4 shows the results of the 
convergence studies for this test problem.

Table 4.  Convergence data for the Piston test problem.

Method Parameter L1 

Convergence 
Rate

L1 

Convergence 
Coefficient

L2 

Convergence 
Rate

L2 

Convergence 
Coefficient

CCH Pressure -1.0145 0.4056 -1.0065 0.2534

Density -1.0015 1.8994 -1.0065 0.8630

Specific Internal Energy -1.0011 0.2905 -1.0085 0.1621

MPC Pressure -1.0120 0.4494 -1.0051 0.2966

Density -0.9995 1.6330 -1.0058 0.7468

Specific Internal Energy -0.9978 0.2024 -1.0054 0.1040

PCH Pressure -1.0101 0.5734 -1.0109 0.3007

Density -1.0021 1.5545 -1.0101 0.6628

Specific Internal Energy -0.9935 0.1702 -0.9999 0.0876

SGH Pressure -1.0018 0.3192 -1.0003 0.2827

Density -0.9962 0.9938 -1.0026 0.5665

Specific Internal Energy -0.9978 0.1068 -0.9934 0.0655
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Figure 17.  Comparison of results from four methods for the Piston test problem.
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Noh
The Noh problem involves a single material moving at -1 cm/µs and colliding with a fixed 

boundary at the origin.  The domain for this simulation was set to 1 cm and 50 zones were used to 
simulate the problem.  The boundary at the origin is fixed and the boundary at the end is moving at -1 
cm/µs with the fluid.  The results are for a 1D simulation in planar, cylindrical, and spherical 
coordinates with gamma equal to 5/3.  The analytical solution is known [7].

Planar Coordinates

The results for planar coordinates are shown in Figure 18.  Convergence data is recorded in 
Table 5.

Table 5.  Convergence data for the Noh test problem in planar coordinates.

Method Parameter L1 

Convergence 
Rate

L1 

Convergence 
Coefficient

L2 

Convergence 
Rate

L2 

Convergence 
Coefficient

CCH Pressure -1.0145 0.4056 -1.0065 0.2534

Density -1.0015 1.8994 -1.0065 0.8630

Specific Internal Energy -1.0011 0.2905 -1.0085 0.1621

MPC Pressure -1.0096 0.4392 -1.0065 0.2947

Density -0.9983 1.6114 -1.0054 0.7394

Specific Internal Energy -0.9980 0.2027 -1.0061 0.1047

PCH Pressure -1.0028 0.5569 -1.0049 0.2941

Density -0.9975 1.5221 -1.0040 0.6450

Specific Internal Energy -0.9938 0.1707 -0.9988 0.0863

SGH Pressure -1.0018 0.3192 -1.0003 0.2827

Density -0.9962 0.9938 -1.0026 0.5665

Specific Internal Energy -0.9954 0.1128 -1.0003 0.0699

Cylindrical Coordinates

The results for cylindrical coordinates are shown in Figure 19.  The results of the convergence 
studies for the Noh problem in cylindrical coordinates are shown in Table 6.
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Table 6.  Convergence data for the Noh test problem in cylindrical coordinates.

Method Parameter L1 

Convergence 
Rate

L1 

Convergence 
Coefficient

L2 

Convergence 
Rate

L2 

Convergence 
Coefficient

CCH Pressure -1.0068 5.7774 -1.0098 2.1002

Specific Internal Energy -0.8970 0.6561 -1.0037 0.3299

MPC Pressure -1.0169 7.0382 -0.9940 2.5974

Specific Internal Energy -0.88 0.4887 -1.0084 0.2416

PCHA Pressure -0.9901 5.8003 -0.9903 3.1239

Specific Internal Energy -0.8482 0.5744 -0.9986 0.2265

SGH Pressure -0.9888 16.9188 -0.9235 6.4584

Specific Internal Energy -0.7903 1.4122 -0.9314 0.7030

Spherical Coordinates

The results for spherical coordinates are shown in Figure 20.  The results of the convergence 
studies are shown in Table 7.

Table 7.  Convergence data for the Noh test problem in spherical coordinates.

Method Parameter L1 

Convergence 
Rate

L1 

Convergence 
Coefficient

L2 

Convergence 
Rate

L2 

Convergence 
Coefficient

CCH Pressure -0.9721 31.4138 -1.0191 9.3409

Specific Internal Energy -0.8611 0.7734 -1.0023 0.3596

MPC Pressure 0.0477 5.3956 -0.4547 6.1347

Specific Internal Energy -0.8986 2.8903 -0.9886 1.4213

PCHA Pressure 0.0516 5.2193 -0.4507 5.9481

Specific Internal Energy -0.8696 2.3708 -0.9904 1.0447

SGH Pressure -1.0074 99.1013 -0.9668 32.2163

Specific Internal Energy -0.7842 2.3395 -0.9812 1.3969

It is interesting to note that for spherical coordinates, the convergence rate for the point centered 
methods (MPC and PCHA) are positive for pressure in the L1 norm.  This is a reason to further 
investigate curvilinear coordinates for all the hydro methods presented.  The results for a mesh 
resolution of 10,000 zones is shown in Figure 21.  It is clear that the MPC and PCHA methods 
converge to a value for pressure near the wall that is less than the analytical value.  
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Figure 18.  Comparison of results from four methods for the Noh test problem in planar coordinates.
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Figure 19.  Comparison of results from four methods for the Noh test problem in cylindrical coordinates.
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Figure 20.  Comparison of results from four methods for the Noh test problem in spherical coordinates.



The PCHA method produces numerical oscillations at the wall.  Both the MPC and PCHA methods 
converge to a lower pressure near the wall than the analytical solution demands.
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Figure 21.  MPC and PCHA results for the Sedov test problem, zoomed at the wall.



Sedov
The Sedov problem involves a blast propagating from the origin.  The simulation is initialized 

with a specified amount of internal energy deposited in the cell at the origin.  Once the simulation is 
started, a shock wave moves away from the origin.  The domain for this simulation was set to 1.2 cm 
and 60 zones were used to simulate the problem.   The gamma of the gas was set to 5/3 across the 
domain.  The density is initially set to 1 g/cc across the domain, and the pressure and internal energy 
are set initially to zero everywhere except at the origin.  The analytical solution is known [8] and the 
analytical data points for each simulation were computed using an analytical code [9].  The simulation 
was run in planar coordinates.  In cylindrical and spherical coordinates, the simulation produced 
inconsistent results.  Therefore, these results are not shown.  Further investigation into the methods 
used in the 1D hydrocode for cylindrical and spherical coordinates is recommended.

Planar Coordinates

For planar coordinates, the amount of extensive internal energy deposited in the cell at the 
origin was 0.3 megabar cc.  With this amount of energy, the exact form of the shock is located at 
approximately 1 cm after 1µs.  The extensive internal energy was divided by the mass of the cell at the 
origin and applied to the cell at the origin as specific internal energy.  The volume of the cell at the 
origin is initially 0.02 cc, therefore, the amount of specific internal energy deposited in the cell at the 
origin is 15 megabar cc/g.  The results for planar coordinates are shown in Figure 22.  SGH and CCH 
are shown on the left, and MPC and PCHA are shown together on the right.  The PCH method 
experiences cell collapse in the Sedov test problem and the simulation stalls.  Therefore no results were 
obtained from the PCH method for the Sedov test problem.
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Figure 22.  Comparison of results from four methods for the Sedov test problem in planar coordinates.
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The results for the PCHA method for the Sedov test problem clearly demonstrate the numerical 
ringing associated with this method.  Qualitative convergence studies were performed for the Sedov 
problem in planar coordinates.  The results are shown in Figure 23.  The CCH and SGH methods 
converge to the analytical solution as expected.  The MPC method also converges.  However, the 
numerical ringing in the PCHA method produces errors of greater magnitude in pressure with a mesh of 
300 zones compared to the mesh of 60 zones in Figure 22.  It is also interesting to note that the PCHA 
method does not converge to the analytical solution as the mesh is refined.  The shock is still slow, as 
predicted with a mesh of 60 zones, even with a mesh of 300 zones.
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Figure 23.  Effect of mesh refinement on the results for the Sedov test problem in planar coordinates.

43



Conclusions
The project focused on developing a 1D hydrocode to simulate gas dynamics using three 

different discretization techniques.  The techniques used were cell-centered (CCH), staggered grid 
(SGH), and point-centered hydrodynamics (PCH).  The PCH method proved to fail under strong shock 
conditions. The failure was induced by zone collapse and a diminishing time step.  Two additional PCH 
methods were developed to mitigate this failure.  These methods are called modified PCH (MPC) and 
averaged PCH (PCHA).  These two methods produced results for all test problems considered.  MPC is 
similar to CCH, simply shifted by half a cell.  PCHA produces numerical oscillations at shock 
discontinuities.

Four test problems were used to verify the hydrocode.  These problems were the Sod, Piston, 
Noh, and Sedov problems.  For the Sod, Piston, and Noh problems, the convergence rates were 
computed for each method.  In planar coordinates, all convergence rates were consistent with the first 
order numerical scheme used in the code.  However, in spherical coordinates for the Noh problem, the 
pressure did not converge to the analytical solution.  Further investigation into curvilinear coordinates 
is recommended for future work.

The CCH, SGH, and MPC methods showed qualitative convergence in the Sedov test problem 
in planar coordinates.  In curvilinear coordinates, the 1D hydrocode did not produce consistent results 
for the Sedov test problem.  The numerical oscillations produced by the PCHA method are more 
apparent in the Sedov test problem than in other test problems.  

In general, the SGH method performs better for the Sod and Sedov test problems.  The CCH 
method performs better for the Piston and Noh test problems.  It is recommended that the different 
PCH methods be investigated further in order to evaluate the merits of each method and perhaps 
continue their development.

Future Work
Curvilinear Coordinates

For the Sedov test problem in cylindrical and spherical coordinates, the simulation did not 
converge to a solution.  It was found that as the cell size decreased and the amount of extensive internal 
energy deposited in the cell at the origin remained constant, the simulation produced varying results. 
Also, the simulation did not conserve total energy over the course of the simulation.  In the future, this 
issue needs to be studied, and solution needs to be determined.  Some hypotheses have been formed. 
The 1D hydrocode conserves total energy in the Sedov test problem in planar coordinates, but not in 
cylindrical or spherical coordinates.  Therefore, it seems most likely that the error in energy 
conservation is due to the calculation of the areas and volumes in cylindrical and spherical coordinates. 
Alternatively, the way the boundary conditions are formulated could be resulting in error for cylindrical 
and spherical coordinates.

Second Order Scheme
The addition of a second order scheme would involve adjusting the Riemann solver in each of 

the hydro method programs.  Instead of assigning a value of pressure or velocity to an interface from 
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the nearest control volume, the pressure and velocity are projected via a central gradient.  The 
projection of the velocity is illustrated in Figure 24.

uc,z is evaluated at the cell interfaces using a gradient in a second order scheme.  Assuming a constant 
value across the control volume is a first order approximation.  The central gradient is given by 

\bigtriangledown u=\frac{u_{z+1}-u_{z-1}}{\frac{1}{2}(\Delta x)_{z-1}+(\Delta x)_z+\frac{1}{2}(\Delta x)_{z+1}}

and uc,z is given by

u_{c,z}=u_z+\frac{1}{2}(\Delta x)_z (\bigtriangledown u)

Limiters will also need to be used in a second order scheme.  Limiters are used to limit the gradient if 
the gradient projects a value that is greater than the highest value or less than the lowest value.  Figure 
25 illustrates this concept, where θz,p is a limiter.  
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Figure 24.  Second order velocity projection.
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The limiter is computed using the formula

Similarly, at the interface at p-1, the limiter would be evaluated by 

\theta_{z,p-1}=min \left [\frac{abs(u_{z}-u_{z-1})}{abs(u_{proj}-u_z)},1 \right ]

The projected value, or corner value, at p can then be computed using

The corner values computed with the limited gradients are then used in the Riemann solver. 
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Figure 25.  Second order velocity projection with a gradient limiter.
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Appendix
Convergence Plots
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CCH
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MPC
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PCHA
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SGH
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f(x) = 0.2905 x^-1.0011
R² = 1.0000

CCH Piston Internal Energy

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.8630 x^-1.0065
R² = 1.0000

f(x) = 1.8994 x^-1.0015
R² = 1.0000

CCH Piston Density

L1 Rho
Power 
Regression for 
L1 Rho
L2 Rho
Power 
Regression for 
L2 Rho

Number of Cells

E
rr

or
 N

or
m



MPC

54

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2966 x^-1.0051
R² = 0.9999

f(x) = 0.4494 x^-1.0120
R² = 0.9999

MPC Piston Pressure

L1 Pressure
Power 
Regression for 
L1 Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.7468 x^-1.0058
R² = 1.0000

f(x) = 1.6330 x^-0.9995
R² = 1.0000

MPC Piston Density

L1 Rho
Power 
Regression for 
L1 Rho
L2 Rho
Power 
Regression for 
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.1040 x^-1.0054
R² = 1.0000

f(x) = 0.2024 x^-0.9978
R² = 1.0000

MPC Piston Internal Energy

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



PCH

55

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.3007 x^-1.0109
R² = 1.0000

f(x) = 0.5734 x^-1.0101
R² = 1.0000

PCH Piston Pressure

L1 Pressure
Power 
Regression for 
L1 Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.6628 x^-1.0101
R² = 1.0000

f(x) = 1.5545 x^-1.0021
R² = 1.0000

PCH Piston Density

L1 Rho
Power 
Regression for 
L1 Rho
L2 Rho
Power 
Regression for 
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.0876 x^-0.9999
R² = 0.9999

f(x) = 0.1702 x^-0.9935
R² = 1.0000

PCH Piston IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



SGH

56

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

f(x) = 0.2827 x^-1.0003
R² = 0.9999

f(x) = 0.3192 x^-1.0018
R² = 0.9999

SGH Piston Pressure

L1 Pressure
Power 
Regression for 
L1 Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.5665 x^-1.0026
R² = 1.0000

f(x) = 0.9938 x^-0.9962
R² = 1.0000

SGH Piston Density

L1 Rho
Power 
Regression for 
L1 Rho
L2 Rho
Power 
Regression for 
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.0655 x^-0.9934
R² = 0.9999

f(x) = 0.1068 x^-0.9878
R² = 0.9999

SGH Piston IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



Noh Planar Coordinates
CCH

57

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2534 x^-1.0065
R² = 1.0000

f(x) = 0.4056 x^-1.0145
R² = 0.9999

CCH Noh Pressure

L1 Pressure
Power 
Regression for 
L1 Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.8630 x^-1.0065
R² = 1.0000

f(x) = 1.8994 x^-1.0015
R² = 1.0000

CCH Noh Density

L1 Rho
Power 
Regression for 
L1 Rho
L2 Rho
Power 
Regression for 
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.1621 x^-1.0085
R² = 1.0000

f(x) = 0.2905 x^-1.0011
R² = 1.0000

CCH Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



MPC

58

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2947 x^-1.0065
R² = 0.9999

f(x) = 0.4392 x^-1.0096
R² = 0.9999

MPC Noh Pressure

L1 Pressure
Power 
Regression for 
L1 Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.7394 x^-1.0054
R² = 1.0000

f(x) = 1.6114 x^-0.9983
R² = 1.0000

MPC Noh Density

L1 Rho
Power 
Regression for 
L1 Rho
L2 Rho
Power 
Regression for 
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.1047 x^-1.0061
R² = 1.0000

f(x) = 0.2027 x^-0.9980
R² = 1.0000

MPC Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



PCH

59

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2941 x^-1.0049
R² = 0.9999

f(x) = 0.5569 x^-1.0028
R² = 1.0000

PCH Noh Pressure

L1 Pressure
Power 
Regression for L1 
Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.6450 x^-1.0040
R² = 1.0000

f(x) = 1.5221 x^-0.9975
R² = 1.0000

PCH Noh Density

L1 Rho
Power 
Regression for 
L1 Rho
L2 Rho
Power 
Regression for 
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.0863 x^-0.9988
R² = 0.9999

f(x) = 0.1707 x^-0.9938
R² = 1.0000

PCH Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



SGH

60

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2827 x^-1.0003
R² = 0.9999

f(x) = 0.3192 x^-1.0018
R² = 0.9999

SGH Noh Pressure

L1 Pressure
Power 
Regression for L1 
Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.5665 x^-1.0026
R² = 1.0000

f(x) = 0.9938 x^-0.9962
R² = 1.0000

SGH Noh Density

L1 Rho
Power 
Regression for 
L1 Rho
L2 Rho
Power 
Regression for 
L2 Rho

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

f(x) = 0.0699 x^-1.0003
R² = 1.0000

f(x) = 0.1128 x^-0.9954
R² = 1.0000

SGH Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



Noh Cylindrical
CCH

61

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 2.1002 x^-1.0098
R² = 1.0000

f(x) = 5.7774 x^-1.0068
R² = 0.9999

CCH Noh Pressure

L1 Pressure
Power 
Regression for 
L1 Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.3299 x^-1.0037
R² = 1.0000

f(x) = 0.6561 x^-0.8970
R² = 0.9999

CCH Noh IE

L1 IE
Power 
Regression for L1 
IE
L2 IE
Power 
Regression for L2 
IE

Number of Cells

E
rr

or
 N

or
m



MPC

62

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 2.5974 x^-0.9940
R² = 0.9997

f(x) = 7.0382 x^-1.0169
R² = 0.9999

MPC Noh Pressure

L1 Pressure
Power 
Regression for 
L1 Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2416 x^-1.0084
R² = 0.9999

f(x) = 0.4887 x^-0.8800
R² = 0.9999

MPC Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



PCHA

63

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 3.1239 x^-0.9903
R² = 1.0000

f(x) = 5.8003 x^-0.9901
R² = 1.0000

PCH Noh Pressure

L1 Pressure
Power 
Regression for L1 
Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.2265 x^-0.9986
R² = 1.0000

f(x) = 0.5744 x^-0.8482
R² = 0.9995

PCH Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



SGH

64

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 6.4584 x^-0.9235
R² = 0.9977

f(x) = 16.9188 x^-0.9888
R² = 1.0000

SGH Noh Pressure

L1 Pressure
Power 
Regression for L1 
Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

f(x) = 0.7030 x^-0.9314
R² = 0.9980

f(x) = 1.4122 x^-0.7903
R² = 0.9975

SGH Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



Noh Spherical
CCH

65

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 9.3409 x^-1.0191
R² = 0.9999

f(x) = 31.4138 x^-0.9721
R² = 0.9990

CCH Noh Pressure

L1 Pressure
Power 
Regression for 
L1 Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 0.3596 x^-1.0023
R² = 1.0000

f(x) = 0.7734 x^-0.8611
R² = 0.9997

CCH Noh IE

L1 IE
Power 
Regression for L1 
IE
L2 IE
Power 
Regression for L2 
IE

Number of Cells

E
rr

or
 N

or
m



MPC

66

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

f(x) = 6.1347 x^-0.4547
R² = 0.9964

f(x) = 5.3956 x^0.0477
R² = 0.7451

MPC Noh Pressure

L1 Pressure
Power 
Regression for 
L1 Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 1.4213 x^-0.9886
R² = 0.9999

f(x) = 2.8903 x^-0.8986
R² = 0.9997

MPC Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



PCHA

67

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

f(x) = 5.9481 x^-0.4507
R² = 0.9963

f(x) = 5.2193 x^0.0516
R² = 0.7583

PCH Noh Pressure

L1 Pressure
Power 
Regression for L1 
Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

f(x) = 1.0447 x^-0.9904
R² = 1.0000

f(x) = 2.3708 x^-0.8696
R² = 0.9996

PCH Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



SGH

68

10 100 1000 10000 100000

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

f(x) = 32.2163 x^-0.9668
R² = 0.9995

f(x) = 99.1013 x^-1.0074
R² = 1.0000

SGH Noh Pressure

L1 Pressure
Power 
Regression for L1 
Pressure
L 2 Pressure
Power 
Regression for L 
2 Pressure

Number of Cells

E
rr

or
 N

or
m

10 100 1000 10000 100000

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

f(x) = 1.3969 x^-0.9812
R² = 0.9999

f(x) = 2.3595 x^-0.7842
R² = 0.9980

SGH Noh IE

L1 IE
Power 
Regression for 
L1 IE
L2 IE
Power 
Regression for 
L2 IE

Number of Cells

E
rr

or
 N

or
m



Input Files
Sod Problem
$general
mats=2
np=101
L=100  (Radius in Cylindrical and Spherical)
init-ie?=1 (1 to use prescribed internal energy, 0 to use prescribed pressure)
init_from_cell=0 (0: No, the point values will be initialized using the spacial variation 

from user input.)  
(1: Yes, the point values will be initialized using the average of the 

cell values.)
BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0
BCu1=0.0 (Boundary Velocity at start, used when fixed at left)
BCu2=0.0 (Boundary Velocity at end, used when fixed at right)
Method=CCH (CCH, SGH, PCH, or MPC [Modified PCH = Shifted CCH] )

(Options for PCH)
VelOpt=0 (0: Computes the density and total energy change with the averaged point 

velocities)
(1: Computes the density and total energy change with the Riemann velocities)

(Note: If VelOpt=1, the following options are inconsequential)
AvgOpt=0 (0: Uses the spacial average of the point velocities)

(1: Uses the time and spatially averaged velocities)
NodePosOpt=0 (0: Updates the Nodal Positions based on the nodal velocities)

(1: Updates the nodal positions based on the average of of the CV boundaries 
at the end of the time integration loop)

Coordinate_System=car  (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end     

$mat1
u=0.0 
p=1.0
rho=1.0
ie=2.5
x1=0
x2=50
gamma=1.4
$end

$mat2
u=0.0
p=1.0
rho=0.125
ie=2.0
x1=50
x2=100
gamma=1.4
$end

$IO
dt0=0.0000000000001
tstop=20.1
dtdump=20
CFL=0.03
CFLV=0.01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end
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Piston
(Note: Use parentheses to enclose comments)
$general
mats=1
np=51
L=1
init-ie?=0 (1 to use prescribed internal energy, 0 to use prescribed pressure)
init_from_cell=0  1: Yes, the point values will be initialized using the average of the 
cell values.

0: No, the point values will be initialized using the spacial variation 
from user input.
BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0
BCu1=1.0 (Boundary Velocity at start, used when fixed at left)
BCu2=0.0 (Boundary Velocity at end, used when fixed at right)
Method=CCH

(3 Options for PCH)
VelOpt=0 (0: Computes the density and total energy change with the averaged point 
velocities)

(1: Computes the density and total energy change with the Riemann velocities)

(Note: If VelOpt=1, the following options are inconsequential)
AvgOpt=0 (0: Uses the spacial average of the point velocities)

(1: Uses the time and spacially averaged velocities)
NodePosOpt=1 (0: Updates the Nodal Positions based on the nodal velocities)

(1: Updates the nodal positions based on the average of of the CV boundaries 
at the end of the time integration loop)

(2: computes new point_dx values based on 0.5*[point_u[i+1]-point_u[i-1]].
The point_x values are updated the same as in NodePosOpt=0.  
This should behave the same as NodePosOpt=0.)

Coordinate_System=car  (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat1
u=0.0
p=0.0
rho=1.0
ie=0
x1=0
x2=1
gamma=1.66666666667
$end

$IO
dt0=0.0000000001
tstop=0.61
dtdump=0.6
CFL=0.03
CFLV=0.01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end

Noh
(Note: Use parentheses to enclose comments)
$general
mats=1
np=51
L=1
init-ie?=0 (1 to use prescribed internal energy, 0 to use prescribed pressure)
init_from_cell=0  1: Yes, the point values will be initialized using the average of the 
cell values.
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0: No, the point values will be initialized using the spacial variation 
from user input.
BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0
BCu1=0.0 (Boundary Velocity at start, used when fixed at left)
BCu2=-1.0 (Boundary Velocity at end, used when fixed at right)
Method=CCH

(3 Options for PCH)
VelOpt=0 (0: Computes the density and total energy change with the averaged point 
velocities)

(1: Computes the density and total energy change with the Riemann velocities)

(Note: If VelOpt=1, the following options are inconsequential)
AvgOpt=0 (0: Uses the spacial average of the point velocities)

(1: Uses the time and spacially averaged velocities)
NodePosOpt=1 (0: Updates the Nodal Positions based on the nodal velocities)

(1: Updates the nodal positions based on the average of of the CV boundaries 
at the end of the time integration loop)

(2: computes new point_dx values based on 0.5*[point_u[i+1]-point_u[i-1]].
The point_x values are updated the same as in NodePosOpt=0.  
This should behave the same as NodePosOpt=0.)

Coordinate_System=car  (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat1
u=-1.0
p=0.0
rho=1.0
ie=0
x1=0
x2=1
gamma=1.66666666667
$end

$IO
dt0=0.0000000001
tstop=0.61
dtdump=0.6
CFL=0.03
CFLV=0.01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end

Sedov
(Note: Use parentheses to enclose comments)
$general
mats=2
np=61
L=1.2  (Radius in Cylindrical and Spherical)
init-ie?=1 (1 to use prescribed internal energy, 0 to use prescribed pressure)
init_from_cell=0 (0: No, the point values will be initialized using the spacial variation 
from user input.)  

(1: Yes, the point values will be initialized using the average of the 
cell values.)

BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0
BCu1=0.0 (Boundary Velocity at start, used when fixed at left)
BCu2=0.0 (Boundary Velocity at end, used when fixed at right)
Method=CCH (CCH, SGH, PCH, or MPC [Modified PCH = Shifted CCH] )

(3 Options for PCH)
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VelOpt=1 (0: Computes the density and total energy change with the averaged point 
velocities)

(1: Computes the density and total energy change with the Riemann velocities)

(Note: If VelOpt=1, the following options are inconsequential)
AvgOpt=0 (0: Uses the spacial average of the point velocities)

(1: Uses the time and spacially averaged velocities)
NodePosOpt=1 (0: Updates the Nodal Positions based on the nodal velocities)

(1: Updates the nodal positions based on the average of of the CV boundaries 
at the end of the time integration loop)

(2: computes new point_dx values based on 0.5*[point_u[i+1]-point_u[i-1]].
The point_x values are updated the same as in NodePosOpt=0.  
This should behave the same as NodePosOpt=0.)

Coordinate_System=car  (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end     

$mat1
u=0.0 
p=0.0
rho=1.0
ie=15  (Extensive IE=0.3 MBar cc  Volume=0.02 cc [that's 0.3/1])
x1=0
x2=0.02
gamma=1.66666666666667
$end

$mat2
u=0.0
p=0.0
rho=1.0
ie=0.0
x1=0.02
x2=1.2
gamma=1.66666666666667
$end

$IO
dt0=0.0000000000001
tstop=1.01
dtdump=1.0
CFL=0.2
CFLV=0.01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end

Selected Portions of Source Code
CCH Riemann Solver:

avg=(cell_u[i-1]+cell_u[i])/2.0;

c=sqrt(cell_gam[i-1]*cell_p[i-1]/cell_rho[i-1]); // c for cell on 
left

if (c<0.000000001 || c!=c) { c=0.000000001; } //If c<1e-9 or 
c=nan,set a minimum value for c

/* Calculate Compression-Aware mu on the left */
if ((cell_u[i]-cell_u[i-1])>0)
{

/* Expansion */
point_mu[0]=cell_rho[i-1]*c;
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}
else
{

/* Compression */
point_mu[0]=cell_rho[i-1]*c+cell_rho[i-1]*

((cell_gam[i-1]+1.0)/2.0)*fabs(avg-cell_u[i-1]); //mu on 
left

}

c=sqrt(cell_gam[i]*cell_p[i]/cell_rho[i]); // c for cell on right
if (c<0.000000001 || c!=c) { c=0.000000001; } //If c<1e-9 or c=nan,set a 

minimum value for c

/* Calculate Compression-Aware mu on the right */
if ((cell_u[i]-cell_u[i-1])>0)
{

/* Expansion */
point_mu[1]=cell_rho[i]*c;

}
else
{

/* Compression */
point_mu[1]=cell_rho[i]*c+cell_rho[i]*

((cell_gam[i]+1.0)/2.0)*fabs(avg-cell_u[i]); //mu on right
}

/* Compute u* at each point */
point_u[i]=(cell_p[i-1]*point_normal[0]+cell_p[i]*

point_normal[1]+point_mu[0]*cell_u[i-1]
+point_mu[1]*cell_u[i])/(point_mu[0]
+point_mu[1]);

/* Compute p* at each point */
point_p[i]=point_mu[1]*(point_u[i]-cell_u[i])-cell_p[i]*

point_normal[1];

/* Check to verify Riemann Pressures are equal and opposite */
point_pstar_check=point_mu[0]*(point_u[i]-cell_u[i-1])-cell_p[i-1]*

point_normal[0];
if (fabs(point_p[i]+point_pstar_check)>pstar_tol)
{ check++; }

Runge-Kutta Time Integration Solution Loop:

do
{

alpha=1.0/(nstage+1.0-istage);  // Establish the coefficient
CCHSolveRHS(mass,alpha,SphAvgOpt);
istage++;  // increase the RK cycle number

} while (istage<=nstage);

CCH Conservation Equations:

for (i=0;i<nz;i++)
{

if (PiOpt==1) Area=GetAreaCCH(i);
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else if (PiOpt==0) Area=GetAreaCCH_NoPi(i);

/* Calculate Forces on either side of the control volume */
Fstar[0]=-point_p[i]*point_normal[1]*Area; // Force on Left side of CV
Fstar[1]=-point_p[i+1]*point_normal[0]*Area; // Force on Right side of CV

v[i]=(1.0/mass[i])*(Fstar[0]+Fstar[1]);
e[i]=(1.0/mass[i])*(Fstar[0]*point_u[i]+Fstar[1]*point_u[i+1]);

}
/*  +++++++++++++++End Calculate RHS ++++++++++++++++++++++++++++++ */
/* +++++++++++++++Begin Time Step Forward ++++++++++++++++++++++++++ */

for (i=0;i<np;i++)
{

/* Calculate new point_x values */
point_x[i]=point_x0[i]+alpha*dt*point_u[i];

}
for (i=0;i<nz;i++)
{

/* Calculate new dx */
cell_dx[i]=point_x[i+1]-point_x[i];

/* Calculate new rho */
if (PiOpt==1) Volume=GetVolumeCCH(i);
else if (PiOpt==0) Volume=GetVolumeCCH_NoPi(i);
cell_rho[i]=mass[i]/Volume;

/* Calculate new u */
cell_u[i]=cell_u0[i]+alpha*dt*v[i];

/* Calculate new total energy */ 
cell_te[i]=cell_te0[i]+alpha*dt*e[i];

/* Calculate new internal energy */
cell_ie[i]=cell_te[i]-0.5*pow(cell_u[i],2.0);

/* Calculate new pressure using EOS-Gamma Law Gas */
cell_p[i]=cell_rho[i]*(cell_gam[i]-1.0)*cell_ie[i];

}
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