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Introduction

Arbitrary Lagrangian Eulerian (ALE) codes combine the Lagrangian and Eulerian techniques.
The Lagrangian approach is used to evolve the mesh, and the Eulerian approach is used to remap
physical quantities after the mesh has been relaxed. This project focuses on the development of a 1D
Lagrangian code as a testbed for ALE techniques; various hydrodynamic methods can be compared
within a single framework. Remapping and ALE have not yet been implemented, and the code remains
fully Lagrangian. The development and use of this code will aid in the understanding of the
mathematics behind these types of algorithms.

Code Details

The code requires user inputs stored in a text file that is called by the input function in the code.
Having a separate text file containing user inputs allows for the inputs to be changed easily and
eliminates the need to compile the code after a slight change in the inputs. The use of a separate text
file for inputs also requires the development of a parser. The parser used in this code was developed
with the help of Dr. Vincent Chiravalle. The parser reads in the input text file and separates each word,
variable, and value and then stores them in an array of strings. The input function then queries the
array and extracts user-defined values and assigns them to the simulation parameters. These simulation
parameters include mesh density, domain length, boundary conditions, thermodynamic quantities, and
output options.

Once the simulation parameters defined by the user are collected, the initialize function in the
code uses them to populate 1D arrays that will be used in the simulation. The code utilizes these arrays
to represent the spatial distributions of thermodynamic quantities. The arrays can represent multiple
materials. For the simulations of interest in this project, the property that differentiates materials is the
ratio of the specific heats, i.e. gamma. Each element in an array represents an individual control
volume containing a single material. Once ALE is implemented in the code, individual elements will
have to represent multiple materials because of remapping procedures. This will be done using
dynamic link lists.

The physics of the simulations are carried out in separate functions called “CCH”, “PCH”,
“MPC”, “SGH”. These functions contain the Runge-Kutta time integration steps which include the
majority of the calculations involving the conservation equations and the equation of state. At the end
of these functions, the maximum speed of sound in the computational domain is computed. This value
is fed back into the main function to compute the next time step. The main function serves to calculate
the next time step and print out current simulation information including the current time, time step,
and the minimum Ax across the domain.

At user-specified time intervals, the output function records the spatial distributions of
thermodynamic quantities in data files. The data files are named using the name of the input file with
the time information appended to it. Output files are generated for both point and cell arrays. These
data files can then be plotted using third party plotting software such as GNUplot.



Source Code Files

The source code files are presented and described in Table 1.

Table 1. Source code file names and descriptions.

Source code

. Description
file name P
program.c Contains the main function as well as optimization functions used for the computations.
The main function calls the subsequent functions and organizes their respective inputs
and outputs. The main function also calculates the next time steps to input into the
hydro packages.
header.h Spacial arrays and other simulation parameters are declared in this file in order to be

used globally. This file is included in each of the source code files.

setDefaults.c

Contains the function that establishes simulation parameters to be used if the user does
not include them in the input file. It provides additional robustness to minimize user
frustration.

input.c

Contains the function that parses the user input file and saves to variables for further
use. If inputs are omitted, the default values are used.

initialize.c

Contains the function allocates memory and defines arrays and variables included in
header.h, based on values from the user input file.

CCH.c

Contains the cell-centered hydrodynamics function. This funtion calls a separate
function that performs a Riemann solution and steps the simulation parameters forward
in time. Separate volume and area have also been included. See CCH Description.

PCH.c

Contains the point-centered hydrodynamics function. This function is used for the
PCH and PCHA methods. It includes various functions for the Riemann solution and
the time integration. It also contains a functions that compute a volumes and areas.
See PCH Description and PCH Method Comparison.

SGH.c

Contains the staggered-grid hydrodynamics code. There is also a separate function that
performs a Riemann solution and steps the simulation parameters forward in time.
Volumes and areas are also computed in separate functions. See SGH Description.

MPC.c

Contains the modified point-centered hydrodynamics code. This function also calls a
separate function that performs a Riemann solution. Volumes and areas are also
computed in separate functions.

output.c

Contains a function that generates output files at specific time intervals defined by the
user. This time interval is referred to as dtdump. Values for relevant properties such as
density, pressure, etc. are output at each point or cell location, depending on the hydro
method selected by the user.




Each source code file includes the header.h file. When the source code is compiled using the makefile,
an executable file named code is created. The executable file is run with an input file using the
following syntax:

./ code Exanpl el nput.inp

The flowchart in Figure 1 details the overall procedure of the 1D hydrocode.
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Figure 1. Flowchart of code structure.

Input

The user provides inputs to the hydrocode using a separate text file. If the user omits any
inputs, default values will be used in their place. A list of the available user inputs along with the
default values is shown in Table 2.



Table 2. User inputs and default values.

Input Default Comments
Value

General Inputs

mats 2 Number of Materials

np 20 Number of points used in the simulation

L 10 Length of domain (this is also the radius in curvilinear coordinates)

init-ie? 0 Initializes the simulation using specified internal energy (1) or pressure (0)

init_from_cell 0 Initializes point values based on the user inputs (0) or on cell values (1). Use (1)
to smooth the shock front.

BC1 0 Fixed (0), Free (1)

BC2 0 Fixed (0), Free (1)

BCul 0 Fixed wall velocity

BCu2 0 Fixed wall velocity

Method CCH

VelOpt 0 Computes density and total energy change from averaged point velocities (0) or
from Riemann velocities (1)

AvgOpt 0 Averages the nodal velocities in space (0) or in space and time (1)

NodePosOpt 0 Updates the nodal positions based on the nodal velocities (0) or the averaged
control volume boundary positions (1)

Coordinate_System car Planar (car), Cylindrical (cyl), Spherical (sph)

Material Inputs

u 0 Initial velocity of each material

p 1.0 and 0.1 Initial pressures of material 1 and material 2, respectively

tho 1.0 and 0.1 Initial densities of material 1 and material 2, respectively

ie 1.0 and 0.1 Initial specific internal energies of material 1 and material 2, respectively

x1 0.0 and 5.0 Start locations of material 1 and material 2, respectively

x2 5.0 and 10.0 | End locations of material 1 and material 2, respectively

gamma 14 Gamma of each material

I/0 Parameters

dt0 1e-9 Initial time step

tstop 30.0 Stop time

dtdump 5.0 Time interval to write output files

CFL 0.5 CFL parameter for time step control

CFLV 0.01 CFLV parameter for time step control

It is important to note that the materials must be entered in the order they appear in the domain from
left to right. The 1D hydrocode assumes a consistent set of units. A typical system of units used for
these problems is cm (length), ps (time), megabar (pressure), cc (volume), g (mass), megabar cc/g

(specific energy).




CCH Description

Cartesian Coordinates

In CCH, all parameter values are stored at the cell's center. A Riemann-like solution is used to
determine the velocity and pressure at the interface between cells, called points or nodes. See Figure 2.

Control Volume \

|

O O # < O
| |

|

@ - Interface (point) € - Cell or Zone Center

Figure 2. CCH mesh.

For 1D, the CCH method uses the following governing equations. The continuous equations are on the
right, and the discretized approximations are shown on the right.

Continuous 1D Discrete
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where M is the mass, V is the volume, u is the velocity, P is the pressure, j is the specific total energy,
and n is the surface normal vector that points in either the positive or negative direction in 1D. The
superscript * indicates the Riemann solution which is discussed in a later section. The subscript z
indicates a zone or cell centered quantity. The superscript n+1/2 indicates the time integration scheme.



The time integration scheme is discussed in more detail in a later section. In 1D, the change in the x-
location of the points is used to compute the change in volume. The change in the x-location of a point
is determined by

At

._\k:f'-l.. _ “'M:“-'_ I—:'}

The density is updated using the volume change. The internal energy is determined using the equation

where e, is the specific internal energy in the zone. Using the updated density and the internal energy,
the pressure is updated using the equation of state for a gamma-law gas. A constant gamma is assumed.
P is given by

z — f’:[.:r' — ]-:It"_

Cylindrical Coordinates

For cylindrical coordinates in 1D, the same governing equations are used as in Cartesian
coordinates. The difference is in the volume and area calculations. The volume is computed as the
volume per radian and is given by

A .
V. ==

S\ 1 — )
where dz, the depth of the cylinder, is understood to be of unit length. The area that is used to compute
the forces on the individual control volumes is computed in order to preserve consistency with the

divergence relationship. The divergence relationship is
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Simplifying again yields
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Therefore, using the average radius at a control volume to determine the area will be consistent with the
divergence relationship. The area per radian used to determine the forces acting on the cell is given by

Iy
-':-1 = ;l.-r-.lu-l—l + 'r-_llljl

where dz is understood to be of unit length.

Spherical Coordinates

For spherical coordinates in 1D, the same governing equations are used as in Cartesian
coordinates. However, the volume and area calculations are different. The volume is computed as the
volume per steradian and is given by

L 4

;o - 3
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The area used to compute the forces acting on the individual control volumes is computed in order to
preserve consistency with the divergence relationship presented in the previous section. Similar to the
derivation in the previous section, it can be shown that

1 4l 1 [ o n ]
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Simplifying yields
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From this derivation, the area per steradian is given by
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Boundary Conditions

Two different types of boundary conditions are available in the code. The first is a fixed or
reflective boundary, the second is a free boundary condition. The details of the mathematics used to
simulate these conditions are presented below

CCH: Fixed (Reflective) Boundary Condition

For a fixed boundary, the velocity at the boundary is set to a specific value set by the user.
Figure 3 illustrates mesh at the boundary.

End of Domain
(Boundary) \
P.

® 4 @

U, U.
i‘ip ¢ z

P*

P

Figure 3. CCH boundary mesh.
The fixed velocity at the boundary is u”,. The pressure at the boundary is determined by the equation

P; =P — Iu.(u;‘l — 11, n

where n is the normal vector pointing in the positive or negative direction. p at the boundary cell can
be approximated by

IH. = Ir'.:'f!

where the density and the speed of sound are evaluated at the boundary cell. Also, for a first order
approximation,

u, = u.., P, = F.

Once the pressure and velocity at the boundary are known, the governing equations for the boundary
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cell can be implemented normally.

CCH: Free Boundary Condition

For a free boundary condition, the pressure at the boundary must be maintained at zero. The
velocity at the boundary must be determined. By manipulating the equation for P* in the previous
section, the following equation is obtained.

., Pmn
u, = — + i,
H

Where the approximations used for p and the projected velocity and pressure are the same as for the
fixed boundary condition.

SGH Description

In the SGH approach, the pressure, internal energy, and density are stored at the cell center. The
velocity is stored at the points. The momentum and energy equations are solved on two separate
control volumes. See Figure 4.

Momentum CV \ Energy CV \

Figure 4. SGH mesh.
The momentum control volume is designated MCYV, and the energy control volume is designated ECV.

The discrete Lagrangian governing equations for SGH are shown below on the right and the continuous
equations are shown on the left.
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Continuous 1D Discrete
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where M, is the mass of the MCV centered at a point, and M, is the mass of the ECV at a cell. e, is the
specific internal energy. The volume and density of the cell are updated based on the change in the
locations of the points. The location of the points is updated using a time averaged velocity as in the
equation.

Ar, 1
Ly — _[”u + n'.!'“+l:| = r.[”+1_"
At 2" F ¥

A pressure is computed using the equation of state for a gamma-law gas where a constant gamma is
assumed.

P'. = ."*'-_l"ff' _ ]-:“"_

A Riemann-like problem is solved at the center of the each cell. In 1D, the velocities are projected
from the points to the cell centers. The pressure stored at the cell center is the pressure used to
determine u* and P*.

Curvilinear Coordinates

The equations implemented for curvilinear coordinates in SGH are derived similarly to those
used for CCH. However, the area used in the momentum equation is evaluated at the center of the
momentum control volume. This same area is then used in the energy equation. A predictor-corrector
scheme was implemented in SGH. This procedure is explained in [1]. First, the nodal positions are
estimated at the next time step using a time averaged velocity. The velocity is then updated using the
areas computed from the predicted nodal positions. New nodal positions are then computed using the
updated velocity and these values are compared to the predictions. The process is repeated until the
difference in the predicted and computed nodal positions is negligible.

Boundary Conditions

SGH: Fixed (Reflective) Boundary Condition

The SGH approach utilizes a momentum control volume centered on the points and an energy
control volume centered on the cells. To simulate a fixed boundary condition, the change in the
velocity with respect to time for the boundary node is set to zero. To illustrate this concept, a
customized momentum control volume is established for the boundary node as shown in Figure 5.

12



Momentum CV Energy CV

Momentum CV at
the boundary

Figure 5. SGH boundary mesh.

For the momentum control volume at the boundary, the pressure on the right side must be equal to the
pressure on the left side. Therefore, the change in velocity with respect to time for the boundary node
must be zero to satisfy the governing equation

A, |
S n P A =0
ﬂﬂl. J:'l"_f"'[-f o ; -

SGH: Free Boundary Condition

The free boundary condition for SGH is simulated by using the momentum control volume at
the boundary and setting the pressure at the boundary node equal to zero. The rate of change of the
velocity at the boundary node is then given by

Ay, | |
= — Al(P" P'n).]=—
A Moo (P'n); + (P'n).] Mow

A(P'n).

PCH Description

Using a point centered approach (PCH), pressure, energy, density, and velocity are stored at the
points and each control volume is centered on a point. The Riemann-like solution is used to compute a
P* and u* at the interfaces between the control volumes as shown in Figure 6.

13
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Figure 6. PCH mesh.

In 1D, the governing conservation equations reduce to following discretized forms:

AM,
At

Ay = u”+i’
At !
ANTHE
At M,

=10

Aj, 1
At M,

where M, is the point centered mass and

F* = (—nA PY)"tE

1 1
g o
ty AL, g

l:.

=

|!'[rru_r,.' -

The internal energy is computed by subtracting the kinetic energy from the total energy, and the
pressure is computed using the equation of state for a gamma-law gas assuming a constant gamma. For
PCH, three different methods were used to update the density of each control volume. The governing

equations presented in this section represent the first method used. Details regarding the other methods
are presented in a later section.
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Curvilinear Coordinates

The equations used to compute volumes and areas in PCH are similar to those used in CCH.
The differences are that the volume is computed for the point centered control volumes rather than the
cell centered control volumes, and that the areas are computed at the nodes rather than at the cell
centers.

Boundary Conditions

At the boundaries, a control volume is not centered on a point, as it cannot extent past the
domain, as seen below. The governing equations are then applied to a control volume that is typically
half the size of an ordinary control volume in the domain. Figure 7 illustrates the PCH mesh at the
boundary.

End of Domain
————— r— — — = = =1

(Boundary)
~ J |
e ¢ ®

e N

wall z p
(edge)

Figure 7. PCH boundary mesh.

PCH: Fixed BC

The fixed boundary is subject to the following conditions:

ﬂk:i"
vy = |!'[H'I'rllll
ﬂk# H'ITIIII
Au 0
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Ay 1 1
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where M, is the mass of the control volume at the boundary and

o Uyl + “,'I
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L2

——F"__

wall

The wall velocity, uya, is fixed. The magnitude of the forces on either side of the boundary control
volume are assumed to be equal as the gradient of the pressure is set to zero for this condition.

PCH: Free BC

For a free boundary condition, the edge velocity is not fixed. The free boundary is subject to the
following conditions:

Ar
._‘I"k?l = u rrf.r;r
eilipe
A 1 1
— = — = —F"
At T M, 2 M,
ealipe T
Alte) 1 |
- - - FhI:_F.}‘Ir”u
At ‘ LM, Z Y
il OV
where
”rrf_r;r + “l_lll
., = —
i) o

The three different point centered methods discussed in this report vary slightly in the implementation
of boundary conditions. For example, uq, in the energy equation above is replaced by the zone-
centered Riemann velocity, u*.

Solver Details

Riemann Solution

As presented in [2], a linear relationship between the shock velocity and the material velocity
(the U-u curve) can be a good approximation for many materials. This simplifies the Riemann
solution. As pointed out in [3], the Riemann-like solution can be used to determine a viscous force
acting on the material experiencing a shock. The Riemann-like solution solves the shock problem
across the interface between two cells. This solution simulates the dissipation effects that characterize
a shock. In 1D, the Riemann-like solution yields a velocity and pressure at the cell interface that are
given by

16
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Where P, and u. are the projected values, and p is the shock impedance. The + and — superscripts
denote the positions of the quantities relative to the interface of interest. For simplicity, a first order
projection is used for the velocity and pressure. In CCH, these values are projected from the zone
center to the points. In SGH, the velocities are projected from the points to the zone center. The shock
impedance is determined based on the linear approximation of U-u curve. For a gamma law gas, the
slope of of the shock impedance relation can be approximated by [ 2= [4]. Therefore, the shock

o

impedance is computed by

v+ 1 uh 4
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where c is the acoustic wave speed. For a gamma-law gas, the acoustic wave speed is approximated by

Time Integration

The code uses a fourth order, explicit Runge-Kutta time integration scheme. The Taylor series
expansion of any function is

et _ g +:~.;&£+ AP SEF AP P F A8
Ry 21 42 3l ap? 41 4t

If the higher order terms are neglected, the above equation can be represented by

i) At b At & Atdf
n+l . rn . 1 —_ i _ i 4
! ~ T +ltr‘i?‘. (f - 2 ot (f - 3 ot (f - 4 r‘ii)))

The code uses the quantities at “n” to compute a slope and step the quantities forward to “n+1/4”. The
code then uses the quantities at “n+1/4” to compute a new slope and step the quantities forward from
”n” to “n+1/3”. This process is repeated until the quantities are stepped forward from “n” to “n+1”. At

17



each of these stages, a Riemann-like problem is solved at the control volume interfaces, and all the
simulation parameters are stepped forward in time.

Time Step Control

Two methods are used in order to control the time step during the simulation. The first method
is the Courant Stability Condition. The Courant stability condition requires that

WAL g

A

where u is the maximum speed of the fluid in the domain. The CFL parameter is chosen by the user.
For explicit schemes, CFL must be less than or equal to 1. The maximum speed of sound, cna, can be
used in the place of the maximum speed of the fluid in the domain. cpx is used with the minimum Ax
of a cell in the domain to calculate a new time step. The code calculates a new time step before each
iteration by applying the formula

['—\;"'Il.lrml

i

(At), . =CFL

The user can set an initial time step in the input file. The code allows the time step to grow by a
maximum of 10% at each step.

The second method restricts the volume change of a cell in a single time step. The requirement
is expressed by

1__.'.l|-|—1 _ 1__.'“

CFLV =

1_.-'.'|

where Vis the volume, and CFLV is a parameter set by the user. By restricting the volume change,
other parameters, such as the density and pressure, are allowed to develop in the cell before the cell
collapses and yields unphysical results. This adds stability to the computations. The fundamental
formula is the divergence relationship.

1 1 AV
Vo= L»*1—1;111:u Voot

In 1D, the finite difference form of this equation can be expressed as

AV Vv Ay

— 1__.'.'|
At At FAV

By rearranging and substituting, the following formula gives a suitable time step.
CFLV
Ao | M

( E| J.’”I’f.l'
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The hydrocode uses a CFLV parameter set by the user and finds the maximum velocity gradient in the
domain. A new time step is then calculated using these values.

The time step used in the next calculation is the minimum of the time steps computed using
these two methods.

PCH Method Comparison

The PCH method that was implemented in the code had difficulties on test problems with strong
shocks, such as the Sod problem. As a results, a variety of PCH methods were explored. The first
method is the canonical PCH method (PCH). In 1D, it was found that this method allowed the collapse
of zones at shock discontinuities. The collapse of a cell causes the time step to approach zero and
prevents the simulation from reaching the required time. It was found that by “smoothing” the shock
interface initially eliminates the cell collapse issues. The smoothing was accomplished by averaging
the thermodynamic quantities at the discontinuity. A second method seeks to solve the issue by
updating the volume of each control volume using the averaged velocities at the control volume
boundaries. This method is denoted by PCHA. This method allows the simulation to complete but
does not update the nodal positions directly from the nodal velocities. Rather, the method updates the
control volume boundaries and moves the nodal positions based on the new control volume boundaries.
A third method uses the Riemann velocities at the control volume boundaries to calculate the density
and total energy change. This method is denoted by MPC. This method is effectively identical to the
CCH method, only shifted by half of a cell. The equations for each method are presented below.

PCH PCHA MPC
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At At At
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where the area used to compute the volume is understood to be equal to 1 in planar coordinates. Uy, is
the average of the neighboring nodal velocities. The procedures used to compute the volume change in
PCH and PCHA are algebraically equivalent. The difference is that, in PCHA, the control volume
boundary locations are updated using the averaged nodal velocities. These values are then used to
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update the nodal positions after the time integration is complete. In PCH, the nodal positions are
updated throughout the time integration using the nodal velocities.

Smoothing

In the Sod problem, the PCH method moves the individual points too quickly and causes the
cell ahead of the shock discontinuity to collapse. This causes the time step to approach zero because
the maximum allowable time step is based on the distance between individual points. One strategy to
prevent this from happening is to smooth the shock discontinuity. This technique smooths out the
shock interface by placing a point directly between the high and low density regions of Sod problem
and assigns to the point the average of the two densities. The same technique is applied to the initial
pressure and energy distributions. Figure 8 illustrates this technique.
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Figure 8. PCH: Smoothing technique concept.

This technique allows the simulation to run past 20 ps. The simulation results at 20 ps are compared to
the analytical solution in Figure 9.
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Figure 9. PCH Results for the Sod problem at 20 ps with smoothing applied.

The smoothing technique allows the simulation to run up to 41.72 ps. The results for pressure at this

time are shown in Figure 10.
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Figure 10. Maximum extent of PCH simulation with smoothing applied
for the Sod problem.

At 41.72 ps, the shock has been reflected off of the boundary at 100 cm and has begun to move to the
left. A new shock interface has formed, observed in the figure above at approximately 90 cm. This
new interface has not been smoothed since no algorithm to automatically smooth shocks has been
implemented. Therefore, the points move too close together and the time step approaches zero which
stops the simulation.

Space and Time Averaged

For the PCHA method, the control volume boundaries are moved using the averaged nodal
velocities. Two different approaches were investigated for this method. The first approach averages
the nodal velocities in space, and the second approach averages the nodal velocity in space and time.
For the second approach the governing equations for the control volume boundaries, volume, and total
energy become
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The different averaging approaches have little to no effect on the results. The results from a simulation
using 100 zones and both averaging methods are compared to the analytical solution for the Sod
problem at 20 ps in Figure 11.
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Figure 11. Comparison of results for the Sod problem. The PCHA simulation was run using the time averaged
velocities as well as the time and spacial averaged velocities.

The approach used to calculate the average velocity, whether a space or a both space and time averaged
velocity, does not change the results of the 1D simulation significantly. Even as the mesh is refined,
there is no noticeable difference in the plotted results. For both approaches with 100 zones, a
numerical ringing is produced at the contact discontinuity, located between 50 and 75 cm in Figure 11.
The PCHA method used in the remainder of this report utilizes spatially averaged velocities. The effect
of mesh refinement on the ringing is shown in Figure 12.
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Figure 12. Effect of mesh refinement on the numerical ringing observed in the PCHA method.
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PCH Comparison to PCHA

The PCH method experiences cell collapse for the Sod and Sedov test problems. However, for
the Piston and Noh test problems, the PCH and PCHA methods produce similar results. These results
are shown in Figure 13.
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Figure 13. Comparison of the PCH and PCHA methods on the Noh and Piston test problems.

The two methods, PCH and PCHA, yield essentially identical results in the case of the the Noh and
Piston test problems.
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MPC Comparison to CCH

The MPC method uses an approach very similar to CCH. The results from these two different
methods are compared in Figure 14. Both the Sod and the Piston problems were used to compare the

two methods.
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Figure 14. Comparison of the CCH and MPC methods.

The MPC and CCH methods give similar results. The most notable difference is at the fixed boundary
for the Piston problem. The differing boundary conditions in MPC and CCH cause considerable

differences in the density at this boundary.
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Convergence Analysis

The code results from the four methods for the Sod, Piston, and Noh test problems were
analyzed at various mesh resolutions to ensure that the calculated results converged to the analytical
solutions. Since only first-order methods were used in the 1D hydrocode, near first order convergence
is to be expected. For the Piston and Noh test problems, the analytical solutions for pressure, density,
and internal energy are piecewise constant functions. For the Sod test problem, portions of the
analytical solution are not piecewise constant or linear. For comparison to the hydrocode results, these
portions of the analytical solution were resolved using a fixed mesh analytic code [6]. The analytical
code produces data points that represent the analytical solution. The results of the hydrocode at various
resolutions were mapped to the fixed mesh from the analytical code for comparison. The procedure for
this mapping algorithm is as follows.

Since the exact code uses a fixed mesh, the position of any point is given by

Top = 1% N

where X, is x-position for the analytical data points, i is the index (0, 1, 2, 3,...) and h is the constant
mesh spacing. The appropriate position for a point mapped from the hydrocode mesh, is then

Leale

h

P =

Since the C language always rounds down in float to integer conversion (i.e. 2.24 and 2.99 both round
to 2), this equation always ensures that i is the index of the fixed mesh point just below the calculated
value, and i+1 is the index of the analytical data point just above the calculated value. The expected
analytical value and the error are then determined from linear interpolation of the analytical data points.
A sample of this algorithm for pressure is as follows.

‘Px ract(i+1) R aact{i]

m =
€Ly ract{i+1) — €Ly ract{i]

R'ijr rp — R..l-m'r{j] —|_ AT * T

where
Ar = Loale — o waet(i)

AP = |*PJ'JJ?‘r rp R'm’rl

Figure 15 illustrates this procedure. This same method can be used for analytical solutions without a
functional representation, such as the horizontal segments with discontinuities, but this results in a
slope of infinite magnitude, making linear interpolation unnecessary.
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AX

Figure 15. The calculation of error from analytical data points.

Convergence is measured by comparing the volume-weighted combination of all AP over the
domain with the mesh resolution. Two combinations are common, the L' and L? norms. The volume
weighted L' norm is given as:

L) = ZiYix AP
=V

where V; is the volume of the Lagrangian element at index i. The volume weighted L* norm is

Z 'L *L\P)

.I

L))" =

To measure convergence, the rate of decrease in the error with respect to the increase in mesh density is
measured. The error is quantified using the L' and L° norms. The rate decrease of the error should be
comparable to the order of the approximations used in the hydrocode. That is, a second order scheme
should show a quadratic decrease in error with increasing mesh density. The first order scheme that has
been implemented in the 1D hydrocode should show a first order decrease in error with increasing
mesh density. Each method is expected to converge according to the following general equation.

e = An*

where ¢ is the error, A is the convergence coefficient, n is the number of cells, and k is the convergence
rate. A power law fit was used to determine the values of A and k that correspond to each method for
each test problem given a variety of mesh densities. These results are presented with the corresponding
test problem results in the following section.
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Test Problems

Sod Problem

The SOD problem simulates the interactions of two materials, one in the first half of the
domain, and the other in the second half of the domain. The first material has an initial density of 1
g/cc and internal energy of 2.5 megabar cc/g. The second material has an initial density of 0.125 g/cc
and internal energy of 2.25 megabar cc/g. The boundary conditions on both sides of the domain are
fixed and the domain is 100 cm in length. The gamma of both materials is set to 1.4. Both materials
have an initial velocity of zero and the imaginary barrier between them is removed at t=0. 100 zones
were used across the domain to simulate the problem. The results at 20 ps for the four different hydro
methods are compared to the analytical solution in Figure 16. SGH and CCH are shown on the left,
and MPC and PCHA are shown on the right. The SGH results are slightly more accurate compared the
CCH results. The SGH method follows the density discontinuity more accurately than the CCH
method at approximately 70 cm. The PCHA method shows numerical ringing about the density
discontinuity, while MPC tracks the analytical solution without numerical ringing.

The analytical solution is known [5] and a computer code was used to calculate analytical data
points [6]. Convergence studies were carried out for each method. Table 3 shows the results of these
convergence studies.

Table 3. Convergence data for the Sod test problem.

Method Parameter L! L' L? L'
Convergence | Convergence | Convergence | Convergence
Rate Coefficient Rate Coefficient

CCH Pressure -0.756 0.7821 -1.1207 0.8325
Density -0.715 0.5559 -1.0763 0.5727
Specific Internal Energy |-0.7652 1.8149 1.3086 -1.0401

MPC Pressure -0.7589 0.7968 -1.1206 0.8285
Density -0.7223 0.5937 -1.0704 0.5581
Specific Internal Energy |-0.7829 2.1553 -1.0441 1.5312

PCHA  |Pressure -0.844 1.1623 -1.1174 0.7582
Density -0.8112 0.8217 -1.0903 0.5526
Specific Internal Energy |-0.8755 3.17 -1.0642 1.7875

SGH Pressure -0.7926 0.6336 -1.1439 0.6956
Density -0.7672 0.5212 -1.1025 0.5006
Specific Internal Energy |-0.8122 1.6637 -1.0348 1.0958
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Figure 16. Comparison of the results from four methods for the Sod test problem.
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Piston Problem

The piston problem consists of one material across the domain. The initial velocity, initial
pressure, and initial internal energy of the material is zero. The initial density of the material is 1 g/cc.
The boundary condition on the right is fixed with zero velocity. The boundary condition on the left is
fixed with a velocity of 1 cm/ps. The domain is 1 cm in length and 50 zones were used to simulate the
problem. The gamma of the material was set to 5/3. The results after 0.6 ps for the four hydro
methods are shown in Figure 17. SGH and CCH are shown on the left, and MPC and PCH are shown
in the right. The analytical solution to this problem is known. Table 4 shows the results of the
convergence studies for this test problem.

Table 4. Convergence data for the Piston test problem.

Method Parameter L' L' L? L?
Convergence | Convergence Convergence | Convergence
Rate Coefficient Rate Coefficient
CCH Pressure -1.0145 0.4056 -1.0065 0.2534
Density -1.0015 1.8994 -1.0065 0.8630
Specific Internal Energy |-1.0011 0.2905 -1.0085 0.1621
MPC Pressure -1.0120 0.4494 -1.0051 0.2966
Density -0.9995 1.6330 -1.0058 0.7468
Specific Internal Energy |-0.9978 0.2024 -1.0054 0.1040
PCH Pressure -1.0101 0.5734 -1.0109 0.3007
Density -1.0021 1.5545 -1.0101 0.6628
Specific Internal Energy |-0.9935 0.1702 -0.9999 0.0876
SGH Pressure -1.0018 0.3192 -1.0003 0.2827
Density -0.9962 0.9938 -1.0026 0.5665
Specific Internal Energy |-0.9978 0.1068 -0.9934 0.0655
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Figure 17. Comparison of results from four methods for the Piston test problem.
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Noh

The Noh problem involves a single material moving at -1 cm/ps and colliding with a fixed
boundary at the origin. The domain for this simulation was set to 1 cm and 50 zones were used to
simulate the problem. The boundary at the origin is fixed and the boundary at the end is moving at -1
cm/ps with the fluid. The results are for a 1D simulation in planar, cylindrical, and spherical
coordinates with gamma equal to 5/3. The analytical solution is known [7].

Planar Coordinates

The results for planar coordinates are shown in Figure 18. Convergence data is recorded in

Table 5.

Table 5. Convergence data for the Noh test problem in planar coordinates.

Method Parameter L' L' L? L?
Convergence | Convergence | Convergence | Convergence
Rate Coefficient Rate Coefficient
CCH Pressure -1.0145 0.4056 -1.0065 0.2534
Density -1.0015 1.8994 -1.0065 0.8630
Specific Internal Energy |-1.0011 0.2905 -1.0085 0.1621
MPC Pressure -1.0096 0.4392 -1.0065 0.2947
Density -0.9983 1.6114 -1.0054 0.7394
Specific Internal Energy |-0.9980 0.2027 -1.0061 0.1047
PCH Pressure -1.0028 0.5569 -1.0049 0.2941
Density -0.9975 1.5221 -1.0040 0.6450
Specific Internal Energy |-0.9938 0.1707 -0.9988 0.0863
SGH Pressure -1.0018 0.3192 -1.0003 0.2827
Density -0.9962 0.9938 -1.0026 0.5665
Specific Internal Energy |-0.9954 0.1128 -1.0003 0.0699

Cylindrical Coordinates

The results for cylindrical coordinates are shown in Figure 19. The results of the convergence
studies for the Noh problem in cylindrical coordinates are shown in Table 6.
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Table 6. Convergence data for the Noh test problem in cylindrical coordinates.

Method Parameter L! L' L? L?
Convergence | Convergence | Convergence | Convergence
Rate Coefficient Rate Coefficient
CCH Pressure -1.0068 5.7774 -1.0098 2.1002
Specific Internal Energy |-0.8970 0.6561 -1.0037 0.3299
MPC Pressure -1.0169 7.0382 -0.9940 2.5974
Specific Internal Energy |-0.88 0.4887 -1.0084 0.2416
PCHA Pressure -0.9901 5.8003 -0.9903 3.1239
Specific Internal Energy |-0.8482 0.5744 -0.9986 0.2265
SGH Pressure -0.9888 16.9188 -0.9235 6.4584
Specific Internal Energy |-0.7903 1.4122 -0.9314 0.7030

Spherical Coordinates

The results for spherical coordinates are shown in Figure 20. The results of the convergence
studies are shown in Table 7.

Table 7. Convergence data for the Noh test problem in spherical coordinates.

Method Parameter L! L' L? L?
Convergence | Convergence | Convergence @ Convergence
Rate Coefficient Rate Coefficient

CCH Pressure -0.9721 31.4138 -1.0191 9.3409
Specific Internal Energy |-0.8611 0.7734 -1.0023 0.3596
MPC Pressure 0.0477 5.3956 -0.4547 6.1347
Specific Internal Energy |-0.8986 2.8903 -0.9886 1.4213
PCHA Pressure 0.0516 5.2193 -0.4507 5.9481
Specific Internal Energy |-0.8696 2.3708 -0.9904 1.0447

SGH Pressure -1.0074 99.1013 -0.9668 32.2163
Specific Internal Energy |-0.7842 2.3395 -0.9812 1.3969

It is interesting to note that for spherical coordinates, the convergence rate for the point centered
methods (MPC and PCHA) are positive for pressure in the L' norm. This is a reason to further
investigate curvilinear coordinates for all the hydro methods presented. The results for a mesh
resolution of 10,000 zones is shown in Figure 21. It is clear that the MPC and PCHA methods
converge to a value for pressure near the wall that is less than the analytical value.
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Figure 18. Comparison of results from four methods for the Noh test problem in planar coordinates.
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Figure 19. Comparison of results from four methods for the Noh test problem in cylindrical coordinates.
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Figure 20. Comparison of results from four methods for the Noh test problem in spherical coordinates.

38



Hoh FProblen
Spherical Coordinates
Zooned in at wall

T T T
8a - —
78 —
5 6@ -
(X}
ey
="'}
b
o 56 —
-
2]
=
o
S 49 [+ —
1l
30 —
1]
28 |- —
| | | |
] 8,882 8.884 a,0886 0.088
Position {cn}
1.8
1.6 |-
o ledgr
e,
[}
[ 1]
g 1.2 |-
=]
[1-]
o
4]
T 15
wl
=]
S oe.s
e
-a' ]
@
& 8,6
0.4 1
8.2 '
] 0,002

8,81

Pressure {HegaBar}

Hoh Froblen
Spherical Coordinates
Zooned in at wall

21.5 | | |

21,45
21.4

71,35 | i

21,3

21,25

21.2

21,15

21.1
8,884 A, 8486 8,888

Position {cm)

[ [
HPC-Hoh-18,008z ——
PCHA=-Hoh-18 8688z —5—

Analytical ]

8.884

8,886 8.8688 8,81

Fosition {cm}

Figure 21. MPC and PCHA results for the Sedov test problem, zoomed at the wall.

8,81

The PCHA method produces numerical oscillations at the wall. Both the MPC and PCHA methods
converge to a lower pressure near the wall than the analytical solution demands.
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Sedov

The Sedov problem involves a blast propagating from the origin. The simulation is initialized
with a specified amount of internal energy deposited in the cell at the origin. Once the simulation is
started, a shock wave moves away from the origin. The domain for this simulation was set to 1.2 cm
and 60 zones were used to simulate the problem. The gamma of the gas was set to 5/3 across the
domain. The density is initially set to 1 g/cc across the domain, and the pressure and internal energy
are set initially to zero everywhere except at the origin. The analytical solution is known [8] and the
analytical data points for each simulation were computed using an analytical code [9]. The simulation
was run in planar coordinates. In cylindrical and spherical coordinates, the simulation produced
inconsistent results. Therefore, these results are not shown. Further investigation into the methods
used in the 1D hydrocode for cylindrical and spherical coordinates is recommended.

Planar Coordinates

For planar coordinates, the amount of extensive internal energy deposited in the cell at the
origin was 0.3 megabar cc. With this amount of energy, the exact form of the shock is located at
approximately 1 cm after 1ps. The extensive internal energy was divided by the mass of the cell at the
origin and applied to the cell at the origin as specific internal energy. The volume of the cell at the
origin is initially 0.02 cc, therefore, the amount of specific internal energy deposited in the cell at the
origin is 15 megabar cc/g. The results for planar coordinates are shown in Figure 22. SGH and CCH
are shown on the left, and MPC and PCHA are shown together on the right. The PCH method
experiences cell collapse in the Sedov test problem and the simulation stalls. Therefore no results were
obtained from the PCH method for the Sedov test problem.
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Figure 22. Comparison of results from four methods for the Sedov test problem in planar coordinates.
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The results for the PCHA method for the Sedov test problem clearly demonstrate the numerical
ringing associated with this method. Qualitative convergence studies were performed for the Sedov
problem in planar coordinates. The results are shown in Figure 23. The CCH and SGH methods
converge to the analytical solution as expected. The MPC method also converges. However, the
numerical ringing in the PCHA method produces errors of greater magnitude in pressure with a mesh of
300 zones compared to the mesh of 60 zones in Figure 22. It is also interesting to note that the PCHA
method does not converge to the analytical solution as the mesh is refined. The shock is still slow, as
predicted with a mesh of 60 zones, even with a mesh of 300 zones.
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Conclusions

The project focused on developing a 1D hydrocode to simulate gas dynamics using three
different discretization techniques. The techniques used were cell-centered (CCH), staggered grid
(SGH), and point-centered hydrodynamics (PCH). The PCH method proved to fail under strong shock
conditions. The failure was induced by zone collapse and a diminishing time step. Two additional PCH
methods were developed to mitigate this failure. These methods are called modified PCH (MPC) and
averaged PCH (PCHA). These two methods produced results for all test problems considered. MPC is
similar to CCH, simply shifted by half a cell. PCHA produces numerical oscillations at shock
discontinuities.

Four test problems were used to verify the hydrocode. These problems were the Sod, Piston,
Noh, and Sedov problems. For the Sod, Piston, and Noh problems, the convergence rates were
computed for each method. In planar coordinates, all convergence rates were consistent with the first
order numerical scheme used in the code. However, in spherical coordinates for the Noh problem, the
pressure did not converge to the analytical solution. Further investigation into curvilinear coordinates
is recommended for future work.

The CCH, SGH, and MPC methods showed qualitative convergence in the Sedov test problem
in planar coordinates. In curvilinear coordinates, the 1D hydrocode did not produce consistent results
for the Sedov test problem. The numerical oscillations produced by the PCHA method are more
apparent in the Sedov test problem than in other test problems.

In general, the SGH method performs better for the Sod and Sedov test problems. The CCH
method performs better for the Piston and Noh test problems. It is recommended that the different
PCH methods be investigated further in order to evaluate the merits of each method and perhaps
continue their development.

Future Work

Curvilinear Coordinates

For the Sedov test problem in cylindrical and spherical coordinates, the simulation did not
converge to a solution. It was found that as the cell size decreased and the amount of extensive internal
energy deposited in the cell at the origin remained constant, the simulation produced varying results.
Also, the simulation did not conserve total energy over the course of the simulation. In the future, this
issue needs to be studied, and solution needs to be determined. Some hypotheses have been formed.
The 1D hydrocode conserves total energy in the Sedov test problem in planar coordinates, but not in
cylindrical or spherical coordinates. Therefore, it seems most likely that the error in energy
conservation is due to the calculation of the areas and volumes in cylindrical and spherical coordinates.
Alternatively, the way the boundary conditions are formulated could be resulting in error for cylindrical
and spherical coordinates.

Second Order Scheme

The addition of a second order scheme would involve adjusting the Riemann solver in each of
the hydro method programs. Instead of assigning a value of pressure or velocity to an interface from
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the nearest control volume, the pressure and velocity are projected via a central gradient. The
projection of the velocity is illustrated in Figure 24.

u
Central U )
. R z+
Gradient at z
_~ 2" Order
o “///
Nu,,
/;t
x"" uz uc z
' — 1t Order
- : uz—l
X
z-1 z z+1

Figure 24. Second order velocity projection.

U, is evaluated at the cell interfaces using a gradient in a second order scheme. Assuming a constant
value across the control volume is a first order approximation. The central gradient is given by

”'.-i—l — .

L(Az).y + (Ax). + H(Ax).4

WU =
and u, is given by
1l .
e » = Uy T ;l.-—"‘l";ll.?”;l

Limiters will also need to be used in a second order scheme. Limiters are used to limit the gradient if
the gradient projects a value that is greater than the highest value or less than the lowest value. Figure
25 illustrates this concept, where 0, is a limiter.
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Figure 25. Second order velocity projection with a gradient limiter.

The limiter is computed using the formula

. . — g1
f. , = min l— 1]

”'_ - ”Jll.l'r:_j

Similarly, at the interface at p-1, the limiter would be evaluated by

. i, — o1
B.p—1=min | ——. 1
. —

iy

The projected value, or corner value, at p can then be computed using
I .
e, = U; + ;llf}l H'..,'ll?”;l

The corner values computed with the limited gradients are then used in the Riemann solver.
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Convergence Plots
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Noh Cylindrical
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Noh Spherical
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Input Files
Sod Problem

$gener a

mat s=2

np=101

L=100 (Radius in Cylindrical and Spherical)

init-ie?=1 (1 to use prescribed internal energy, O to use prescribed pressure)

init_fromcell=0 (0: No, the point values will be initialized using the spacial variation

fromuser input.)
(1: Yes, the point values will be initialized using the average of the

cell values.)

BC1=0 (0 or 1 for reflected or free boundary condition, respectively)

BC2=0

BCul=0.0 (Boundary Velocity at start, used when fixed at |eft)

BCu2=0. 0 (Boundary Velocity at end, used when fixed at right)

Met hod=CCH  (CCH, SGH, PCH, or MPC [Mbdified PCH = Shifted CCH )

(Options for PCH)
Vel Opt =0 (0: Conputes the density and total energy change with the averaged point

vel ociti es)
(1: Conputes the density and total energy change with the Ri emann vel ocities)
(Note: If Vel Opt=1, the follow ng options are inconsequential)
AvgOpt =0 (0: Uses the spacial average of the point velocities)
(1: Uses the time and spatially averaged vel ocities)
NodePosOpt =0 (0: Updates the Nodal Positions based on the nodal velocities)
(1: Updates the nodal positions based on the average of of the CV boundaries
at the end of the tine integration |oop)
Coor di nate_Systemrcar (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat 1
u=0.0
p=1.0
rho=1.0
ie=2.5
x1=0
x2=50
gamua=1. 4
$end

$mat 2
u=0.0
p=1.0
rho=0. 125
ie=2.0
x1=50
x2=100
gamua=1. 4
$end

$1 O

dt 0=0. 0000000000001

tstop=20.1

dt dunp=20

CFL=0. 03

CFLV=0. 01 (Reconmended: between 0.01 and 0.05. Never above 0.1)
$end
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Piston

(Note: Use parentheses to encl ose comments)

$gener a

mat s=1

np=51

L=1

init-ie?=0 (1 to use prescribed internal energy, O to use prescribed pressure)
init_fromcell=0 1: Yes, the point values will be initialized using the average of the

cell val ues
0: No, the point values will be initialized using the spacial variation
fromuser input.

BC1=0 (0 or 1 for reflected or free boundary condition, respectively)

BC2=0

BCul=1.0 (Boundary Velocity at start, used when fixed at |eft)

BCu2=0. 0 (Boundary Vel ocity at end, used when fixed at right)

Met hod=CCH

(3 Options for PCH)

Vel Opt =0 (0: Conputes the density and total energy change with the averaged point

vel ocities)
(1: Conputes the density and total energy change with the R emann vel ocities)

(Note: If Vel Opt=1, the follow ng options are inconsequential)
AvgOpt =0 (0: Uses the spacial average of the point velocities)
(1: Uses the time and spacially averaged vel ocities)
NodePosOpt =1 (0: Updates the Nodal Positions based on the nodal velocities)
(1: Updates the nodal positions based on the average of of the CV boundaries
at the end of the tine integration |oop)
(2: conputes new point_dx val ues based on 0.5*[point_u[i+1]-point_u[i-1]].
The point_x values are updated the sane as in NodePosQOpt =0.
Thi s shoul d behave the same as NodePosOpt =0.)
Coordi nate_Systenrcar (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat 1

u=0.0

p=0.0

rho=1.0

ie=0

x1=0

x2=1

gamua=1. 66666666667
$end

$1 O

dt 0=0. 0000000001

tstop=0. 61

dt dunmp=0. 6

CFL=0. 03

CFLV=0. 01 (Reconmended: between 0.01 and 0.05. Never above 0.1)
$end

Noh

(Note: Use parentheses to encl ose coments)

$gener a

mat s=1

np=51

L=1

init-ie?=0 (1 to use prescribed internal energy, O to use prescribed pressure)
init_fromcell=0 1: Yes, the point values will be initialized using the average of the

cel | val ues
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0: No, the point values will be initialized using the spacial variation
fromuser input.

BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0

BCul=0.0 (Boundary Velocity at start, used when fixed at |eft)

BCu2=-1.0 (Boundary Velocity at end, used when fixed at right)

Met hod=CCH

(3 Options for PCH)
Vel Opt =0 (0: Conputes the density and total energy change with the averaged point
vel ocities)
(1: Conputes the density and total energy change with the R enmann vel ocities)

(Note: If Vel Opt=1, the follow ng options are inconsequential)
AvgOpt =0 (0: Uses the spacial average of the point velocities)
(1: Uses the tinme and spacially averaged vel ocities)
NodePosOpt =1 (0: Updates the Nodal Positions based on the nodal velocities)
(1: Updates the nodal positions based on the average of of the CV boundaries
at the end of the tine integration |oop)
(2: conputes new point_dx val ues based on 0.5*[point_u[i+1]-point_u[i-1]].
The point_x values are updated the sane as in NodePosOpt =0.
Thi s shoul d behave the sanme as NodePosOpt =0.)
Coor di nat e_Systemrcar (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat 1

u=-1.0

p=0.0

rho=1.0

i e=0

x1=0

x2=1

gammua=1. 66666666667
$end

$1 O

dt 0=0. 0000000001

tstop=0. 61

dt dunmp=0. 6

CFL=0. 03

CFLV=0. 01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end

Sedov

(Note: Use parentheses to encl ose coments)
$gener a
mat s=2
np=61
L=1.2 (Radius in Cylindrical and Spherical)
init-ie?=1 (1 to use prescribed internal energy, O to use prescribed pressure)
init_fromcell=0 (0: No, the point values will be initialized using the spacial variation
fromuser input.)
(1: Yes, the point values will be initialized using the average of the
cell values.)

BC1=0 (0 or 1 for reflected or free boundary condition, respectively)
BC2=0

BCul=0.0 (Boundary Velocity at start, used when fixed at |eft)

BCu2=0. 0 (Boundary Vel ocity at end, used when fixed at right)

Met hod=CCH ~ (CCH, SGH, PCH, or MPC [Mbdified PCH = Shifted CCH )

(3 Options for PCH)
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Vel Opt =1 (0: Conputes the density and total energy change with the averaged point
vel ocities)
(1: Conputes the density and total energy change with the R emann vel ocities)

(Note: If Vel Opt=1, the follow ng options are inconsequential)
AvgOpt =0 (0: Uses the spacial average of the point velocities)
(1: Uses the time and spacially averaged vel ocities)
NodePosOpt =1 (0: Updates the Nodal Positions based on the nodal velocities)
(1: Updates the nodal positions based on the average of of the CV boundaries
at the end of the tine integration |oop)
(2: conputes new point_dx val ues based on 0.5*[point_u[i+1]-point_u[i-1]].
The point_x values are updated the same as in NodePosOpt =0.
Thi s shoul d behave the same as NodePosOpt =0.)
Coor di nate_Systemrcar (car=Cartesian, cyl=Cylindrical, sph=Spherical)
$end

$mat 1

u=0.0

p=0.0

rho=1.0

ie=15 (Extensive IE=0.3 MBar cc Volune=0.02 cc [that's 0.3/1])
x1=0

x2=0. 02

gamma=1. 66666666666667

$end

$mat 2

u=0.0

p=0.0

rho=1.0

ie=0.0

x1=0. 02

x2=1.2

ganma=1. 66666666666667
$end

$1 O

dt 0=0. 0000000000001

tstop=1.01

dt dunp=1.0

CFL=0. 2

CFLV=0. 01 (Recommended: between 0.01 and 0.05. Never above 0.1)
$end

Selected Portions of Source Code

CCH Riemann Solver:

avg=(cell _u[i-1]+cell _u[i])/2.0;

c=sqrt(cell _ganfi-1]*cell _p[i-1]/cell _rho[i-1]); /1 c for cell on
| eft

if (c<0.000000001 || c!=c) { c=0.000000001; } /[11f c<le-9 or
c=nan, set a mnimumvalue for ¢

/* Cal cul ate Conpression-Aware mu on the left */
if ((cell_u[i]-cell_u[i-1])>0)
{

/* Expansion */
poi nt_mu[ 0] =cel | _rho[i-1]*c;
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el se
/* Conpression */
poi nt _nu[ 0] =cel | _rho[i-1] *c+cel | _rho[i-1]*
((cell _gan{i-1]+1.0)/2.0)*fabs(avg-cell _u[i-1]); //m on
| ef t
}
c=sqrt(cell _ganfi]*cell _p[i]/cell _rho[i]); /1 c for cell on right

if (c<0.000000001 || c!=c) { c¢=0.000000001; } //I1f c<le-9 or c=nan, set
m ni nrum val ue for c

/* Cal cul ate Conpression-Aware mu on the right */
if ((cell_u[i]-cell_u[i-1])>0)
{

/* Expansion */
poi nt _nmu[ 1] =cell _rho[i]*c;

}
el se
{
[ * Conpression */
poi nt _nu[ 1] =cel | _rho[i]*c+cell _rho[i]*
((cell _ganfi]+1.0)/2.0)*fabs(avg-cell _u[i]);
}

/* Conpute u* at each point */
point_u[i]=(cell_p[i-1]*point_normal [0] +cel |l _p[i]*
poi nt _nor mal [ 1] +poi nt _mu[ 0] *cel | _u[i - 1]
+poi nt _rmu[ 1] *cel | _u[i])/ (point_nu[ 0]
+poi nt _mu[1]);

/* Conpute p* at each point */
point _p[i]=point_mu[1]*(point_u[i]-cell _u[i])-cell _p[i]*
poi nt _normal [ 1];

//mu on right

/* Check to verify Rienann Pressures are equal and opposite */
poi nt _pstar_check=point_nu[ 0] *(point_u[i]-cell _u[i-1])-cell _p[i-1]*

poi nt _nornmal [ 0] ;
if (fabs(point_p[i]+point_pstar_check)>pstar_tol)
{ check++; }

Runge-Kutta Time Integration Solution Loop:

do

al pha=1. 0/ (nstage+1. 0-istage); // Establish the coefficient
CCHSol veRHS( nass, al pha, SphAvgOpt ) ;
i st age++; /1 increase the RK cycle nunber

} while (istage<=nstage);

CCH Conservation Equations:

for (i=0;i<nz;i++)

if (PiOpt==1) Area=GCet AreaCCH(i);
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else if (PiOpt==0) Area=Get AreaCCH NoPi (i);

/* Cal cul ate Forces on either side of the control volune */
Fstar[ 0] =-point_p[i]*point_nornal [1] *Area; /1l Force on Left side of CV
Fstar[1] =-point_p[i+1] *point_nornmal [0] *Area; // Force on Right side of CV

v[i]=(1.0/mass[i])*(Fstar[0] +Fstar[1]);
e[i]=(1.0/mass[i])*(Fstar[0] *point_u[i]+Fstar[1]*point_u[i+1]);
}
[*  +++++++++++++++End Cal cul at e RHS ++++++++++++++++++++++++++++++ %/
[* +++++++++++++++Begin Tinme Step Forward ++++++++++++++++++++++++++ %/
for (i=0;i<np;i++)

/* Cal cul ate new point_x val ues */
poi nt _x[i]=poi nt_xO0[i] +al pha*dt *poi nt _u[i];
}

for (i=0;i<nz;i++)

/* Cal cul ate new dx */
cel | _dx[i]=point_x[i+1]-point_x[i];

/* Cal cul ate new rho */

if (PiOpt==1) Vol une=Cet Vol uneCCH(i);

else if (PiOpt==0) Vol ume=Cet Vol umeCCH_NoPi (i);
cell _rho[i]=mass[i]/ Vol une;

/* Cal cul ate new u */
cell _u[i]=cell _uO[i]+al pha*dt*v[i];

/* Cal cul ate new total energy */
cell _te[i]=cell_teO[i] +al pha*dt*e[i];

/* Cal cul ate new internal energy */
cell _ie[i]=cell_te[i]-0.5*pow(cell _u[i],2.0);

/* Cal cul ate new pressure using ECS-Gamma Law Gas */
cell _p[i]=cell _rho[i]*(cell_ganfi]-1.0)*cell _ie[i];
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