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INTRODUCTION

Current methods for obtaining flux and reaction rate profiles in a Monte Carlo simulation rely on
histogram tallies that can suffer from large uncertainties when fine detail is required. Recently,
another density estimation technique has been applied to Monte Carlo radiation transport sim-
ulations: the Kernel Density Estimator (KDE) [Banerjee, K.]. KDEs are capable of calculating
the flux at a point without the necessity of tracking particles on a spatial mesh, making KDEs
ideal tools for multi-physics problems. Furthermore, KDEs allow for one collision or track-
length to contribute to the estimate of the flux at multiple points, circumventing the large
statistical uncertainties associated with fine-mesh histogram tallies. However, KDEs have only
been proven to be capable of estimating flux values at a series of points; no work has been done
to estimate reaction rates or other quantities of interest. Furthermore, little work has been done
in optimizing the KDE bandwidth for the energy-dependence of neutron transport simulations.

This summary introduces an optimal physics-based bandwidth for use in eigenvalue problems
to obtain reaction rates and flux estimates at specified points using collision and track-length
KDEs, as well as the implementation of this method into OpenMC [Romano, P. K.], a recently
developed open-source Monte Carlo code primarily used for reactor-type problems. First, the
current method of obtaining the optimal bandwidth in an eigenvalue problems is introduced and
a simple thought experiment is presented to reveal the weaknesses in this approach. Next, the
physics-based bandwidth is introduced and compared to the current method of obtaining and
optimal bandwidth. Results from both methods of obtaining an optimal bandwidth are com-
pared against a fine-histogram reference solution for one-group and continuous 1D problems.
The results indicate that the collision and track-length KDEs are capable of accurately esti-
mating the flux and reaction rate densities in one-group heterogeneous reactor-type problems;
however, inaccuracies exist when the standard bandwidth is used in continuous-energy prob-
lems when the quantity of interest exhibits steep gradients at material interfaces. The results
obtained using the physics-based bandwidth correct these innacuracies in the continuous-energy
problem and provide nearly identical results to those in the one-group problem.



BACKGROUND & THEORY

KDEs are nonparametric estimators that take a collection of samples from an unknown density
function and place a kernel function around each sample to obtain a smooth estimate of the
underlying density function. The multivariate KDE used in this paper is composed of the
product of univariate kernels and is defined by

f̂(x) =
1

N

N∑
i=1

d∏
l=1

1

hl

k

(
xl −Xl,i

hl

)
, (1)

where N is the number of samples, xl−Xl,i is the difference between the node at location x and
the location of sample i in dimension l, hl are the bandwidth parameters in each dimension,
and k is the univariate kernel function.

Previous work has shown that the accuracy of KDEs are more severely affected by multi-
modal densities (e.g., fluxes in heterogeneous problems) than histogram tallies. A suggested so-
lution is to segment the multimodal problem into several unimodal problems [L. Devroye, L. Györfi].
Banerjee’s region-based bandwidth method does exactly this, and was shown to be a more accu-
rate method for estimating quantities in geometries with heterogeneous materials than a KDE
that utilizes a global bandwidth [Banerjee, K.]. The region-based bandwidth approach allows
for bandwidths to be calculated on a per-region basis rather than across the entire domain,
effectively transforming the larger problem into a collection of subproblems that can be handled
by the KDE.

KDEs can be used to estimate reaction rates at a point in a straightforward manner. The
collision KDE takes an estimate of the flux from a collision point and distributes that estimate
over a finite space based upon the kernel being used. Thus, estimates of the reaction rate at
a point can be obtained by multiplying every collision’s contribution to the flux by the cross
section of the reaction of interest at that point. This results in a collision rate estimator:

f̂(x) =
1

Nh

N∑
i=1

ci∑
c=1

wi,cΣr(x, E)

Σt(Xi,c, E)
k

(
x−Xi,c

h

)
, (2)

where N is the number of histories, h is the product of the bandwidths in each dimension, ci

is the number of collisions in history i, Σr is the cross section for the reaction of interest, Σt is
the total cross section, wi,c is the weight of particle i prior to collision c, E is the energy of the
particle that caused the collision, x is the node location where the result is being tallied, Xi,c is
the location of collision c in particle history i, and k is the multivariate KDE kernel defined as
a product of univariate kernels as seen in Eq. (1).

Recently, an integral track-length KDE was presented that showed favorable properties when
compared to the sub-track-length KDE approach [Dunn, K. L., Wilson, P.P.H.]. The physics-
based bandwidth can also be applied to the integral-track KDE (further refered to as the
track-length KDE in this paper). The track-length KDE can be used to determine reaction
rates using
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where Ks is a 3D kernel function integrated over path length S that is defined in terms of the



starting point of the track (Xo, Yo.Zo) and its unit direction vector (u, v, w):
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This integral is computed using a 4-point Gaussian quadrature scheme.
The optimal bandwidth for general KDEs has been discussed in depth by Silverman and

is defined as the bandwidth that minimizes the sum of the integrated square bias and the
integrated variance, known as the mean integrated square error (MISE) [SILVERMAN, B.W].
The approximate MISE is defined as

MISE =
1

4
h4k2
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where f(x) is the density distribution being estimated. As seen in 5, a reduction in the bias
creates an increase in the variance, and vice versa. This creates a complication in conducting
figure of merit (FOM) comparisons between histogram tallies and the collision and track-length
KDEs since the collision and track-length estimators attempt to minimize the MISE and the
histogram estimator makes no attempt to do so. Thus, a figure of merit comparison between
the KDE tallies and the histogram tallies would produce a better FOM for the histogram tallies
due to their increased bias and consequently reduced variance.

Routines for obtaining the optimal bandwidth have been discussed by Banerjee in significant
detail [Banerjee, K.]. The ideal bandwidth can be found by minimizing the MISE in Eq. (5)
[E. PARZEN]
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Since the optimal bandwidth is dependent upon the distribution being used, a standard family
of distributions is used to estimate quantities based on f(x). The most commonly used trick for
obtaining an optimal bandwidth is to use a normal distribution to estimate f(x) and use the
moments of the estimated distribution as parameters in the optimal bandwidth. For neutron
transport problems, optimal bandwidths are currently computed for every region by
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where d is the number of dimensions used in the KDE tally, Nc is the number of collisions that
occur in a specific region, and σl is the standard deviation of the distribution of collision sites
in dimension l in that region:
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Bandwidths obtained using this equation will here-after be termed location-based bandwidths
after their reliance on collision locations.

These location-based bandwidths have several flaws that are revealed with a simple thought
experiment. Take a slab consisting of an infinitely massive absorber (inifite absorption cross



section) with a beam of mono-energetic neutrons incident on each side of the slab. The location-
based approach of obtaining an optimal bandwidth would have the mean collision location in the
center of the slab, thus creating a large standard deviation of collision distributions depending
on the thickness of the slab, in turn creating a large bandwidth. This leads to an estimator
that will spread the distribution of flux and reaction rate into the interior of the slab while in
reality the neutrons will be absorbed in the skin of the slab. Additionally, now imagine that
the beam is no longer mono-energetic and the slab has a cross section that varies with energy.
Neutrons will now travel a variety of distances before colliding in the slab of absorber, thus
creating a unique distribution for each unique cross section. Since the optimal bandwidth is
dependent upon the distribution being estimated, as seen in Eq. (5), the bandwidths should
vary to accomodate this energy dependence of the distribution. Therefore, a new method of
calculating the bandwidth is required.

The shortfalls of the location-based bandwidth lead to the development of an energy-
dependent physics-based bandwidth that is based on the distribution of mean free paths traveled
in each direction in a region rather than the distribution of collision sites in that region. The
physics-based bandwidth is defined as
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with σl now defined as
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where ∆Xl is the distance the particle traveled in the l dimension in a particular region between
collisions and N is the number of track lengths created in each region. Thus, the physics-
based bandwidth creates kernels whose support regions reduce in size for tracks or collisions
created with large cross sections and increase in size for small cross sections. Furthermore, the
bandwidth is no longer dependent on where collisions occur but rather on the distribution of
mean free paths traveled by a neutron in a region, a more physically based quantity.

KDE methods suffer from an increased bias at nodes whose kernels overlap with the boundary
region. This bias comes from an increase in the error from O(h2) to O(h) due to a loss of
symmetry of the kernel since a portion of the kernel exists outside the bounds of the problem.
There are numerous methods that have been presented for handling this loss of accuracy at
boundaries. The boundary kernel method used by Banerjee for KDE tallies in neutron transport
simulations [Banerjee, K.] was shown to obtain accurate answers at non-curvilinear problem
boundaries when using a multivariate kernel consisting of the products of 1D kernels. The
boundary kernel method involves using a boundary kernel consisting of a linear combination of
the kernels K(u) and uK(u), which has a bias of O(h2). The boundary kernel is defined as

Kb(u) =
a2(p1, p2)− a1(p1, p2)u

a0(p1, p2)a2(p1, p2)− a2
1(p1, p2)

K(u) (11)
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h
. Thus, this kernel effectively

handles overlap with both the minimum and maximum boundaries. At interior points, this
boundary kernel reduces to the original kernel K(u). Another benefit of this correction method



is that this boundary method can handle any type of boundary condition: vacuum, reflected,
etc. While this boundary kernel will result in negative contributions to the score, no practical
problems have resulted from this in practice.

IMPLEMENTATION

Fully-functioning collision and track-length KDEs have been implemented in OpenMC for eigen-
value problems. The KDE uses OpenMC’s native tally structures for accumulating scores, in-
serting additional filters, and writing output. The KDE implementation is capable of obtaining
results along user-defined lines, structured meshes, or at points defined by the user in a separate
file. This allows the user to generate an unstructured mesh in their favorite CAE software that
can then be loaded into OpenMC and used to obtain flux or reaction rates at the unstructured
mesh node locations.

A boundary correction method is employed at nodes that have kernels that overlap with
external boundaries since the smoothing properties of the KDE depress scores at those nodes.
The OpenMC KDE implementation handles nodes that have kernels that overlap with external
boundaries via the boundary kernel method stated in Eq. (11). The 1D results presented later
also have the boundary correction applied at material interfaces. This is not ideal as it allows
slight discontinuities in the flux at material boundaries. Even so, the errors produced this
way are not significant. One limitation of this method when used with the multivariate kernel
described in Eq. (1) is that it is currently limited to non-curvilinear boundaries. While this is
presently only boundary correction method implemented in OpenMC, the modern programming
practices employed in OpenMC make adding new methods a straightforward procedure.

In order to accurately capture flux gradients at material interfaces, locally adaptive band-
widths are required. The region-based bandwidth approach described earlier has been imple-
mented in OpenMC, enabling users to assign collections of cells to a single region that will have
a set of unique bandwidths. Scores are accumulated at each node in a region based upon the
bandwidth in that region. That is, for the location-based bandwidths, a collision/track-length
occuring in one region can contribute to the score at a node in a neighboring region if the colli-
sion occurred within one bandwidth of a node in that neighboring region. For the physics-based
bandwidth, the score in one region is dependent on the number of mean free paths between
the collision/track-length and the node. As such, ray-tracing would be required between each
collision/track-length and each node within the support region of the kernel if the node and
kernel existed in different regions. Since the KDEs discussed in this summary are conducted
in eigenvalue problems, the standard deviations used to compute the optimal bandwidths are
re-calculated at the start of each active batch using statistics from the previous batch via Eq.
(8) or Eq. (12). For the test problems considered in this summary, this method produced
bandwidths that fluctuate less than 1% from batch to batch. The capability to do 1D and 2D
KDE tallies has also been added to OpenMC. That is, the results can be limited to the upper
and lower limits of a dimension, similar to binning results in a particular dimension.

Since kernels with finite support regions are commonly used for KDE tallies, a nearest-
neighbor list was created to reduce computing times. The nearest neighbor list breaks up the
problem domain into a structured mesh with element widths equal to the size of the largest
bandwidth in that direction among all the regions for the location-based bandwidth and the
largest average bandwidth in that direction among all regions for the physics-based bandwidth,



where the average physics-based bandwidth for a region is defined by
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Nodes are then sorted into this structured mesh based upon their location. When a collision
occurs, only the nodes in the neighborhood elements immediately in or adjacent to the element
that the collision occurred in are tallied. Since the physics based bandwidth changes for each
particle collision/track, a simple routine was added that allows for the number of neighborhood
boxes to be searched in each dimension to adapt to the current bandwidth. Thus, the nearest
neighbor list reduces the computational burden by only attempting to compute scores for nodes
near the support regions of the kernels instead of over the entire problem domain. Since the
speed increase obtained from the nearest-neighbor list is problem dependent, a simple figure of
merit comparison will be presented later with the results.

Test Problems

The physics-based bandwidth methods should produce results similar to the location-based
bandwidth methods for a one-group problem. Thus, Banerjee’s simple 1D, one-group represen-
tation of a fuel lattice containing a strong absorber was modeled, a depiction of which can be
seen in Figure 1 [Banerjee, K.]. The model consists of alternating slabs of fuel and moderator 1
cm thick with a central slab of absorber material and slabs of moderator 0.5 cm thick at the two
boundaries. A similar test problem was created to show the continuous-energy capabilites of the
KDE in a heterogeneous environment. The problem uses the same geometry as the one-group
problem, but the materials consist of light water, 3.1% enriched UO2, and a central slab of B4C
with cross sections obtained from the ENDF/B-VII.0 library at 293.6 K. Both problems are
modeled in 3D with reflecting boundary conditions on all external boundaries, however they are
effectively 1D problems as the materials only vary in the x-direction.

Figure 1: Depiction of 1D, one-group test problem.

All results were obtained using 20,000 histories per batch with 20 inactive batches and 300
total batches. The histogram tallies used a 1D bin structure with a total of 420 uniform bins
over the 14 cm distance for the one-group problem and 1680 uniform bins for the continuous-
energy problem, with bin-edges coinciding with material interfaces. The KDE for each problem
was constructed such that point-wise results were obtained at the centers of each histogram bin.



The KDEs treat each cell as a unique region, thus making 15 regions with unique bandwidths
in both test cases. Additionally, the Epanechnikov kernel, defined as
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was used for all KDE tallies.

RESULTS

One Group

Figure 2 shows comparisons between the flux and the fission, scattering, and absorption re-
action rates obtained from histogram tally and the collision and track-length KDE tallies for
the one-group problem using the location-based bandwidth. From Figure 2, it is clear that
the location-based bandwidth KDE results agree with the histogram results. The maximum
percent error between the KDE results and the histogram results is less than 1% for estimates
of the flux and all reaction rates using the location-based bandwidth. Furthermore, the flux and
reaction rate profiles obtained using the physics-based bandwidth for the one-group problem
are almost identical to those obtained using the location-based bandwidth. Comparing the dis-
tributions obtained using the location-based bandwidth and physics-based bandwidth produces
a maximum percent error of less than 0.2%, using the physics-based bandwidth results as refer-
ence values. This is not surprising since each material in the one-group problem has the same
total macroscopic cross section, thus the distribution of distances traveled between collisions
will not change between material and the local adjustment of the bandwidth by the total cross
section in the material will have no affect. However, the point-wise results do not agree within
statistics in areas of steep flux gradients for both methods of obtaining optimal bandwidths.
This discrepancy is due to the volume-averaging nature of the histogram estimator, as will be
demonstrated in the continuous-energy problem.

Continuous Energy

While the KDE perfromed well for the one-group problem, issues appear when applying the
location-based bandwidth to continuous-energy problems. Figure 3 shows the comparisons
between the flux, and the fission, scattering, and absorption reaction rate densities and for the
continuous-energy problem using the location-based bandwidth. Figure 4 shows a comparison
between the absorption reaction rate obtained using the histogram tally and location-based
bandwidth KDE tallies as well as their corresponding errors for one side of the central absorber.
From Figure 3 it is apparent that the collision and track-length KDEs are capable of capturing

flux profiles and reaction rate densities in continuous-energy simulations. While results obtained
from the KDE tallies and the histogram tally agree at interior points of the slabs, they do not
agree near material interfaces when the quantity of interest exhibits steep gradients, as seen in
Figure 4. As a result, the maximum percent error, using the histogram result as the reference
value, between the flux and reaction rate densities for all results exceeds 1%, with the maximum
percent error of the absorption reaction rate exceeding 20%.

In order to study this discrepancy further, the density distributions were broken down into
thermal and above-thermal results using the cadmium cutoff of 0.5 eV to distinguish between



(a) Flux (b) Fission Reaction Rate

(c) Scattering Reaction Rate (d) Absorption Reaction Rate

Figure 2: Comparison of distributions obtained from histogram and KDE tallies for the one-
group problem.

energy groups. Figure 5 shows the thermal (left) and above-thermal (right) absorption reaction
rates using the location-based bandwidth. From Figure 5 it is clear that a constant bandwidth
cannot capture the energy dependence of the problem. First, the absorption reaction rates in the
central slab of absorber differ significantly between the thermal and above-thermal distributions.
Since the optimal bandwidth is dependent on the shape of the distribution, different optimal
bandwidths exist for each energy. Furthermore, the sharp peaks in the above-thermal absorption
reaction rate distribution in the edge of the fuel require a bandwidth that’s an order of magnitude
smaller than the bandwidth obtained from Eq. 7. Such a small bandwidth would cause increased
variance in the rest of the distribution, further showing the need for an adaptive bandwidth.

Several attempts to overcome these differences produced similar results. Simply breaking
each slab into two regions to capture the distribution on each side of the slab seperately did
not adequately resolve the issue. Furthermore, just using the track distance created by the



(a) Flux (b) Fission Reaction Rate

(c) Scattering Reaction Rate (d) Absorption Reaction Rate

Figure 3: Comparison of distributions obtained from histogram and the location-based band-
width KDE tallies for the continuous-energy problem.

particle in each dimension for each collision produced results similar to those obtained using the
location-based bandwidth. Since the differences in the distributions are a result of the energy
dependence of the problem, it follows naturally that an energy-dependent bandwidth is required
to resolve the various features in these distributions.

Physics-Based Bandwidth

A physical way to incorporate energy dependence into the KDE is to base the kernel on mean
free paths traveled in a region instead of the location of collision points. This is exactly what
the physics-based bandwidth accomplishes. Figure 6 shows the flux and the fission, scattering,
and absorption reaction rate distributions using the physics-based bandwidth. With a simple
visual comparison between Figures 6 and 3, it is clear that the physics based bandwidth more
accurately captures local features in the reaction rate distribution resulting from the energy



Figure 4: Absorption profiles and their corresponding error in the slab of absorber obtained
from histogram and location-based bandwidth KDE tallies for the continuous-energy problem.

Figure 5: Comparison of absorption reaction rates between KDE and histogram tallies for
thermal (left) and above-thermal (right) energies.

dependence of the solution. The KDE solutions and histogram solutions agree to within 1% for
the flux, and all reaction rates at all locations, with the exception of the collision KDE estimate
of reaction rates at nodes next to material interfaces and the track-length KDE estimate of
the absorption reaction rates at nodes next to material interfaces. This is due to the volume-
averaging nature of the histogram tally; densities that change slope significantly over the support
of the histogram bin are poorly approximated by using the value in the histogram bin as the
estimate of the density at the center of the bin. To demonstrate this, a simulation with 4x
the resolution was conducted. Figures 7 and 8 detail the absorption reaction rate on the outer
edge of a slab of fuel and the corresponding error for simulations conducted with a resolution
of 1680 bins (left) and 6720 bins (right) over the whole problem domain. Again, KDE results
were obtained at the center of each histogram bin for both resolutions.



(a) Flux (b) Fission Reaction Rate

(c) Scattering Reaction Rate (d) Absorption Reaction Rate

Figure 6: Comparison of distributions obtained using physics-based bandwidth KDEs and his-
tograms.

Figures 7 and 8 show that the finer the resolution on the histogram, the smaller the errors
between the histogram tally and the KDE tallies. Thus, the systematic discrepancies between
the KDE tallies and the histogram tallies are due to the resolution of the histogram, not a fault
of the KDE. This showcases one of the benefits of the KDE tally: the accuracy of the KDE tally
is not dependent on the density of KDE nodes. The KDE tally will obtain an accurate estimate
of the flux or reaction rate at a point regardless of the density of KDE nodes in that region;
changing the number of KDE nodes does not influence the results at any other nodes. Thus, if
an accurate interpolating scheme is used and nodes are placed apppropriately, less nodes would
be required to accurately capture density profiles as compared to the number of histogram bins
required to accurately capture a density profile.



(a) 1680 bins and nodes (b) 6720 bins and nodes

Figure 7: Absorption reaction rate in a slab of fuel resulting from histogram tallies and KDE
tallies using 1680 bins (left) and 6720 bins (right).

(a) 1680 bins and nodes (b) 6720 bins and nodes

Figure 8: Percent error in the absorption reaction rate in a slab of fuel resulting from histogram
tallies and KDE tallies using 1680 bins (left) and 6720 bins (right).

CONCLUSIONS & FUTURE WORK

A method for obtaining an optimal physics-based bandwidth for use in eigenvalue problems to
obtain flux and reaction rate values at a collection of points has been introduced and imple-
mented in OpenMC. The physics-based bandwidth KDE tallies were tested using collision and
track-length KDEs in a one-group problem and a continuous-energy problem. The the results
obtained from the histogram estimator and the KDEs agree well on both the one-group and
continuous-energy problems with the use of the physics-based bandwidth. A simple compari-
son showed that as the number of histogram bins increased, the discrepancy between the KDE



tallies and the histogram tallies decreased.
While this method worked well in 1D, its implementation in higher dimension problems is

more complicated due to the use of the boundary correction kernel at material interfaces. The
current implementation of the boundary kernel method is not well suited to handle curvilinear
geometry, so moving to simulations involving fuel pins would introduce greater complexity to the
boundary kernel. The use of the boundary kernel at material interfaces could be circumvented
by allowing collisions/track-lengths in one region to contribute to the flux at a point in another
region. However, this would require ray tracing between collision points and nodes and would
greatly increase the computational burden of the physics-based bandwidth KDE. Thus, further
research is required to implement the physics-based bandwidth KDE in higher dimensional
problems with curvilinear geometries without excessive increase in runtimes.
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