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U N C L A S S I F I E D 

HE model regimes 

Slide 2 

Regime Reactive mode Model or 
experiment 

Pressure 
scale 

Time 
scale 

Design mode 
Shock Initiation Ignition &Growth 

hot spots 
Pshock  

> few GPa 
< 1 µs 

Propagation Programmed burn 
pseudo-reaction rate 

Pcj 
~ 30 GPa 

10s µs 

Safety issues 
and 

Accident scenarios 

Non-shock 
initiation 

Low velocity impact 
shear heating 

Impact P 
< 1 GPa 

few ms 

Thermal ignition Cookoff expt. ODTX 
chemical reactions 

< 100 MPa seconds 
to hours 

● Dominant physics depends on regime 
● Need different model for each regime 
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U N C L A S S I F I E D 

HE burn model 
 Equations of state 

 Reactants 
 Products 

 Mixture rule 
 Homogenized PBX 

Average over grains, binder and pores 
 λ products mass fraction 

P(V,e,λ) for partly burned HE 
 Typically P-T equilibrium 

Thermodynamically consistent 

 Burn rate 
 Volume averaged rate 

Account for temperature fluctuations 
Hot spots dominate – chemical rate temperature sensitive 

 Empirically calibrated 
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Polarized light micrograph 
Cary Skidmore, 1998 

PBX 9501 (HMX) 
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U N C L A S S I F I E D 

TATB crystals (dry animated) 
 Scanning electron micrograph 

 Pores (worm holes) within crystal 
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TATB used in PBX 9502 
Insensitive HE 
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U N C L A S S I F I E D Slide 5 

Ignition & Growth concept 

 Shock front triggers hot spots 
Void collapse on fast time scale 

 Reactive wavelets 
Deflagration waves from burn centers 
Burn rate = (front area) ∗ (deflagration speed) 

 Burn centers 
Competition between heat conduction & reaction 
● Small hot spots quench 
● Large hot spots become burn centers 

 Depletion of reactants 
Overlap of reactive wavelets 
Geometric effect on front area 

Potential hot spot sites 

For PBX: 
Pores between gains 
Inclusions within a grain 
Cracks in grain when pressed 
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U N C L A S S I F I E D Slide 6 

Ignition & Growth concept – 1 

 Shock front triggers hot spots 
Void collapse on fast time scale 

 Reactive wavelets 
Deflagration waves from burn centers 
Burn rate = (front area) ∗ (deflagration speed) 

 Burn centers 
Competition between heat conduction & reaction 
● Small hot spots quench 
● Large hot spots become burn centers 

 Depletion of reactants 
Overlap of reactive wavelets 
Geometric effect on front area 

Hot spots require 
dissipative mechanism 

Shock sweeps over pores 
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U N C L A S S I F I E D Slide 7 

Ignition & Growth concept – 2 

 Shock front triggers hot spots 
Void collapse on fast time scale 

 Reactive wavelets 
Deflagration waves from burn centers 
Burn rate = (front area) ∗ (deflagration speed) 

 Burn centers 
Competition between heat conduction & reaction 
● Small hot spots quench 
● Large hot spots become burn centers 

 Depletion of reactants 
Overlap of reactive wavelets 
Geometric effect on front area 

Number density of burn centers 
Increases with shock pressure 

Ignition regime 
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Ignition & Growth concept – 3 

 Shock front triggers hot spots 
Void collapse on fast time scale 

 Reactive wavelets 
Deflagration waves from burn centers 
Burn rate = (front area) ∗ (deflagration speed) 

 Burn centers 
Competition between heat conduction & reaction 
● Small hot spots quench 
● Large hot spots become burn centers 

 Depletion of reactants 
Overlap of reactive wavelets 
Geometric effect on front area 

Burn front area increasing 
Reactants & products 
are phase separated 

Early growth regime 
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Ignition & Growth concept – 4 

 Shock front triggers hot spots 
Void collapse on fast time scale 

 Reactive wavelets 
Deflagration waves from burn centers 
Burn rate = (front area) ∗ (deflagration speed) 

 Burn centers 
Competition between heat conduction & reaction 
● Small hot spots quench 
● Large hot spots become burn centers 

 

 Depletion of reactants 
Overlap of reactive wavelets 
Geometric effect on front area 

Burn front area decreasing 

Burn front area model 
scales as function of λ 
and proportional to 
number of burn centers 

Late growth regime 
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U N C L A S S I F I E D 

Burn front area scaling 

 Hot spot assumptions 
● Spherical  hot spots 
● All same radius  
● Large number 
● Randomly distributed 

 Al Nichols derivation, 2002 
rhs  = hot spot  radius 
dhs = av distance between hot spots 
N = number of hot spots 
Vol = total volume = N dhs

3 

● Key results 
1. λ is function of rhs/dhs 
2. Burn front area is function of λ 
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U N C L A S S I F I E D 

Ignition & Growth assumptions 
 Wave width 

𝑤𝑤𝑤𝑤𝑤 = ∫𝑑 𝛌 𝐷−𝑢
𝑅𝑅𝑅𝑅

   in stationary frame of wave 

deflagration speed < CJ detonation speed 

 Hot spots 
deflagration width < hot spot size < detonation width 
● Hot spot triggers deflagation wave 

but not detonation wave 
● Collective effect of many hot spots 

 Deflagration speed 
● Deflagration speed ∝ Pn 

● Much lower than detonation speed 
● For fixed pore volume 

Need many small hot spots 
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HMX / PBX 9501 
Esposito et al. 2003 
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U N C L A S S I F I E D 

HE burn  models (pressure dependent rate) 
 Ignition & Growth model (Lee & Tarver, 1980/Tarver, Hallquist & Ericson, 1985) 

 Rate is sum of three terms 
switch on λ = mass fraction of products 
1. Ignition, 0 ≤ λ < λi small,  Rate (λ,ρ) ∝ (ρ/ρ0 – a)n 

2. Growth, λi  ≤ λ < λg Rate (λ,P) ∝ (1-λ)q λr Pn
 

3. Burn out, λg ≤ λ ≤ 1 added for slow rate in TATB 

 WSD model (Wescott, Stewart & Davis, 2005) 
Variation of Ignition & Growth 
 Smooth transition between terms in λ 
 Two coefficients for growth term: ignition & propagation regimes 

Switches on shock density (ρs from hydro code) 
 Ad hoc extension for shock desensitization 

Adds timer variable to cut off  reaction 
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U N C L A S S I F I E D 

HE burn  models (rate dependent on lead shock strength) 
 SURF model (Shaw & Menikoff, 2010) 

L2 milestone (2010) : Reactive flow model for IHE 
 Transformed variable 

   λ = 𝑔(s)  and s is scaled reactive variable = hot spot radius
av dist between hot spots

 
𝑑
𝑑𝑑
𝑠 = f(Ps) where Ps is lead shock strength, f ∝ D x (hs number density)1/3 

 Rate function of lead shock pressure 

𝑅𝑅𝑅𝑅(λ,Ps) = 𝑑
𝑑𝑑

 λ = 𝑑
𝑑𝑠

 𝑔 ∙ 𝑑
𝑑𝑑

 s 

Naturally accounts for shock desensitization 
 Algorithm to detect lead shock 

Local, based on Hugoniot equation:  e = e0 +½(P+P0)(V0-V) 
 Some aspects similar to other models 

— CREST (AWE, 2006)  
— History Variable Reactive Burn model (Kerley, 1992) 
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U N C L A S S I F I E D 

HE burn models (two-step reaction) 
 TATB – insensitive HE 
 Excess carbon due to stoichiometry 

C6H6N6O6 → 3 H2O + 3 N2 + 1½ CO2 + 4½ C 
 Carbon clustering 

Cn + Cm → Cn+m 

C-bonds release energy 
 Experimental evidence for fast & slow reactions 
 Recovery experiments find nanometer size diamonds 

 SURFplus model (Menikoff & Shaw, 2012) 
 SURF model for fast reaction 

Hot spot model 
 Plus second slow reaction for carbon clustering 

Based on analysis of Shaw & Johnson (1987) 
Diffusion process for cluster formation, hence slow rate 
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Shot 4f112 
Vorthman et al. 

1999 
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U N C L A S S I F I E D 

Effect of fast-slow rate 
 Carbon clustering energy release 

 Shifts detonation locus and release isentrope 
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 Slow approach to steady state 
 Shock initiation to CJ state of intermediate products 
 Detonation speed increases to CJ state of final products 
 Slow transient due to sonic condition 

● Final products 
Equilibrium with carbon clustering 

● Intermediate products 
Without carbon clustering energy 
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U N C L A S S I F I E D 

Equations of state 
 Reactants 

 Hugoniot data 
 Diamond anvil cell data (HE grains) 

 Products 
 Overdriven detonation 
 Release isentrope 
 Cylinder test wall velocity 

 EOS fitting form 
 Mie-Gruneisen form 

Ref curve: Pref(V), eref(V) 
— Principal Hugoniot or isentrope for solid 
— CJ release isentrope for products 

 Common fitting forms 
JWL, HOM, Davis, Shaw table for products 
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P(V, e) = Pref(V) + 𝞒(𝑉)
𝑉

 [e – eref(V)] 
Thermodynamic consistent 

T based on 𝞒 and Cv 

Cv(T, V) = Cv(T/θ(V)) 

𝞒(V) = - V 𝑑 ln θ
𝑑𝑉
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U N C L A S S I F I E D 

PBX 9502 – Hugoniot & detonation loci 
 Principal Hugoniot and release isentrope 
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 𝞒(V) difficult to measure 
 Need sound speed or 2 reference curves 

 Little temperature data 
 Cv solid based on phonon spectrum 

 from MD simulations or Raman scattering and infrared spectrometry 
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U N C L A S S I F I E D 

 Anomalous behavior of isentropes 
 Likely due to carbon clusters 

Possibly diamond/graphite transition 
Or surface molecules on cluster 

 Limits accuracy of EOS model 

PBX 9502 – overdriven detonation & release wave 

 Uncertainty in CJ state 
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Courtesy Sam Shaw, 1999 
Fritz, Hixson, Vorthman, Anderson 
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U N C L A S S I F I E D 

PBX 9501 – overdriven detonation & release wave 
 Fast reaction, no carbon clustering 
 Expected behavior 
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Hixson et al, 2000 
Fritz et al, 1996 
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U N C L A S S I F I E D 

PBX 9501 – CJ release isentrope 
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 xRage simulation 

LLNL, early 1970s 
Originally used to 
calibrate JWL EOS 
for HE products 

 Cylinder test 
 Streak experiment 

Campbell & Engelke, 1975 
Reanalyzed by Hill, 1997 

 PDV experiment 
Pemberton, 2011 

 Wall velocity data 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Data to calibrate & validate burn rate 
 Pop plot data 

 Distance of run-to-detonation as function of initial shock pressure 

 Shock-to-Detonation Transition data 
1-D experiments, gas gun – embedded velocity gauge data or PDV probes 
 Sustained shock 
 Short shock 
 Double shock – shock desensitization 

 2-D experiments 
 Rod impact 
 Corner turning 
 Initiator/booster 

Onion skin, Mushroom, Hockey puck 
 Curvature effect and failure diameter 
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U N C L A S S I F I E D 

PBX 9502 – Pop plot 
 Sensitive to initial temperature 

 Hot more sensitive 
 Cold less sensitive 

Also dependence on lot 

 Sensitive to initial density 
 Lower density (increased porosity) 

More shock heating, ∆e = ½ P ∆V 
 CJ detonation speed varies with initial density 

Roughly ∆D = 2 to 3 (m/s) / (mg/cm3) 

Thermal expansion ∆𝑉
𝑉∆𝑇 = 1.4 x 10-4 / K 

 EOS issues 
 PBX density measured at room temperature 
 Thermal expansion not accurate 

Change in pore volume fraction 
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U N C L A S S I F I E D 

 Burn centers 
 Tail of hot spot distribution 

Initial temperature shifts distribution 
Hence affects number of burn centers 

 Shock desensitization 
Campbell & Travis, 1985 
 Weak shock closes pores 

Eliminates potential hot spot sites 
 Limiting case 

Pure crystal (no pores) very insensitive 
Detonation wave in PBX 9404 failed to initiate HMX crystal 
Detonation wave in HMX crystal can be initiated by flyer plate 
− Thermal rate at von Neumann spike temperature 

Ignition & Growth concept – shock sensitivity 
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U N C L A S S I F I E D 

PBX 9502 – shock-to-detonation transition - 1 

 Sustained shock 
 Embedded velocity gauges 

Shot 2s58 
Ps = 10.9 GPa 
— Solid, experiment 
— Dashed, simulation 
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SURF model simulation 

Simulations 
● Amrita environment 

by James Quirk 
Lagrangian equation set 
and patch integrator for 
Amr_sol computational engine 

Gas gun experiments 
● Rick Gustavsen et al 
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U N C L A S S I F I E D 

PBX 9502 – shock-to-detonation transition - 2 

 Sustained shock 
 Embedded velocity gauges 

Shot 2s42 
Ps = 11.2 GPa 
— Solid, experiment 
— Dashed, simulation 
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SURF model simulation 
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U N C L A S S I F I E D 

PBX 9502 – shock-to-detonation transition - 3 

 Sustained shock 
 Embedded velocity gauges 

Shot 2s40 
Ps = 13.5 GPa 
— Solid, experiment 
— Dashed, simulation 
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SURF model simulation 
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U N C L A S S I F I E D 

PBX 9502 – shock-to-detonation transition - 4 

 Short shock 
 Embedded velocity gauges 

Shot 2s100 
Ps = 14.0 GPa 
∆t = 0.35 µs 
— Solid, experiment 
— Dashed, simulation 
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SURF model simulation 
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U N C L A S S I F I E D 

PBX 9502 – shock-to-detonation transition - 5 

 Short shock 
 Embedded velocity gauges 

Shot 2s105 
Ps = 13.9 GPa 
∆t = 0.27 µs 
— Solid, experiment 
— Dashed, simulation 
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SURF model simulation 
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U N C L A S S I F I E D 

PBX 9502 – shock desensitization 

 Double shock 
 PDV probes 

— Solid, experiment 
— Dashed, simulation 
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shot 
P1 P2 

GPa GPa 
2s450 5.3 19 
2s463 7.0 25 
2s465 9.0 33 

SURF model simulation 

CJ pressure  28 GPa 
VN spike pressure  42 GPa 
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U N C L A S S I F I E D 

PBX 9501 – shock initiation & corner turning 

 Rod impact, xRage simulations (click on plots to see movie) 

Slide 30 

 
 Desensitized HE 

near corner of rod 

 

 
 Initiation leads to reactive wave 

in precompressed HE 

Rod 8.5 mm radius 
Velocity 740 m/s 
Ps = 4.5 GPa 
HE:  radius 25 mm 
        length 30 mm 
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U N C L A S S I F I E D 

PBX 9501 Rod Impact Experiment: comparison 1 

 Shot 1s1490 
 HE 6 mm thick 
 Below run distance on Pop plot 
 No shock-to-detonation transition 
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U N C L A S S I F I E D 

PBX 9501 Rod Impact Experiment: comparison 2 

 Shot 1s1494 
 HE 8 mm thick 
 Shock-to-detonation transition on axis 
 Detonation does not spread transverse direction 
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U N C L A S S I F I E D 

PBX 9501 Rod Impact Experiment: comparison 3 

 Shot 1s1489 
 HE 12 mm thick 
 Shock-to-detonation transition on axis 
 Detonation spreads in transverse direction 
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U N C L A S S I F I E D 

PBX 9502 – curvature effect 
 Dn(κ) curve 

D = Detonation speed 
κ = front curvature 

 SURFplus model 
 Quasi-steady ODEs 
 Determines curved detonation state 
 Requires high resolution 
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U N C L A S S I F I E D 

Model calibration 
 What data is available 

 Small Scale Database 
Extension and replacement for High Explosive Database 
On line 4thQ FY2013 (Scovel &  Menikoff) 
Funded by V&V program (Wysocki) 

 Automate simulations 
 Data file from Small Scale Database 

Header block with key experimental parameters 

 Fitting parameters 
 Minimize metric for “goodness of fit” 

Weight function for data from many different experiments 
Shock arrival times & velocity profiles with uncertainties 

 Non-linear fit with many variables (up to 26 in WSD model) 
Need good initial guess to start iteration & fix inessential parameters 
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U N C L A S S I F I E D 

Computational issues 
 Mesh resolution 
 Hot spot reaction zone width ~ 0.1 mm 

Comparable to grain size – smaller than needed for homogenization 
 Need mesh refinement to track detonation front (AMR) 

 Curvature effect 
 Detonation speed as function of front curvature 

Affected by mesh resolution 
 Detonation state for curved front 

Depends on rate and reaction zone width 
Issue for programmed burn (DSD) model 

 Accuracy requirement 
 Detonation speed, CJ state and release isentrope 
 Application simulations – typically not mesh converged 

Coarse mesh, reactive shock rather than ZND profile 
 Slide 36 
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U N C L A S S I F I E D 

Predictive capability 
 Validation of HE model 

 Need good EOS for reactants and products 
 Need to compare with wide range of detonation phenomenon 

Large number of experiments to simulate 
— For each explosive 
— For each HE model (EOS + burn rate) 

 Need to automate simulations 

 Initiation sensitive to initial temperature and initial density 
 Calibration for each T0 and ρ0 

Treated as distinct explosive – effectively, many more explosives 

 Shock desensitization 
 SURF model 

Naturally accounts for desensitization, rate function of Ps  
Possibly account for sensitivity change with initial temperature 
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