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HE model regimes

: : Model or Pressure Time
Regime Reactive mode )
experiment scale scale
o iti <
Shock Initiation Ignition &Growth Pshock 1 us
_ hot spots > few GPa
Design mode :
Pronagation Programmed burn Pcj 10s pus
Pag pseudo-reaction rate | ~ 30 GPa
_ Non-shock Low velocity impact | ImpactP | few ms
Safety |§sues initiation shear heating <1GPa
an
Accident scenarios | Thermal ignition Cooko.ff expt. QDTX < 100 MPa | seconds
chemical reactions to hours
e Dominant physics depends on regime
e Need different model for each regime
A
’7
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HE burn model

m Equations of state PBX 9501 (HMX)
e Reactants TS
e Products

m Mixture rule
e Homogenized PBX
Average over grains, binder and pores
e ) products mass fraction
P(V,e,\A) for partly burned HE
e Typically P-T equilibrium
Thermodynamically consistent

AT ERT
m Burn rate 5 e [N :‘
e Volume averaged rate Polarized light micrograph
Account for temperature fluctuations Cary Skidmore, 1998
Hot spots dominate — chemical rate temperature sensitive
e Empirically calibrated
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TATB crystals (dry animated)

m Scanning electron micrograph
e Pores (worm holes) within crystal
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Pantex 12-11-82-0906-489, US Dry Sent to UK Pantex 12-11-82-0906-489, US Dry Sent to UK
200 x Mag. 500 x Mag.

e

TATB used in PBX 9502
Insensitive HE

"@aKy xRcoee
Pantex 12-11-82-0906-48B9, US Dry Sent to UK

2,000 x Mag.
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Ignition & Growth concept

B Shock front triggers hot spots

/\

Void collapse on fast time scale

Burn centers

Competition between heat conduction & reaction
e Small hot spots quench

e Large hot spots become burn centers

Reactive wavelets
Deflagration waves from burn centers
Burn rate = (front area) * (deflagration speed)

Depletion of reactants
Overlap of reactive wavelets
Geometric effect on front area

)
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Potential hot spot sites
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For PBX:

Pores between gains
Inclusions within a grain
Cracks in grain when pressed

Slide 5

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

T YA =37
1l A R4



Ignition & Growth concept — 1

B Shock front triggers hot spots

Void collapse on fast time scale Shock sweeps over pores
If_

L ~

N
¢ i
U

( (_
N 23

Hot spots require
dissipative mechanism
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Ignition & Growth concept — 2

B Burn centers
Competition between heat conduction & reaction
e Small hot spots quench
e Large hot spots become burn centers

A
° Ifojs Alamos
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Ignition regime

Co (’

Number density of burn centers
Increases with shock pressure
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Ignition & Growth concept — 3

B Reactive wavelets
Deflagration waves from burn centers
Burn rate = (front area) * (deflagration speed)

» Los Alamos
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Early growth regime

Burn front area increasing

Reactants & products
are phase separated
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Ignition & Growth concept -4

Late growth regime

Burn front area decreasing

B Depletion of reactants
Overlap of reactive wavelets Burn front area model
. scales as function of A
Geometric effect on front area )
and proportional to
number of burn centers
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Burn front area scaling

® Hot spot assumptions r;?; ”13; N
- | —A= ST S
e Spherical hot spots Ih—S[ Vol Vol

e All same radius
Large number
Randomly distributed

m Al Nichols derivation, 2002
I = hotspot radius
d,. = av distance between hot spots

N = number of hot spots |
dA Vhs 1 di’hs
Vol = total volume = N d, 3 —=3(1—-A)-|—| -—
dr djg dy, dt
e Key results 23
1. A is function of r,/d, o< (1=A)[—1In(1—2)]
2. Burn front area is function of A
~ A3 (1-0)3
2,
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Ignition & Growth assumptions

m Wave width
width = [d A —~
Rate
deflagration speed < C] detonation speed

in stationary frame of wave

m Hot spots HMX / PBX 9501
deflagration width < hot spot size < detonation width Esposito et al. 2003
e Hot spot triggers deflagation wave @1000 T T T »
but not detonation wave E ollT g ;}{
e Collective effect of many hot spots % |ALLZIN R t £
m Deflagration speed % ol
e Deflagration speed o P" g 1y
e Much lower than detonation speed g o4 S
e For fixed pore volume 8 {\,Doe"{ S
Py Need many small hot spots . F(,,r,;ssure:(gpa) =5
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HE burn models (pressure dependent rate)

m Ignition & Growth model (Lee & Tarver, 1980/Tarver, Hallquist & Ericson, 1985)
e Rate is sum of three terms
switch on A = mass fraction of products

1. Ignition, 0 <A < A;small, Rate (\,p) « (p/p, — a)™
2. Growth, A SA< g Rate (A,P) oc (1-A)9 AT PN
3. Burn out, Ag=Aasl added for slow rate in TATB

®m WSD model (Wescott, Stewart & Davis, 2005)
Variation of Ignition & Growth
e Smooth transition between terms in A
e Two coefficients for growth term: ignition & propagation regimes

Switches on shock density (pg from hydro code)

e Ad hoc extension for shock desensitization
Adds timer variable to cut off reaction
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HE burn models (rate dependent on lead shock strength)

®m SURF model (Shaw & Menikoff, 2010)
L2 milestone (2010) : Reactive flow model for IHE

e Transformed variable

: : : hot spot radius
A =g(s) and s is scaled reactive variable = P

av dist between hot spots

L= f(P,) where P, is lead shock strength, f «c D x (hs number density)!/3

dt
e Rate function of lead shock pressure

d d d
Rate(\,P)) :Ek =9 7S

Naturally accounts for shock desensitization
e Algorithm to detect lead shock
Local, based on Hugoniot equation: e =e¢, +%(P+P,)(V,-V)
e Some aspects similar to other models
— CREST (AWE, 2006)
pj — History Variable Reactive Burn model (Kerley, 1992)
» Los Alamos Nl nseitien
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HE burn models (two-step reaction)

m TATB —insensitive HE

@
o

e
o

Excess carbon due to stoichiometry
CeHgN;Og— 3 H,O+ 3 N, + 1% CO, + 4% C
Carbon clustering

C,+C,—C.inm

C-bonds release energy

n
o

—
=)

velocity (km/s)
n

o

o O

- - - '0
Experimental evidence for fast & slow reactions 89

Recovery experiments find nanometer size diamonds

B SURFplus model (Menikoff & Shaw, 2012)

N Diffusion process for cluster formation, hence slow rate
- Los Alamos

SURF model for fast reaction

Hot spot model

Plus second slow reaction for carbon clustering

Based on analysis of Shaw & Johnson (1987)

8.5

9.0 95 10.0 105
time (us)

Shot 4112
Vorthman et al.
1999
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Effect of fast-slow rate

m Carbon clustering energy release
e Shifts detonation locus and release isentrope

50 =
- — final products ;
40 — intermediate products| ] .
; T peactants : e Final products
I --- Rayleigh line ] o ] .
< 30| Equilibrium with carbon clustering
o | e [ntermediate products
Ay 204 Without carbon clustering energy
10} B
0.3 0.4 05

m Slow approach to steady state
e Shock initiation to CJ state of intermediate products
e Detonation speed increases to CJ state of final products
e Slow transient due to sonic condition

)
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Equations of state

m Reactants
e Hugoniot data
e Diamond anvil cell data (HE grains)
® Products
e Overdriven detonation
e Release isentrope
e Cylinder test wall velocity
m EOS fitting form P(V,e) =P, (V) + rv) [e _ eref(v)]
e Mie-Gruneisen form v
Ref curve: P {(V), e.+(V)
— Principal Hugoniot or isentrope for solid
— CJrelease isentrope for products (T V) = C,(T/0(V))
e Common fitting forms r(v)=-v d;;e
JWL, HOM, Davis, Shaw table for products

Thermodynamic consistent
T based on I and C,
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PBX 9502 — Hugoniot & detonation loci

®m Principal Hugoniot and release isentrope

12 g e 3 100 (=
10 : _ — detonation locus
DOE 80 —-— CJ release isentrope
S 8 i 0] — shock locus
— 2 Py A N R < 60t -- Rayleigh line
£ 6 [0}
- 3 P —
- = — detonation locus a 40
-] 4 F -- CJ release isentrope w
— shock locus S&'_) 20
2 ; - ch
0 Bt b 0
0 1 2 3 4 5
u, (km/s)

m [ (V) difficult to measure
e Need sound speed or 2 reference curves

m Little temperature data
e Cv solid based on phonon spectrum
from MD simulations or Raman scattering and infrared spectrometry
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PBX 9502 — overdriven detonation & release wave

® Uncertainty in CJ state

T T T T T T T T T 5 T T 80

T T :
Data (isentropes from overdriven)

L Table (CJ isentrope) A
JWL (CJ isentrope) ’

Shock Velocity & Lagrange Sound Speed (km/s)

B Anomalous behavior of isentropes
e Likely due to carbon clusters
Possibly diamond/graphite transition
Courtesy Sam Shaw, 1999 Or surface molecules on cluster
Fritz, Hixson, Vorthman, Anderson .
e Limits accuracy of EOS model

7 25 3 35 4 45
Up(km/s)

» Los Alamos
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PBX 9501 — overdriven detonation & release wave

m Fast reaction, no carbon clustering
e Expected behavior

16.0 70
PBX-9501 60
14.0 + _. 50
,YQhZO "_'_‘_"‘ R —
-/ | 5
g S 40
% 12.0 ~ i a”
o 30
/C(U}‘// ' 20
100 - 7 .
~— u,(u) 10
1.8
8.0 ' —
2.0 3.0 4.0 5.0
u, (km/s)
Fritz et al, 1996
A
> Los Alamos

EST.1943

20 22 24 26 28 30
p (g/cm’)

Hixson et al, 2000
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PBX 9501 — CJ release isentrope

m Cylinder test

=

® Streak experiment R:(
Campbell & Engelke, 1975 T
Reanalyzed by Hill, 1997 'p’d_?

e PDV experiment / A=

Pemberton, 2011

m Wall velocity data

particle

= trajectory
»

PDV

streak

[}
[}
1 1
I 1
I 1
I 1

slit

] camera

LLNL, early 1970s
Originally used to
calibrate JWL EOS
for HE products

m XRage simulation

2 2
)
= streak 15
£ — PDV _
= o
S— E — xRage trajectory velocity
> 1 = —— 9501/C4521tvSmth.dat
"5 2 1
9 S
2 g
0.5
0
0 5 10 15
i 0
time (us) 5 10 15
» Los Alamos time (us)
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Data to calibrate & validate burn rate

m Pop plot data
e Distance of run-to-detonation as function of initial shock pressure

m Shock-to-Detonation Transition data
1-D experiments, gas gun — embedded velocity gauge data or PDV probes
e Sustained shock
e Short shock
e Double shock — shock desensitization

m 2-D experiments
e Rod impact
e Corner turning
e Initiator/booster
Onion skin, Mushroom, Hockey puck
e Curvature effect and failure diameter

» Los Alamos
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PBX 9502 — Pop plot

m Sensitive to initial temperature
e Hot more sensitive
e Cold less sensitive
Also dependence on lot

100

9]
o

—
n
o o

distance (mm)

o

| [ ]
———
I
GE o
000

m Sensitive to initial density
e Lower density (increased porosity)
More shock heating, Ae =%2 P AV
e CJ detonation speed varies with initial density
Roughly AD =2 to 3 (m/s) / (mg/cm3)

)"

—

3 5 10 20
pressure (GPa)

—

100

Thermal expansion Av - 1.4x 104/ K
VAT

[o1)
o

n
=]

m EOSissues
e PBX density measured at room temperature
e Thermal expansion not accurate
pa Change in pore volume fraction S5 0 =

° L/(—)g AlamOS pressure (GPa)

NATIONAL LABORATORY UNCLASSIFIED Slide 22
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Ignition & Growth concept — shock sensitivity

m Burn centers
e Tail of hot spot distribution
Initial temperature shifts distribution
Hence affects number of burn centers

A hot spot
distribution

burn
centers

mass fraction

m Shock desensitization
Campbell & Travis, 1985 TS The g
e Weak shock closes pores
Eliminates potential hot spot sites
e Limiting case
Pure crystal (no pores) very insensitive
Detonation wave in PBX 9404 failed to initiate HMX crystal
Detonation wave in HMX crystal can be initiated by flyer plate
— Thermal rate at von Neumann spike temperature

» Los Alamos
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PBX 9502 — shock-to-detonation transition - 1

m Sustained shock

e Embedded velocity gauges _ _
SURF model simulation

ShOt 2558 3 1 | 1 1 | I 1 1 1 T I | 1 1 I I Ll | 1 1
i I | | I 1 |— 0.00mm
= 7 |— 3.08mm
P, =10.9 GPa : 1 |— d2%mm
: : 75 — |— 5.05mm
— Solid, experiment ; i S84 mm
; . i il 6.63 mm
— Dashed, simulation [ i 742 mm
2 = |— 8.21mm
. o i i 9.00 mm
Gas gun experiments B8 T 1 |— 979mm
. — L -
e Rick Gustavsen et al Ssk slLL
g2 r
Simulations P F
e Amrita environment - | BT s .
by James Quirk : | Lll | i
. . 05 | ’ p
Lagrangian equation set : | :W"ﬁf“‘-w:
and patch integrator for : [ d 1 ! .
Am r_SOI CompUtational eng i ne 0 [ I.Ilmr }.II:..I}l% ill-I:-‘I:rl:l.' :l—rl:i:';"}lu}‘:::' Il I:ﬁ;‘r':lr'IJ“-I=I"I};T":TI-;’I‘Il'l|l"“ I"IlI | A | l 1 1 | 1 I_
0 0.5 1 1.5 2 2.5
ya time (Us)
> Los Alamos
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PBX 9502 — shock-to-detonation transition - 2

m Sustained shock
e Embedded velocity gauges

SURF model simulation

Shot 2s42 S
P, =11.2 GPa :
— Solid, experiment !
— Dashed, simulation 23
2
g L5f
2 I
[#] L
=R
g .
0.5
of
] 0.5
- Los Alamos UNCLASSIFIED

EST.1943

1 1.5
time (S)

0,00 mm
3.04 mm
417 mm
496 mm
5.76 mm
6,55 mm
7.35 mm
8.14 mm
8.93 mm
— 972mm
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PBX 9502 — shock-to-detonation transition - 3

m Sustained shock

e Embedded velocity gauges _ _
SURF model simulation

ShOt 2840 3 1 I 1 I 1 1 1 I 1 I 1 I 1
1 I I : l 4 |— 000mm
— g 1 |— Llémm
P, =13.5 GPa : : 1 |— 195mm
i I 25 il — |— 2.74mm
— Solid, experiment E ] 350 mm
. . i 1 |=— 431mm
— Dashed, simulation ; _ 5,10 mm
7= =1 [— 5.88mm
) i 1 6.67 mm
"é i 4 |— 746mm
= 5 a
1.5
2
5 £
,_.O -
© B
;’ 1 = =
0.5 E -
0 : | 1 1 1 r 1 1 1 1 1 1 I 1 __
0 0.5 1 1.5
time (Us)
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PBX 9502 — shock-to-detonation transition - 4

m Short shock

e Embedded velocity gauges _ _
SURF model simulation

Shot 25100 3 _ -
- ' ! k 4 |— 0.00mm
P.=14.0 GPa | 1 |— rl4mm
2.5 ' =
—_ “L | 4 | Jlmm
At =0.35 us | i 350 mm
) . i 1 |— 429mm
— Solid, experiment 2F . 5,08 mm
; . K 1 |— 587mm
— Dashed, simulation @ i 6.65 mm
g 1sh 1 |— 745mm
4 7L N
.‘;‘I E |
8 1F |
L B 1
- i
| I
05— I
B I
B |
i I
0 ; i
_0.5 B | | 1 1
0
time (s)
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PBX 9502 — shock-to-detonation transition - 5

m Short shock

e Embedded velocity gauges _ _
SURF model simulation

ShOt 28105 3 T I T I 1 T 1 I 1 1
I ! ! —  000mm
P.=13.9 GPa — 304mm
— 2l mm
— — 500mm
At = 027 HS 579 mm
; ; —— 658 mm
— Solid, experiment 7.36 mm
. ; — 8.14mm
— Dashed, simulation 5 8.94 mm
E — 973mm
4 10,51 mm
=y
2
=]
v
=
> Los Alamos
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PBX 9502 — shock desensitization

m Double shock

e PDV probes

: : SURF model simulation
— Solid, experiment

— Dashed, simulation ! ' ' ' =
- | — 55465
P1 P2 T ]
shot | i
GPa GPa o kR
s ! i
25450 5.3 19 4 | | -
2T | §
25463 7.0 25 g if N
25465 | 9.0 33 S ]
05 =
CJ pressure 28 GPa i i
VN spike pressure 42 GPa 5 i
BFEese== & 6 o 8 o 5 5 5 8 o ki
ﬁ) 1.5 tizme (us) 2.5 3
» Los Alamos
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PBX 9501 — shock initiation & corner turning

® Rod impact, xRage simulations (click on plots to see movie)
I

time 4.20 us : time 4.20 us
I I
__' 4
T :
il N
-1 "
|
v l l : Rod 8.5 mm radius
o B !, Velocity 740 m/s
o o P.=4.5 GPa
I | I' HE: radius 25 mm
e - “ length 30 mm
SURF model : Ignition & Growth model
e Desensitized HE 1 e Initiation leads to reactive wave
ya near corner of rod : in precompressed HE

—)
» Los Alamos
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PBX 9501 Rod Impact Experiment: comparison 1

m Shot 151490
e HE 6 mm thick
e Below run distance on Pop plot
e No shock-to-detonation transition

data 151490 SURF 151490
- dt =-0.032
—~ 31 : 421] o~ 3] — Omm
v | 1 |-- 73 v | = mim
=< r 30 ~ F — 7 mm
= - - 00 = - 12 mm
= of 30| = 2|
> | — +6.8 > |
S I +121) = |
2 1 g 2 1 r
o E [} r
> s > r
0 b 0 b
1 1
[\7
» Los Alamos
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PBX 9501 Rod Impact Experiment: comparison 2

m Shot 151494
e HE 8 mm thick
e Shock-to-detonation transition on axis
e Detonation does not spread transverse direction

data 151494 SURF 151494
s dt =0.028 3
r . ] s — 0 mm
50 b | -2 2°F | 3 mm
= ¥ | 1 -0. ~ F — 7 mm
E - ) ] | 6%1 E - 12 mm
— 21 - ] +3.2 — 21
> 1 |[—+74 >
-"5' i ] +11.9 "5 K
2 1 g 2 1 r
] C @ c
> r > r
O:Illlllllllllllllllnl - | = lIll- 0:||||||||IIIIIIIIIIIlIIIl idii iiai
1.5 2 2.5 3 3.5 1.5
t (us)
[\j
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NATIONAL LABORATORY UNCLASSIFIED Slide 32
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA ' YA | =%

AT\~ 2



PBX 9501 Rod Impact Experiment: comparison 3

m Shot 1s1489
e HE 12 mm thick
e Shock-to-detonation transition on axis
e Detonation spreads in transverse direction

data 151489 SURF 151489
3 dt =-0.098 3 .
[ + — 0 mm
) 3 : . :;22'2 ) 3 - \ 3 mm
e ¥ : e ¥ — 7 mm
S : _ 0208 £ - 12 mm
= of +3.1 < o}
= F — +6.3 = r
= +120] = |
2 1 g 2 1 r
] C @ c
> B > B
o Eedllelin bl i, e o Ediblon bl i, e
2 2.5 3 3.5 4 4.5 2 2.5 3 3.5 4 4.5
t (us) t (us)
/\
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PBX 9502 — curvature effect

m D, (k) curve 8.0
D = Detonation speed 5| el i)
k = front curvature

m SURFplus model

. 6.5
e Quasi-steady ODEs :
e Determines curved detonation state 6.0,
e Requires high resolution
0 — :
40 o crtien point| g
z %, £
I } E
L g
o} | g
: e
R VST S T R
/)_7 K (1/mm)
» Los Alamos
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Model calibration

® What data is available
e Small Scale Database
Extension and replacement for High Explosive Database
On line 4"Q FY2013 (Scovel & Menikoff)
Funded by V&V program (Wysocki)

m Automate simulations
e Data file from Small Scale Database
Header block with key experimental parameters

m Fitting parameters
e Minimize metric for “goodness of fit”
Weight function for data from many different experiments
Shock arrival times & velocity profiles with uncertainties
e Non-linear fit with many variables (up to 26 in WSD model)

[J7 Need good initial guess to start iteration & fix inessential parameters
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Computational issues

® Mesh resolution
e Hot spot reaction zone width ~ 0.1 mm

Comparable to grain size — smaller than needed for homogenization

e Need mesh refinement to track detonation front (AMR)

m Curvature effect
e Detonation speed as function of front curvature
Affected by mesh resolution
e Detonation state for curved front
Depends on rate and reaction zone width
Issue for programmed burn (DSD) model

m Accuracy requirement
e Detonation speed, CJ state and release isentrope
e Application simulations — typically not mesh converged
l\j Coarse mesh, reactive shock rather than ZND profile
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Predictive capability

m Validation of HE model
e Need good EOS for reactants and products
e Need to compare with wide range of detonation phenomenon
Large number of experiments to simulate

— For each explosive
— For each HE model (EOS + burn rate)

e Need to automate simulations

®m Initiation sensitive to initial temperature and initial density
e Calibration for each T, and p,
Treated as distinct explosive — effectively, many more explosives

m Shock desensitization
e SURF model
Naturally accounts for desensitization, rate function of P
pa Possibly account for sensitivity change with initial temperature
» Los Alamos Nl nseitien

NATIONAL LABORATORY Slide 37
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA /i l" D?ﬁh
N AR =4



	Detonation Waves: models & experiments�National Security Energetics council: summit series talk
	HE model regimes
	HE burn model
	TATB crystals (dry animated)
	Ignition & Growth concept
	Ignition & Growth concept – 1
	Ignition & Growth concept – 2
	Ignition & Growth concept – 3
	Ignition & Growth concept – 4
	Burn front area scaling
	Ignition & Growth assumptions
	HE burn  models (pressure dependent rate)
	HE burn  models (rate dependent on lead shock strength)
	HE burn models (two-step reaction)
	Effect of fast-slow rate
	Equations of state
	PBX 9502 – Hugoniot & detonation loci
	PBX 9502 – overdriven detonation & release wave
	PBX 9501 – overdriven detonation & release wave
	PBX 9501 – CJ release isentrope
	Data to calibrate & validate burn rate
	PBX 9502 – Pop plot
	Ignition & Growth concept – shock sensitivity
	PBX 9502 – shock-to-detonation transition - 1
	PBX 9502 – shock-to-detonation transition - 2
	PBX 9502 – shock-to-detonation transition - 3
	PBX 9502 – shock-to-detonation transition - 4
	PBX 9502 – shock-to-detonation transition - 5
	PBX 9502 – shock desensitization
	PBX 9501 – shock initiation & corner turning
	PBX 9501 Rod Impact Experiment: comparison 1
	PBX 9501 Rod Impact Experiment: comparison 2
	PBX 9501 Rod Impact Experiment: comparison 3
	PBX 9502 – curvature effect
	Model calibration
	Computational issues
	Predictive capability

