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Abstract

Photon Doppler velocimetry (PDV) has made the transition among many experimental
groups from being a new diagnostic to being routinely fielded as a means of obtaining
velocity data in high-speed test applications. Indeed, research groups both within and
outside of the shock physics community have taken note of PDV’s robust, high-
performance measurement capabilities. As PDV serves as the primary diagnostic in an
increasing number of experiments, it will continue to find new applications and enable
the measurement of previously un-measurable phenomena. This paper provides a survey
of recent developments in PDV system design and feature extraction as well as a
discussion of new applications for PDV. More specifically, changes at the system level
have enabled the collection of data sets that are far richer than those previously
attainable in terms of spatial and temporal coverage as well as improvements over PDV’s
previously measurable velocity ranges. And until recently, PDV data have been analyzed
almost exclusively in the frequency-domain; although the use of additional data analysis
techniques is beginning to show promise, particularly as it pertains to extracting

information from a PDV signal about surface motion that is not along the beam’s axis.
(LA-UR 13-21198)
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Background:
History

m  PDV architecture was first used for fluid flow measurements in 1964-65
e Ted Strand introduced the modern version in Rev. Sci. Instrum. (Strand, 2006)
e LANL systems have been developed/refined, following Strand’s innovation, since 2004

m There has been a tremendous increase in PDV usage since its introduction

 Motivating factors include: relatively low system costs, ease of implementation,
robustness in adverse experimental conditions, and a single send and receive fiber

m As several researchers have recently pointed out to me, PDV is no longer
considered a “new diagnostic”’, but rather, its implementation is becoming routine
e Indeed, my colleagues field PDV on a variety of tests on a weekly (or daily) basis

 Just a few years ago, 10-20 channels of PDV returning good quality data was considered
a big effort, and by way of contrast, today you would need >150 channels measuring a
single dynamic event to break into new territory
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Background:
Operating Principles

PDV is used in high-velocity (shockwave) and low-velocity (mechanical vibration)
test scenarios

PDV employs an interferometer to create Doppler-induced beats
 We relate beat frequencies to the surface’s displacement along a probe’s beam axis

 Frequency upshift PDV, or heterodyne PDV, was first introduced by E. Daykin and C.
Perez (Daykin, 2008) and implemented early on by P. Mercier et al. (Mercier, 2008)

— Removes directional ambiguity and while offering superior temporal resolution

Circulator Fiber-Coupled
Measurement Laser 1 /\ 2 P%tfef ___________
(~1550 nm is typical) J " Focused
3 Beam
Translating Surface
Photodetection &
Data Acquisition
s Los Alamos
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Background:
Operating Principles

PDV is used in high-velocity (shockwave) and low-velocity (mechanical vibration)
test scenarios

PDV employs an interferometer to create Doppler-induced beats
 We relate beat frequencies to the surface’s displacement along a probe’s beam axis

 Frequency upshift PDV, or heterodyne PDV, was first introduced by E. Daykin and C.
Perez (Daykin, 2008) and implemented early on by P. Mercier et al. (Mercier, 2008)

— Removes directional ambiguity and while offering superior temporal resolution
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Background:
Variations in Architecture

s Different architectures for combining measurement and reference lasers

Homodyne Heterodyne:
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Background:
PDV Overview & Performance Summary

PDV measures Doppler shifts induced by displacement along a beam axis
(Briggs, 2008; Dolan, 2009; Briggs, 2010)

 Does not measure a transversely moving angled surface, since individual surface facets
do not impose Doppler shift... In other words, PDV does not directly measure position

e PDV is robust in the sense that measured beat frequencies always arise from the
displacement of a scatterer along the beam axis, and not from lateral motion, tilt, etc.

PDV is very good at (1) measuring a large range of velocities with relatively low
signal strength, (2) while multiplexing, and (3) in a “plug and play” fashion

e Though, PDV has difficulty measuring quickly changing slow velocities, as a
consequence of fundamental tradeoffs between temporal and frequency resolution

By way of contrast, VISAR is more complex to field, but can do extremely well at
measuring quickly changing slow velocities
 Note, VISAR uses an intensity measurement, and PDV utilizes frequency measurement

The remainder of this talk will focus on PDV specifically...
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System Level Developments:
MPDV Overview

m  Multiplexed PDV or MPDV; 32 channels recorded on a 4-channel digitizer, as
opposed to 4 un-multiplexed or 8 (1x2) time-domain multiplexed channels

e  Multiplexing may be done in the time and frequency domains
e This technique was acknowledged with a R&D 100 award in 2012 (www.rdmag.com)
e MPDYV decreases the cost associated with achieving large channel counts

b.hb%o from D. Holtkam
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System Level Developments:
MPDV Overview
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System Level Developments:
MPDV Overview

m Better use of
bandwidth and

memory resources-

Results from E. Daykin
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System Level Developments:
MPDYV Architecture

Laser, ITU29

Probe 1-1
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System Level Developments:
MPDYV Probe Design

m  MPDYV success is largely supported by probe designs that enable dense packing
(Frogget, 2012)

e Tremendous engineering
efforts at NSTec resulted in
working probe designs whose
reliability, field of view, and
performance enabled
groundbreaking work

e Precise mapping to known
locations on a dynamic surface

Photo from B. Cox & V. Romero
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System Level Developments:
MPDV Ongoing Work & Future Improvements

MPDYV reduces the dynamic range per channel and introduces challenges to the
velocity extraction process (Daykin, 2012)

e Dynamic range is improved by reducing circulator bleed-through, increasing the EDFA
amplification of illuminating beams, and improving probe efficiency

e Consider the advantages of long record lengths and multiplexing in the time-domain,
easing the bandwidth/dynamic range restrictions on frequency multiplexing

e On a related note: Some surface geometries are conducive to cross-talk between probes

An increase in channels demands expedient pre-test diagnostics

 Automatic switching, data-logging, and data-transfer throughout test assembly is
necessary for enabling large channel-counts

e These efforts are underway at NSTec, LANL, and LLNL

With larger and larger data sets, there 1s also room to streamline data analysis
(more on this later)

» Los Alamos

NATIONAL LABORATORY UNCLASSIFIED, LA-UR 13-24921

EST.1943

Slide 15

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’ s NNSA ///NAV

)



System Level Developments:
Leapfrogging for Increased Velocity Range

Leapfrogging is a technique that uses multiple lasers for heterodyning with the
measured signal, and D. Dolan et al. (Dolan, 2013) recently resolved imploding
cylinder velocities from rest up to 43 mm/ps

 System architecture i1s essentially multiple photodetector paths, each with its own
reference beam, and the reference beam wavelengths are designed in such a way that

they span a broad frequency range 60
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Data Analysis Developments:
Expediting MPDV Feature Extraction

The increase in channel count by itself increases the amount of work that goes

into MPDV data analysis

e  One LANL hydro shot with MPDV generates an amount of velocimetry data that used
to take a couple years to accumulate

e This motivates the development of increasingly sophisticated feature extraction
algorithms, even in the case of simple frequency-to-velocity extractions, based purely on
the increase in channel count

e This also motivates establishing an organized framework for relating a tests design,
build, and data

NSTec, LANL, and SNL each have their own data analysis programs

 One approach would be automating the gathering of metrology and incorporating it
throughout the build and into the analysis, and streamlining the analysis through
methods of cutting and pasting baselines, regions of interest, etc. for velocity extraction
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Data Analysis Developments:
Accuracy & Precision Studies

Accuracy and precision studies by D. Dolan (Dolan, 2010), where a Monte Carlo
approach was used to simulate uncertainty and quantify its effects on the
Fourier transform based velocity extraction process

 Precision, as opposed to accuracy, was shown to dominate performance at non-low
frequencies

— Sampling rate, signal duration, and signal to noise ratio were shown to govern the
ultimate precision

o At low frequencies, the discrete Fourier transform is biased toward zero

— This is a direct consequence non-periodic signal elements (e.g., partial
interferometer fringes) in the DFT algorithm (which assumes periodicity)

— This in and of itself 1s a motivation for using frequency-upshift PDV

Experiments by M. Briggs et al. (Briggs, 2011) split a single probe’s signal eight
times and addressed precision in the case of non-constant velocity

A Gaussian fit was used to extract the velocity from the spectrogram, and the results
suggest that its second moment is a reasonably conservative estimate of accuracy
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Speckle Dynamics:
Background

Speckle originates from facets, which generate constructive and destructive
interference in the reflection from a diffuse surface

We recently demonstrated that laser speckle behavior in a PDV signal has utility
in measuring a surface’s transverse motion in some applications (Moro, 2013)

o Historically, signal dropouts caused by speckle have been viewed as a hindrance to PDV

e Perhaps, speckle-induce dynamics can be employed for extracting information about the
surface’s dynamic response, without otherwise requiring system-level changes

A]mag. PDV Measurement Signal
Real >
<€ > o
)
8
©
>
v
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Speckle Dynamics:
Origin and Nature of Speckle in PDV

The speckle pattern originates at the surface and propagates through space

The pattern is imaged by the probe’s lens and is integrated over the single mode
fiber’s core, where it 1s reduced to a single, time-varying amplitude/phase pair
e This mixes with the reference laser, yielding effects on the measurement signal

e Optics may superimpose their own phase onto the pattern, but these are generally
static during a test, and speckle dynamics depend predominantly on surface dynamics
Imaged Pattern is Pattern is Imaged

Coupled to Singl by Probe Lens
ouprer 0 oIete 2 Speckle Pattern Propagates,

Mode Fiber Core )
Preserved in Space
Measurement Laser 17 \2 e
(~1550 nm is typical) | /) oW
3
Referenge Las;r | Speckle Pattern
(~1550 nm is typical) Generated at Diffusely
Reflecting Surface
Transmission from Single
Photodetection & Mode Fiber Propagates
Data Acquisition through Space
> Los Alamos
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Speckle Dynamics:

Measurement of Speckle Properties

An understanding of the relationship between speckle dynamics and surface

dynamics is critical for feature extraction

This test related two copies of the speckle patterns propagating through space:
one mapping onto a CCD array and the other imaging to a PDV probe
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Speckle Dynamics:
Application to Speed Measurement

m Based on tests that we ran 1n the last several months, we demonstrated that a
PDV probe from a typical setup (upshifted or standard) can measure surface
motion transverse to the optical beam (Moro, 2013)

m Therefore, a probe that is angled with respect to the surface’s trajectory may
simultaneously measure motion along the beam axis (using standard PDV
frequency analysis) and transverse to the beam (using speckle analysis)

A Y Z
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Voltage (V)

Normalized Correlation

Speck.

e Dynamics:

Feature Extraction

Coherence times, calculated using the autocorrelation function, have been related

to transverse surface velocities using |v;,|= W
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Speckle Dynamics:
Improved Feature Extraction

m  Further research in this area is motivated by, what are likely, more complicated relationships
between measured speckle dynamics and surface dynamics
e Time-scales, which are treated statistically, depend on the dynamic nature of the speckle pattern

e Spatial dimensions, which are treated statistically, depend on the true speckle size (not its average)
and on the trajectory of a speckle across the measurement aperture

100 Lm Surface Translation: Demonstrates Boiling and Transla;ion

Speckle Veloczz‘y

D d tual kl
| w, Dy D, & epends on actual speckle size

|VSL
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— 124z
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DL
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New Applications:
Optical Fiber “Pins”

=  Mike Shinas (LANL) has developed optical fiber “pins” for sub-nanosecond timing
of shock arrival (Shinas, 2013)
e Simultaneously reveals TOA and frequency content as shockwave interacts with fiber
— Measures the arrival of a shockwave at an optical fiber
— Fibers coated with aluminum performed the best of those tested
e Timing capability is sub-nanosecond, demonstrated with upshift PDV
— For more details, see Mike’s talk on Thursday of this week
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New Applications:

Transparent Media

m Measurement in a transparent medium where simultaneous or sequential events
may be accessible (Mercier, 2012)

Shockwave velocity, measured directly in the medium

Shockwave velocity measured as it interacts with the immersed optical fiber

Meanwhile, the free surface velocity of the transparent medium is also measured
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New Applications:
Ejected Particles and Cloud Shape

s Using tilted probes, the cloud’s structure may provide particle densification or
rarefaction information (Prudhomme, 2012)

e A velocity range may be accessible, depending on the cloud’s depth-dependent opacity
e The particle origin’s free surface velocity is sometimes accessible through the cloud
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New Applications:
Ejected Particles and Particle Size

= PDV probes measure calibrated particles that are ejected from a surface,
providing insight into distinct particle trajectories (Prudhomme, 2012)

e There is promise relating extracted velocity histories to particle size, using a non-linear
optimization technique to solve for system parameters
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New Applications:
Measurement of Slow Velocities

= Applications at relatively slow velocities includes collision welding (Vivek, 2013)
e PDV serves as a diagnostic for monitoring whether or not impact velocities are within

an acceptable window for producing a strong weld
e Flyer velocities are on the order of 300-600 m/s

s  Other mechanical vibrations applications
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New Applications:
Trajectory Reconstruction

Accounting for transverse velocity component directly, or measuring absolute
position directly

e (Can be of critical importance if material position is required, since a transversely
moving angled surface will introduce errors to the position integrated from velocity

e Matt Briggs is presenting on Thursday of this week on a time-of-flight approach for
measuring surface displacement (Briggs, 2013)

Discerning additional information from features in the PDV signal

e What features are embedded in the signal and how to we best exploit them?
 This may include, but is almost certainly not limited to, speckle effects
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Conclusions & Ongoing Challenges for PDV:
System Level

m MPDYV, and related system level developments, are creating new opportunities

 Increases in both usage and channel counts are driving a need to systematically, and
automatically (when possible) process and analyze data

— This includes but i1s not limited to expedited feature extraction

s Leapfrogging demonstrates (as do other creative architectures) versatility in
using PDYV for a range of applications

m There is always a demand for increased oscilloscope resolution and bandwidth

 Related directly to multiplexing limits of MPDV systems, as well as velocity extraction
capabilities of (all) PDV systems

e This is coupled to efficient feature extraction for determining velocity history
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Conclusions & Ongoing Challenges for PDV:
Data Analysis & Phenomenology

m As PDV and MPDYV gain steam, they drive an increase in capability and data
fidelity that enables us to answer new questions

* Questions pertaining to surface response to loading and the interferometer’s response to
such phenomena

— Failure and melt

— Angular reflectivity variations, measured by the scattering of the light at the free
surface, may be connected to surface melting (CEA) or surface fracture

= Either (1) absolute, optical measurement of position or (2) measurement of
transverse velocity, to account for transverse motion of an inclined surface and
better reconstruct surface trajectory

= Signal dropouts (e.g., speckle diversity), and/or better understanding of
relationship between speckle dynamics and surface dynamics
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Questions?
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