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'ThermallFIuid Problems Requiring
Interface Capturing Methods

Recent/Future Static Interface Problems
e Thermal transport in composite materials
e Pore-scale flow in porous media
Recent/Future Dynamic Interface Problems
e Aluminum melting/relocation
Fuel spills
Ablation
Laser welding
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Finite Element Methods for Interfaces in

Fluid/Thermal Applications Tested at Sandia

ALE Diffuse LS XFEM CDFEM
» Separate, static « Single block with smooth | « Single » Separate, dynamic
blocks for air and transition between air block with blocks for air and
water phases and water phases sharply water phases
o L o . enriched .

« Static discretization . Stqllc discretization elements * Interfacial elements
spanning are dynamlca!ly
air and decomposed into
water elements that
phases conform to phases
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Melting and Flow

Method Requirements Comparison for

Reqt./Method ALE Diffuse LS XFEM CDFEM
Enclosure | Existing !\lo’tld|3to§stibrlfe Requires specialized | Existing
PE capability could ry interiace code (to make implicit capability
Radiation reconstruction and surfaces part of enclosure)
diffuse source)
Capillary Existing Existing Requires specialized | Existing
capabllity Specialize Code (Heaviside pressure, | Capabllity
Hvdro- bilit ialized d bilit
y . capability Ridge Temperature and
dynam|CS (Properties and Yelocity, sub-element
sources depend on integration)
level set)

Topology Not possible Existing Existing specialized | Existing
Ch (could try automated | specialized capability specialized
ange remeshing) . .

capability capability
Notes Ideal method for |Ideal method for Better interface physics | Allows large
small deformation | large deformation than diffuse LS, single deformation
with complex with single volume | volume physics, without

volumetric and
interfacial physics

physics and simple
interfacial physics

invasive to code

compromising
physics description
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XFEM - CDFEM Discretization

>

Comparison
XFEM Approximation
o
>& -~ | /‘.
/ o o
CDFEM Approximation

Nl P

e l|dentical IFF interfacial nodes in CDFEM are constrained
to match XFEM values at nodal locations

o CDFEM space contains XFEM space @ Sandia
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Formulation: Thermal Transport

Conduction/Convection RRRIRRIRR ERERE
e Advection — Diffusion
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e Galerkin, Backward Euler, Dynamic geometry
introduces moving mesh term
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Formulation: Melt Dynamics
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e Galerkin, Backward Euler, Moving mesh term
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Formulation: Interface Dynamics

i A
Level Set Equation VAVAVAVAVAVAVAVAVAVAVAVAV VA®.% 00
e Advection equation
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e Galerkin, Backward Euler
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e SUPG stabilization
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e Periodic renormalization
— Compute nearest distance to interface
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Models: Solid-Liquid Interface
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e \iscous Flow — No slip
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Capillary Force
e Same model used in ALE simulations
— Jump in stress due to interfacial tension

|xn+V )N, d = |y VN, dT, V, =(1-nn)V
r

r

Interface Stabilization

e Surface viscosity type stabilization
— Based on recent paper by Hysing

| 1.V u- VN, dr

r

Radiation
e Simple radiation boundary condition
far(T* TN, dr
r

e Enclosure radiation
— Enclosure temperature 2000K
— Repeat viewfactor calculation every time step

Models: Liquid-Air Interface
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‘ CDFEM - Level Set Implementation in
Two Dimensions

Conformal Decomposition Algorithm in Two Dimensions

Isosurface of piecewise linear level set field on triangles generates C° line
segments

Parent non-conformal triangular elements decomposed into conformal
triangular elements

Must choose how to decompose quadrilateral into triangles
— Babuska and Aziz: Large angles more detrimental to accuracy than small angles

— Diagonal chosen to cut largest angle
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‘ CDFEM - Level Set Implementation in
Three Dimensions

Conformal Decomposition Algorithm in Three Dimensions

e |sosurface of piecewise linear level set field on tetrahedra generates C° planar
polygons

e Parent non-conformal tetrahedral elements decomposed into conformal
tetrahedral elements — Intermediate wedges generated

— wedge + tetrahedra
— wedge + wedge

| : | EB () i
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‘ CDFEM - Level Set Implementation in

Three Dimensions — cont’d

e Decompose faces of wedges into triangles and then generate tetrahedra
— Desired strategy is again to choose the diagonals to cut largest angles

— Non-tetrahedralizable wedge called Schonhardt’s polyhedron may be
generated

— Current strategy depends on face

— Interfacial faces — cut largest angle, Non-interfacial faces — select node with largest
level set magnitude (prefers edges that are not aligned with interface)
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Wedge amenable to Schonhardt’s Polyhedron — @ Sandia
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Aria/Krino are running dynamic, conformally
decomposed problems

Dynamic decomposition of blocks and sidesets
Creation of sideset on interfaces for bc application

Phase specific material properties, equations,
source terms, etc.

Parallel
Multiple phases defined by multiple level set fields
Mixed Elements (LBB) Tris/Tets

CDFEM Status: Code Capability

Y ZAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVNIIN
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY() (1N
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAA (0
AYAVAVAVAVAVAVAY SAVAVAYS O
SO YAVAVAVL VA AVAVAVAVAY W g IS
30 AV AVAYAVAVAVAVAVAYA O S g O
SRR AR TR
OO s VAVAVE < O U
K SRS
<R GORTKNKTS
< R
K <R
<P PR
K] VSRR
S SIS
O SRS
<KL POREREKES
S /RS
K FHRIRERES
V% VAVAVAVAVA R 50
SR A AVAVAVAVAVAVAY O
NS NNNININININISTS,
< NNNNANANANNT
<V \VAVAVAVAVAVAVAVAVA

()

Sandia
National
Laboratories



‘ Complications: Degenerate
Decompositions

Strategy to Handle Degenerate or \/

Nearly Degenerate Element
Decompositions

e Standard approach: “Snap to Node” when
edge intersection gets close to node

— Eliminates slivers and infinitesimal sub-
elements

— Can create interface segments that do
not lie between sub-elements of both
volumetric phases

— Huge number of degenerate cases must
be handled

e Alternate approach: “Snap from Node”
when edge intersection tries to get too
close to node — Hetu et al.

— Creates/retains many slivers and
infinitesimal sub-elements

— Interface segments always lie between
subelements of both volumetric phases

— No degenerate cases to handle
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i Results: CDFEM Verification

Two-Dimensional Potential Flow About a Cylinder (static)
— Analytical solution provides quantitative measure of accuracy
— Accuracy of velocity potential and its gradient computed in volume and on interface
— Allows experiments with various boundary conditions
Three-Dimensional Potential Flow About a Sphere (static)
— Analytical solution provides quantitative measure of accuracy
— Accuracy of velocity potential and its gradient computed in volume and on interface
— Allows experiments with various boundary conditions
Two-Dimensional Viscous, Incompressible Couette Flow (static)
— Analytical solution provides quantitative measure of accuracy
— Test of conformal decomposition for viscous, incompressible flow
Three-Dimensional Viscous Flow about a Periodic Array of Spheres (static)
— Comparison with Boundary Element results
— Examines behavior of decomposition up to sphere overlap
Advection of Weak Discontinuity (dynamic)
— Shows ability to capture discontinuities
— Analytical solution provides quantitative measure of accuracy
Solidification of 1-D Bar (dynamic)
— Shows ability to capture discontinuities
— Analytical solution provides quantitative measure of accuracy
Level Set Advection under Rigid Body Rotation (dynamic)
— Shows accuracy of level set advection for given velocity field _
— Shows 2" order in space, 15t or 2" order in time @ gg?igﬁal
Laboratories
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' CDFEM Verification for Static

.

Interfaces
Steady Potential Flow about a Sphere Steady, Viscous Flow about a Periodic Array of
e Embedded curved boundaries Spheres
e Dirichlet BC on outer surface, Natural e Embedded curved boundaries
BC on inner surface  Dirichlet BC on sphere surface
e Optimal convergence rates for e Accurate results right up to close packing limit
solution and gradient both on volume ¢ Sum of nodal residuals provides
and boundaries | accurate/convergent measure of drag force
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— Curve Fit to Zick & Homsy (1982)
O Simulation Results
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CDFEM Verification for Dynamic

Interfaces
1 Advection of Ridge Discontinuity
: ZZI/\ e Constant velocity left to right
°“ e No diffusion, just advection and
C owes time derivative terms
: e Exact solution obtained for entire
H simulation (machine precision)

Solidification of Quenched Bar

e Liquid quenched below melting
point at time 0
" e Exact solution for temperature
! profile and interface location
o Excellent agreement between
simulation and exact solution
(not fully quantified yet)
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CDFEM Verification Still Needed

e One-way coupled solid-fluid flows
— Solid drives fluid with given velocity

— Potential verification problems: Translation of rigid body with
symmetry/periodic bcs, Jeremy’s impulsively driven Stokes problem

e Two-way coupled solid-fluid flows
— Coupled kinematics and stress balance
— Potential verification problems: Body falling under gravity?
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'
4 'Aluminum Melting Demonstration
: Problems

e 2D and 3D Static CDFEM Thermal transport with Enclosure
Radiation
— Uniform block of elements cut by initial surface

— Faces generated on surface are used for enclosure viewfactor
and radiosity calculation

e 2D and 3D Dynamic CDFEM with Melting and Flow with
Enclosure Radiation

— Uniform block of elements dynamically cut by moving Aluminum
interface

— Faces generated on surface are used for enclosure viewfactor
and radiosity calculation

— Surface motion driven by capillary hydrodynamics
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e ' Demonstration Problem:
p 2D-3D Melting with Enclosure

Radiation

~ Time = 257.348755
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Demonstration Problem:
2D Melting and Flow with Enclosure
Radiation — Medium Mesh

Time = 241.8020
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Demonstration Problem:

~ 2D Melting and Flow with Enclosure
Radiation — Fine Mesh

Time = 241.5825
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Demonstration Problem:
~~ 3D Melting and Flow with Enclosure
Radiation — Coarse Mesh

Time = 164.0218
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Demonstration Problem:
3D Melting and Flow with Enclosure
Radiation — Medium Mesh
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i Summary and Future Work

CDFEM is Accurate for Static Interface Problems

Multiple verification tests performed

CDFEM is Robust for Static/Dynamic Interface Problems

Handles arbitrary interface topology in 2d and 3d

CDFEM Provides Flexible Approach for Interfacial Physics

— Allows enclosure radiation on moving fluid interfaces with no additional code

Future/Ongoing Work

Finish transient verification suite

Examine pressure and advection stabilization for nearly degenerate elements
Develop/implement/verify generalized interface evolution strategy
Develop/implement combination of non-conformal adaptivity and CDFEM

Explore relationship between velocity discretization and level set
discretization and impact on stability
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