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Abstract— Terrorist acts are intentional and therefore differ 
significantly from “dumb” random acts that are the subject of 
most risk analyses.  There is significant epistemic (state of 
knowledge) uncertainty associated with such intentional acts, 
especially for the likelihood of specific attack scenarios.  Also, 
many of the variables of concern are not numeric and should be 
treated as purely linguistic (words).  

Epistemic uncertainty can be addressed using the belief/ 
plausibility measure of uncertainty, an extension of the tradi-
tional probability measure of uncertainty.  Fuzzy sets can be used 
to segregate a variable into purely linguistic values.  Linguistic 
variables can be combined using an approximate reasoning rule 
base to map combinations of fuzzy sets of the constituent 
variables to fuzzy sets of the resultant variable. 

We have implemented the mathematics of fuzzy sets, approxi-
mate reasoning, and belief/plausibility into Java software tools.  
The PoolEvidence© software tool combines evidence (pools) from 
different experts.  The LinguisticBelief© software tool evaluates 
the risk associated with scenarios of concern using the pooled 
evidence as input. 

The tools are not limited to the evaluation of terrorist risk; they 
are useful for evaluating any decision involving significant 
epistemic uncertainty and linguistic variables.  Sandia National 
Laboratories’ analysts have applied the tools to: risk of terrorist 
acts, security of nuclear materials, cyber security, prediction of 
movements of plumes of hazardous materials, and issues with 
nuclear weapons.  This paper focuses on evaluating the risk of 
acts of terrorism. 
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I.  INTRODUCTION 

A. Summary of Approach 
The belief/plausibility measure of uncertainty from the 

Dempster/Shafer Theory of Evidence is an extension of the 
probability measure of uncertainty that can better capture 
epistemic uncertainty.  Belief/plausibility is a superset of 
probability and, under certain conditions, belief and plausibility 
both become probability. Under other conditions belief/ 

plausibility become necessity/possibility, respectively.1  Belief/ 
plausibility addresses a type of uncertainty called ambiguity.  
The uncertainty associated with predicting an event in the 
future is ambiguity. 

A simple example illustrates the difference between alea-
tory (random or stochastic) and epistemic uncertainty, and the 
use of a belief/plausibility measure.  Consider a fair coin, heads 
on one side, tails on the other, with each side equally likely. 
The uncertainty as to the outcome of a toss—heads or tails—is 
aleatory.  The probability of heads is one half and the 
probability of tails is one half.  The uncertainty is due to the 
randomness of the toss.  Suppose, however, that we do not 
know the coin is fair; the coin could be biased to come up 
heads, or the coin could even be two-tailed.  Now we have 
epistemic uncertainty; our state of knowledge is insufficient to 
assign a probability to heads or tails: all we can say is the 
likelihood of heads (or tails) is somewhere between 0 and 1.  
To consider epistemic uncertainty as well as aleatory 
uncertainty, belief/plausibility can be used as the measure of 
uncertainty.  With total ignorance about the coin, the belief that 
the toss will be heads is 0 and the plausibility that the toss will 
be heads is 1; similarly, the belief that the toss will be tails is 0 
and the plausibility that the toss will be tails is 1.  
Belief/plausibility form an interval that can be interpreted as 
giving the lower and upper bound of probability.  If we have 
enough information, both belief and plausibility reduce to a 
single value, probability.  Epistemic uncertainty can be reduced 
with more information.  If we toss the coin a few times and a 
heads and a tails occur, we know the coin is two-sided; with 
more tosses we can evaluate the fairness of the coin.  Aleatory 
uncertainty cannot be reduced with more information. 

B. Using Fuzzy Sets 
In addition to ambiguity, we have another type of 

uncertainty called vagueness.  We have vagueness when we 
use linguistics (words) to classify events; for example, 
yesterday was “sunny”, public confidence in the stock market 
is “low”, etc.  Vagueness is uncertainty as to how to classify a 
known event.  For example, assume we know how tall John is, 
but instead of saying John is 6 feet 2 inches tall, we categorize 
John as “tall” without a precise definition of “tall”.  The 

                                                           
1 To be precise, if the focal elements are singletons, belief/plausibility both 
become probability.  If the focal elements are nested, belief/plausibility 
become necessity/possibility, respectively. 
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linguistic (word) “tall’ is vague.  Vagueness can be addressed 
using the mathematics of fuzzy sets. 

Many applications use fuzzy sets for a numeric variable, 
specifically, fuzzy numbers.  Some variables cannot be 
adequately described numerically.  For example, consider the 
variable “Quality of Life”.  We do not know the appropriate 
numeric scale for “Quality of Life”; does it range from 0 to 1, 1 
to 100, -10 to 10, …?  The problem of arbitrary scale is 
exacerbated when variables are combined.  Suppose we 
combine “Quality of Life” and “Outlook on Life” into 
“Happiness”.  If we use arbitrary numeric scales for “Quality of 
Life” and “Outlook on Life” we do not know what the resultant 
numeric answer for “Happiness” means.   

For such situations, it is better to reason on purely linguistic 
fuzzy sets for variables—since the linguistic themselves 
convey more information than any arbitrary number—and 
combine the variables using approximate reasoning.  Here, 
approximate reasoning is a rule base for combining purely 
linguistic fuzzy sets.   

NOTE:  The references provide details on the mathematics 
of belief/plausibility, fuzzy sets, and approximate reasoning. 
[1] through [4]  Also, the references discuss our 
implementation of these techniques. [5] through [10] 

II. APPLICATION 

A. Defining Risk and Threat 
We use expert judgment to create the risk model, specify 

approximate reasoning rules, and assign evidence to variables 
for specific scenarios. 

We define the risk of a terrorist scenario as: 

Risk = Threat x Vulnerability x Consequence (1) 

where “x” denotes convolution per an approximate 
reasoning rule base, not algebraic multiplication. 

A physical security scenario includes adversary resources, 
the attack plan, and the target.  Threat is the likelihood of the 
scenario.  Vulnerability is the likelihood that the Threat is 
successful in causing Consequence.  Consequence is the result 
of a successful scenario. 

We evaluate Threat from the perspective of the adversary 
(the terrorists) and Vulnerability and Consequence from the 
perspective of the defender (us).  The adversary and defender 
each have different uncertainty.  For example, the adversary 
has more uncertainty than the defender for Vulnerability, since 

the adversary has less knowledge of the possible security 
measures in place.  The defender has significant epistemic 
uncertainty for the Threat, but the adversary has no uncertainty 
for Threat as the adversary is the Threat. 

Since the adversaries have a choice of scenarios, they select 
a scenario based on their perception of the combination of 
Vulnerability and Consequence. 

Threat = Adversary Perception of Vulnerability x 
Adversary Perception of Consequence (2) 

B. Variables Used in LinguisticBelief 
For ease of illustration, we will limit our example to the 

variables in equations 1 and 2.  In practice, the variables of 
concern are broken down into numerous constituent variables.  
For example, Consequence can be further developed as a 
combination of: Fatalities, Injuries, Economic Loss, Damage to 
National Morale, Fear in the Populace, etc. 

Note that Fatalities, Injuries, and Economic Loss are “hard” 
consequences, meaning they can be defined numerically.  
However, Damage to National Morale and Fear in the Populace 
are “soft” consequences in that we do not know the appropriate 
numeric scale to use; for these variables a purely linguistic 
description is better than the forced use of an arbitrary numeric 
scale.  Since we will be combining variables, many of which 
cannot be appropriately described numerically, we will treat all 
variables linguistically. 

Each variable is either a basic or a rule-based variable.  
Basic variables are not developed further, and rule-based 
variables are formed by combinations of other variables, either 
rule-based or basic.  For our simple example the basic variables 
are: Vulnerability, Consequence, Adversary Perception of 
Vulnerability, and Adversary Perception of Consequence.  The 
rule-based variables are: Threat and Risk. 

For each variable, we define linguistic fuzzy sets.  For 
example, for Threat we define the fuzzy sets as {Unlikely, 
Credible, and Likely}.  For Vulnerability we define the fuzzy 
sets {Low, Marginal, and High} and for Consequence we 
define the fuzzy sets {Low, Moderate, Major, and 
Catastrophic}.  The rest of the variables are similarly described 
with fuzzy sets. 

C. Creating a LinguisticBelief Model 
To create the model for Risk, the variables and their fuzzy 

sets are entered into LinguisticBelief with the result indicated 
in Figure 1.   



 

Figure 1.  Simple Model in LinguisticBelief 

 

The left panel above shows the variables in a tree structure. 
The right panel displays the current state of a selected variable, 
a node in the tree in the left panel.  In Figure 1, the current state 
of Threat is displayed. 

For each rule-based variable, the variable is defined in 
terms of its constituent variables and the approximate reasoning 
rule base is defined.  Figure 2 shows the approximate reasoning 
rule base for Threat partially completed.  The rules are 
completed using expert judgment. 
 

 

Figure 2.  Approximate Reasoning Rule Base for Threat Partially Completed 

 

Once all the rules have been created, the model is complete.  
A specific scenario is evaluated by assigning evidence (focal 
elements) to each basic variable.  The evidence is assigned 

using expert judgment.  Figure 3 is an example of evidence 
assigned to Consequence by one expert.  

 

 
Figure 3.  Example of Evidence Assigned to Consequence 
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The experts may not assign the same evidence, and the 
PoolEvidence code is used to pool the evidence into one set of 
evidence.  The pooling weights each expert equally.  Figure 4 

is an example of pooled evidence from two experts for 
Consequence. 

 

 

Figure 4.  Pooled Evidence for Consequence 

After all the pooled evidence is entered into 
LinguisticBelief, the scenario may be evaluated.  Using the 
mathematics of belief/plausibility, LinguisticBelief convolutes 
the evidence for the basic variables to produce evidence for 
each rule-based variable.  The variables are assumed to be non-
interacting (independent).  The belief and plausibility of any 
variable (basic or rule-based) can then be evaluated.  Figure 5 

provides example results for Risk for a scenario using dummy 
data.  Two graphs are provided in Figure 5.  The top is the 
likelihood of a fuzzy set provided as a belief to plausibility 
interval.  The bottom graph is the likelihood of exceedance of a 
fuzzy set, with the fuzzy sets ordered from “best” to “worst” in 
the view of the Defender. 

 

 
 

Figure 5.  Risk for a Scenario 



Scenarios are ranked from highest to lowest concern from 
the view of the defender as follows.  Scenarios are ranked by 
non-zero plausibility of exceeding the “worst” fuzzy set 
(decreasing).  For scenarios with equal ranking by plausibility, 
these scenarios are sub-ranked by belief of exceeding the fuzzy 
set (decreasing).  The scenario in Figure 5 has a ranking 
“Exceeds High with Plausibility 1.0 and Belief 0.03”.  If 
another scenario had plausibility/belief of exceeding High of 
1.0/0.4 it would be ranked higher.  If another scenario had zero 
plausibility of exceeding High, but plausibility/belief of 
exceeding Moderate of 1.0/0.9 it would be ranked lower. 

Dominant contributors to Risk for a scenario can be 
identified by examining the belief/plausibility of lower level 
variables; for example, Threat, and its constituent variables.  
We plan to add importance and sensitivity measures into 
LinguisticBelief to automate the evaluation of dominant 
contributors. 

III. CONCLUSIONS 
Evaluation of the risk of intentional terrorist acts requires 

new techniques not available in traditional probabilistic-based 
risk assessment approaches.  Both adversary and defender must 
be considered.  The significant epistemic uncertainty—
especially for the defender related to threat—should be 
addressed.  It is necessary to evaluate and combine purely 
linguistic variables that have unknown numeric scales. 

To address these needs for evaluating the risk of terrorist 
acts, we have implemented the mathematics of fuzzy sets, 
approximate reasoning, and the belief/plausibility measure of 
uncertainty into software tools: LinguisticBelief and 
PoolEvidence. 
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