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1. Introduction 
This document is a Final Report for our Phase II SBIR for work on the topic of Spectrally-Assisted Vehicle 

Tracking.  All program goals have been met, particularly in advancing the state-of-the art in hyperspectral-

aided vehicle tracking. 

 

 

Figure 1.  Tracking performance suffers when target is obscured from view or undergoes erratic motion. 

 

Figure 2 illustrates the basic concept of leveraging target spectral information in complicated scenarios to 

help resolve tracking ambiguities between targets and false alarms.  This simple example illustrates a 

scenario where a green target is initially exhibiting motion that is well characterized by the tracker’s 

kinematic model (e.g. piece-wise linear velocity).  The green target is thus easily tracked from the first to 

the second observation.  Complication arises in the third observation as two complications occur: 1) the 

green target moved erratically, and 2) a false alarm red vehicle entered the scene. 

 

Figure 2.  Target’s spectral signature used to disambiguate confusing tracking scenarios. 
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1.1 Program Goals 
The goal of this Phase II SBIR is to develop a prototype software package to demonstrate spectrally-aided 

vehicle tracking performance.  The primary application is to demonstrate improved target vehicle tracking 

performance in complex environments where traditional spatial tracker systems may show reduced 

performance.  Example scenarios in Figure 1 include a) the target vehicle obscured by a large structure for 

an extended period of time, or b), the target engaging in extreme maneuvers amongst other civilian 

vehicles. 

The target information derived from spatial processing is unable to differentiate between the green versus 

the red vehicle.  Spectral signature exploitation enables comparison of new candidate targets with existing 

track signatures.  The ambiguity in this confusing scenario is resolved by folding spectral analysis results 

into each target nomination and association processes.  Figure 3 shows a number of example spectral 

signatures from a variety of natural and man-made materials. 

The work performed over the two-year effort was divided into three general areas: algorithm refinement, 

software prototype development, and prototype performance demonstration.  The tasks performed 

under this Phase II to accomplish the program goals were as follows: 

1. Acquire relevant vehicle target datasets to support prototype. 

2. Refine algorithms for target spectral feature exploitation. 

3. Implement a prototype multi-hypothesis target tracking software package. 

4. Demonstrate and quantify tracking performance using relevant data. 

 

 

Figure 3.  Spectral signatures from a multitude of natural and man-made materials in both the solar and 
thermal regions. 
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1.2 Schedule 
The schedule of program tasks are illustrated below in Figure 4.  Details for each of the work tasks are 

elaborated upon in later sections of this report. 

 

Figure 4.  Two-year Phase II SBIR project schedule. 

 

1.3 Kickoff meeting 
A kickoff meeting was held at Los Alamos National Laboratory on February 10, 2011.  Meeting attendees 

from DOE included Victoria Franques, Herb Fry, Kevin Mitchel, Brad Henderson, James Theiler, and Bernie 

Foy.  Representatives from SCC included Pierre Villeneuve, Jeffrey Weinheimer, and Scott Beaven. 

The presented briefings included:  

1. Target tracking overview and problem description 

2. Prior SCC efforts and results in hyperspectral-aided tracking 

3. Requirements and goals for representative data for algorithm development 

4. Review of potential system concepts for future prototype software 

5. Preliminary results for an innovative joint spatial-spectral target feature descriptor 

Follow-up discussions focused on available test data and focus of algorithm refinement effort.  Herb Fry 

offered to make available sample data from the DoE’s Blue-Grey experiment from 2005 involving both 

LWIR and VNIR/SWIR HSI sensors over an industrial complex.  While this data does not support the rapid 

repeat coverage rates required for tracking moving targets, it does offer multiple observations of static 

targets over a two-day period. 
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Kevin Mitchel and Herb Fry expressed an interest in investigating cross-band target phenomenology for 

advanced target exploitation.  For example, consider simultaneous LWIR and VNIR/SWIR hyperspectral 

observation of a target of interest, along with sufficient metadata to properly geo-register imagery to a 

common spatial grid.  Given target signatures for both VNIR/SWIR and LWIR (reflectance and emissivity 

spectra), one would expect highly-correlated detector response for those pixels over the target.  

Background clutter in the LWIR versus the VNIR/SWIR is not expected to be highly correlated since they 

derive from different phenomenology sources.  Thus combined VNIR/SWIR and LWIR target detection 

performance is expected to be greater than VNIR/SWIR or LWIR alone.  Efforts in this direction will support 

target-tracking algorithm development as well as longer-term DOE mission interests. 

2. Sensor Data Acquisition 

2.1 Acquired DOE Blue-Grey AL-7 Sample Data 
Sample data from the Blue-Grey collection experiment consists of imagery recorded over the AL-7 target 

site.  Sensor data comprised GLASS LWIR HSI, COMPASS VNIR/SWIR HSI, and a Nikon RGB high-resolution 

context camera.  The primary objective of the AL-7 Blue-Grey collection experiment had little connection 

to the problem of spectrally-aided target tracking.  It is well-characterized data of opportunity that is 

expected to provide additional test case scenarios for developing and demonstrating performance of 

tracking system concepts.  An example of imagery from the RGB context camera is shown in Figure 5.  The 

highlighted red inset shows an example of the diversity of static targets in a parking lot. 

 

Figure 5.  Blue-Grey AL-7 example RGB context camera imagery over parking lot area. 
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Figure 6 shows an example of COMPASS imagery covering the same parking lot area.  The COMPASS sensor 

system collects imagery in whiskbroom fashion.  Each scan is collected while the scan mirror projects the 

line of pixels from one side to the other.  The red parallelogram highlights the same area as the inset in 

Figure 5 above.  Sample target and background spectra from the COMPASS sensor are shown in Figure 7 

from selected vehicle targets and the ground in the parking lot. 

 

Figure 6.  Blue-Grey AL-7 example COMPASS imagery. 

 

Figure 7.  Blue-Grey AL-7 example VNIR/SWIR vehicle spectra from COMPASS sensor. 
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Figure 8 shows an example of GLASS imagery collected over the same parking lot area mentioned above.  

The GLASS sensor recorded HSI data in a push-broom mode where the line of focal plane pixels are 

projected perpendicular to the direction of flight.  This data shows evidence of severe platform vibration.  

An initial analysis of GPS/INS metadata shows that much of this high-frequency motion was not measured 

by the INS system.  This may introduce problems in the near future as we attempt to geo-rectify all image 

datasets to a common spatial grid.  Sample target and background spectra from the GLASS sensor are 

shown in Figure 9 for two vehicles as well as the parking lot ground surface.  

 

Figure 8.  Blue-Grey AL-7 example GLASS imagery. 

 

 

Figure 9.  Blue-Grey AL-7 example LWIR vehicle spectra from GLASS sensor. 
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2.2 Acquired Air Force LWIR Polarimetric Data 
SCC acquired an additional dataset of opportunity from the Air Force Research Laboratory in Dayton, OH.  

This data was collected via a LWIR polarimetric microgrid imaging sensor named PIRATE (Polarized 

InfraRed Advanced Tactical Experiment), [1].  The data collected by PIRATE enables estimation of the S0, 

S1, and S2 Stokes vector parameters at each image pixel.  The S0 parameter corresponds to the LWIR 

broadband radiance, while S1 and S2 correspond to two orthogonal linear polarizations.  Circular 

polarization was not measured by this sensor.  Most manmade objects having smooth metal or plastic 

surfaces show a distinctive polarization signature that enables increased signal-to-clutter measurements. 

The majority of this data consists of small remotely controlled aircraft flying in a wooded area.  Some 

imagery shows the aircraft easily visible against the cold sky background.  Other examples show the 

aircraft nearly invisible against the forest background.  This data is expected to provide test scenarios that 

highlight two work areas: 1) small moving target that is difficult to track against certain backgrounds; and 

2) demonstrate potential benefits in tracking performance when polarimetric phenomenology is 

leveraged to increase target-to-background contrast. 

2.3 Collected Hyperspectral Video Test Data 
We performed a small data collection experiment directly on the SCC premises using two independent 

sensors: and wide field-of-view high-definition RGB camcorder and a 20-band VNIR video HSI sensor on 

loan from Bodkin Design & Engineering (BD&E).  The camcorder recorded imagery (3 bands, 1920 x 1080 

pixels) at 60 frames per second, while the BD&E sensor recorded HSI video data (20 bands, 180 x 180 

pixels) at 30 frames per second.  The camcorder provided RGB context imagery over a wide field of view, 

while the video HSI was operated with a zoom lens and was manually steered to follow target objects of 

interest. 

The experiment scenario involved civilian vehicles and civilians in a busy commercial parking lot.  The 

camcorder was mounted static on a tripod for the entire experiment.  The video HSI sensor was steered 

to follow a single red and white vehicle as it drove throughout the parking lot.  The driver was instructed 

to exit the car, walk about the parking lot, and then return to the vehicle.  This collection of data directly 

supports algorithm development and concept demonstration.  Figure 10  shows sample imagery from 

both sensors at approximately the same time.  The tracked civilian vehicle is clearly identified as a red and 

white Mini Cooper with a Canadian flag on the roof. 
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Figure 10.  Sample imagery from in-house hyperspectral video data collection experiment. 

 

 

Figure 11.  Sample spectra from civilian vehicle and adjacent background. 

 

2.4 Investigate Additional In-House Data Sets 
SCC has access to large volumes of HSI data from a number of VNIR/SWIR and LWIR sensors.  While only 

a fraction of this data supports quantifiable analysis of moving targets via repeat sensor coverage of a 

scene, it is adequate to supplement the recently acquired Blue-Grey multi-sensor data and AFRL 

polarimetric LWIR imagery. 

The HYCAS VNIR/SWIR sensor collected over a mall parking lot with a large number of civilian vehicles 

(Figure 12).  This example consists of four subsequent scene observations separated by approximately 

four minutes.  A total of 180 stationary vehicles were manually masked in order to evaluate nomination 

performance.  This data has been exploited previously to investigate a number of target nomination and 

association phenomenology problems.  The primary restriction with this data is that the repeat 

observation rate spans multiple minutes, and thus it is not particularly suited to analyses that depend 

upon measuring a target’s kinematic motion. 
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Figure 12.  HyCAS Mall East data with 180 manually masked target vehicles over four repeat looks of same 
area. 

 

 

Figure 13.  SPIRITT imagery with manually defined vehicle target masks. 
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SCC has processed several examples of SPIRITT VNIR/SWIR “spot mode” data (Figure 13) from several 

large cities in the US.  The SPIRITT system is an embedded suite of multiple sensors viewing a scene 

through a common optical path.  This system generally operates at high altitude (50 kft) and observes 

targets at long slant range (25 km).  The current configuration includes four channels: VNIR hyperspectral, 

SWIR hyperspectral, VIS panchromatic, and MWIR panchromatic.  A small number of datasets are 

available where SPIRITT operated in “spot mode” and flew large circles (25 km radius) while observing 

target areas for extended periods.  These datasets have proven useful while investigating use of a single 

sensor to perform both spatial and spectral target tracking tasks. 

 

 

Figure 14.  Polecat-3 LWIR HSI with multiple repeat observations of civilian vehicle targets. 

 

Example LWIR vehicle target data exists in the form of Polecat-3 Red-Snapper three-whisk sets collected 

over an El-Segundo, CA parking lot populated with a large number of civilian vehicles.  The site was 

observed multiple times over a period of many hours, thus allowing for controlled testing of repeated 

target observations.  Vehicle target spectral phenomenology was investigated by manually selecting 

samples from numerous on-target pixels. 
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3. Algorithm Refinement and Data Analysis 

3.1 Scene-Based Image Registration 
The LWIR polarimetric data collected by PIRATE [1], mentioned earlier in Section 2.2, enables investigation 

of the potential improvement that polarimetric sensors can bring to tracking small hard-to-see targets.  

Most manmade objects having smooth metal or plastic surfaces show a distinctive polarization signature 

that enables increased signal-to-clutter measurements. 

 

Figure 15.  Scene-based pair-wise image warping applied to PIRATE LWIR sensor data. 

The majority of this data consists of small remotely controlled aircraft flying in a wooded area.  Some 

imagery shows the aircraft easily visible against the cold sky background.  Other examples in this data 

show the aircraft nearly invisible against the forest background.  This data is expected to provide test 

scenarios that highlight two work areas: 1) small moving target that is difficult to track against certain 

backgrounds; and 2) demonstrate potential benefits in tracking performance when polarimetric 

phenomenology is leveraged to increase target-to-background contrast. 
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Figure 16.  PIRATE S0 imagery analogous to LWIR broadband.  Tracking airplane through vegetation clutter 
is difficult dues to reduced thermal contrast. 

 

Figure 17.  PIRATE Degree of Linear Polarization (DoLP) processing greatly enhances moving target tracking 
performance. 
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This particular dataset involved observations of a small aircraft flying in front of a cluttered vegetation 

background.  This data offered an opportunity to investigate the potential gain in target-tracking 

performance obtained from processing the aircraft’s polarization signature.  Camera motion was 

accounted for by computing the homographic image transform between all adjacent image pairs.  These 

transforms were chained back-to-back in order to derive the global transform required to warp each 

image to the coordinate system of a user-selected reference image. 

Pairwise image warping homographies were derived from analysis of in-scene feature point coordinates 

determined using the SURF algorithm [2].  The SURF image feature is a 64-dimensional vector derived 

from the local area histogram of image gradients.  The homography transform between image pairs is 

computed using a fast implementation of the RANSAC algorithm [3].  This solution method is very efficient 

at rejecting feature correspondence pairs that do not agree with the expected image-to-image projection 

transform.  Results of computing and applying image-to-image homography transforms are show above 

in Figure 15. 

3.2 LWIR Polarimetric Target Tracking 
A baseline tracker algorithm was applied to the airplane target viewed in the thermal broadband imagery 

and with the DoLP polarimetric image data product.  Preliminary results show qualitative improvements 

in tracking performance as shown below in both Figure 16 and Figure 17.  These figures show three 

individual frames selected from the original video sequence of several hundred frames.  Notice that the 

airplane is virtually undetectable in the S0 broadband data as shown in the center inset of Figure 16.  The 

corresponding image frame in Figure 17 shows an easily detectable target. 

We applied an alpha-beta tracker [4] [5] to a sequence of 122 corresponding S0 and DoLP image frames. 

The alpha-beta tracker is based upon a first-order kinematic prediction model, i.e., it assumes that objects 

of interest travel at a constant velocity. Target nominations are performed through sequential image 

differencing after scene-based registration. It is worth noting that we applied the tracker to single-channel 

DoLP imagery, rather than the full linear Stokes vector data, due to time constraints, although we have 

plans to pursue such a modified tracker in the future.  Alpha-beta tracker performance is directly tied to 

the quality of the frame-to-frame image registration.  All registration was performed on a frame-to-frame 

basis using the following procedure: 

1. Identify Distinct Image Features: The SURF feature descriptor algorithm19was applied to two 

sequential image frames to nominate distinctive spatial regions within each image. 

2. Associate Common Image Features: Features are compared across the image pairs and similar 

ones are matched. Image pairs are rejected that violate the expected image-to-image projection 

transform. 

3. Compute Projection Transform: Matched features are used to compute the projective image 

transform. 

4. Project Images to a Common Coordinate Space: Each image is warped onto a common coordinate 

space according to the estimated projection transform. 
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After registration, the initial position of the target was selected by hand and the alpha-beta tracker was 

applied independently to the S0 and DoLP image frames.  Figure 16 and Figure 17 show a timeline of image 

frames extracted from each tracker-applied video sequence. In both cases the tracker is performing well, 

indicated by the target being within the yellow tracker prediction circle. For these aircraft, the strong 

thermal signature from the aircraft engine appears to provide enough contrast for the tracker to remain 

locked onto the target in both the S0 and DoLP sequences.  However, there is a case where the aircraft 

turns to fly towards the trees and the thermal S0 signature is not observable by the camera for several 

frames.  Once the aircraft turns and the thermal engine signature is again visible, the tracker reacquires 

the aircraft and successful tracking resumes [1]. 

 

3.3 Joint Spatial-Spectral Target Feature Descriptor 
Prior efforts at applying spectral processing methods in support of vehicle tracking have primarily focused 

on exploiting a single spectrum extracted from on-target HSI data.  This tied in very easily with existing 

algorithms and tools for spectral matched signature processing.  The drawback to this simple approach is 

that the spatial variability of the vehicle’s signature was ignored.  We have investigated this issue by 

leveraging state-of-the-art machine vision pattern-matching algorithms.  The DAISY spatial feature 

descriptor [6] in particular showed promise as it enables processing of local image gradient information 

in a manner similar to hyperspectral imagery.  The DAISY algorithm computes an N-dimensional feature 

vector for each image pixel which is then exploited very much like a traditional hyperspectral data cube.  

Our effort has focused on a joint spatial-spectral exploitation algorithm by applying DAISY to each band 

of a HSI cube. 

 

 

Figure 18.  DAISY feature-local sampling pattern. 
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An example application of DAISY to support spectrally-aided tracking is shown in Figure 19 for HyCAS HSI 

data collected over a civilian mall parking lot.  This figure shows a single target highlighted in the black 

square on the left panel of Figure 19.  The three inset panels show three types of target signature 

extraction: a) single pixel spectrum per target with 95 spectral bands, b) grey-scale image with DAISY (17 

petals) computed at each pixel, and c) joint DAISY and hyperspectral feature with 17 DAISY petals 

computed for each pixel and each spectral band. 

 

 

Figure 19.  Joint spatial-spectral target feature descriptor using DAISY for each band. 

 

This test data was evaluate for target association performance using a user-defined target truth mask 

indicating the positions of 180 individual vehicles over a total of four repeat HyCAS flight passes.  Track 

association performance was evaluated by computing the frequency by which each target properly 

associated with itself in the three alternate looks while using ACE as a spectral matching metric.  In this 

case the term “spectral” is used loosely to include the three feature signature modes defined in Figure 19. 

Quantitative performance results [7] [8] are shown below in Figure 20 in the form of probability of 

detection (or association) versus average number of false alarms.  DAISY applied to the grey-scale imagery 

yielded higher performance than traditional hyperspectral processing, while joint spatial-spectral 

processing yielded significantly higher performance than either spatial alone or spectral alone. 
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Figure 20.  Performance curve comparing spatial versus spectral information. 

 

3.4 Spatial-Spectral Signature versus Spectral Window 
The results of the previous section show that joint exploitation of a target’s spatial-spectral features has 

potential to significantly improve vehicle tracking performance.  This work leads naturally to pose 

questions about potential sensor system configurations where practical trade-offs must be made between 

spatial resolution versus field-of-view versus spectral resolution versus spectral bandwidth.  This is 

tremendously large parameter space, especially given that most fielded systems will likely involve two or 

more sensors operating collaboratively. 

Our initial investigation of this trade space has focused on the relative impact of spectral sampling for a 

given configuration of the HyCAS sensor, using the same data as in the previous section [9].  A simple 

scalar measure of performance is derived from the ROC-type curves shown in Figure 20 by computing the 

area under each respective performance curve.  This metric is directly related to overall performance of 

a particular sensor and/or algorithm configuration.  An observed increase in the ROC area metric may be 

directly interpreted as increased performance for target track association as an average over all vehicles 

measured in the study. 

The spatial-spectral performance analysis of the previous section were repeated for a single band at a 

time, thereby eliminating spectral correlation as an exploitable feature and focusing on effective of the 

DAISY feature at each band.  This yields the results shown in Figure 21 where the target track association 
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integrated performance is plotted as an independent quantity at each of the 95 HyCAS sensor bands.  

These results yield insight into the performance trade space as a function of band selection for a given 

sensor and for a given local spatial feature sampling template.  Several interesting observations may be 

made from this result: 

1. The blue and green portions of the visible spectrum yield higher performance versus the red and 

NIR portions of the spectrum. 

2. The SWIR bands between 2.1 𝜇𝑚 and 2.4 𝜇𝑚 show similar high performance levels, even though 

these send bands have lower overall SNR levels due to reduced solar illumination levels. 

3. Overall performance increases as more bands are added to the process up until a plateau is 

reached (green curve in Figure 22), beyond which additional bands yields no improvement. 

4. The final set of bands which yielded no improvement corresponds to the red and NIR portions of 

the spectrum. 

 

 

Figure 21.  Single-band performance versus multi-band selection threshold. 
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Figure 22.  Target association performance versus selected band subset. 

 

 

Figure 23.  Conceptual framework for a multiple-hypothesis tracker (MHT) system. 
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3.5 Multiple-Hypothesis Tracker 
In the terminology of a Multiple-Hypothesis Tracker (MHT) [10], a hypothesis is the state of motion and 

color models of all the current tracks along with the history of the tracks gathered so far. When a new 

measurement is associated to one of the tracks in a hypothesis, the hypothesis is updated.  In a standard 

tracker, a motion model and gating criteria are used to associate a new measurement to one of the 

existing tracks. If a measurement could credibly be associated to more than one track, the most likely 

track is chosen. 

In a multi-hypothesis tracker, if a measurement could reasonably be associated to more than one track, 

the hypothesis is forked.  Multiple child hypotheses are generated.  Each hypothesis is assigned a scalar 

likelihood that all its tracks are appropriately associated. This overall likelihood number is based on how 

well the new measurement fits the prediction of the motion and color models for the track to which it 

was assigned. With each new set of observations, the child hypotheses are ranked in order of probability 

so that unlikely hypotheses can be removed. To compute the likelihood that a hypothesis could occur 

requires a model.  The model used computes the product of the probabilities that each new observation 

has been appropriately assigned to a false alarm, a new track, or to a continuation of any of the previous 

tracks. 

3.6 Particle-Filter Tracker 
While the MHT framework described above is convenient for managing numerous targets over extended 

periods of time, a tracker based upon the particle filter (PF) concept has recently proven successful as a 

powerful tool for numerically propagating a target’s model state vector and making comparisons with 

newly-nominated candidate targets.  We have performed preliminary evaluation of several methods for 

implementing particle filters.  The basic concept is illustrated in Figure 24 where at each time step two 

basic calculations are performed: 

1. Monte-Carlo forward propagate large number of random realizations (particles) of current target 

(dark red points in Figure 24). 

2. Weight each particle by the likelihood of that model instance versus the new data observation.  

Reject those particles with low likelihood (light-grey points in Figure 24) and accept only those 

particles with high likelihood (bright red particles in Figure 24). 

The mean value of the final accepted particles represented the expected state of the target given the new 

data observation.  The Monte-Carlo approach behind particle filters enables complex model not easily 

adapted to analytical probability distributions.  In other words, the particle filter enables joint combination 

of numerous target parameters and descriptive features.  Finally, the numerical values output by each 

particle filter are readily ingested by the MHT system described above. 
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Figure 24.  Example scenario illustrating a particle filter-based tracker system. 

 

4. Software Tracker Framework 
This section describes the functionality and usage of the Hyperspectral Assisted Tracking (HAT) Suite for 

investigating spectral-aided tracking methodologies and providing a real-time interface for a tracking 

display.   This foundation architecture supports adaptation to a wide scope of future sensor conops 

configuration.  Figure 25 illustrates the four initial functional requirements as a data-flow diagram: 

1. Data source: 

 Ingest sensor image data from one or more sources 

 Trigger main event loop 

 Data preprocessing (e.g. geo-registration) 

 Deliver scene image update to tracker module 

2. Target tracker: 

 Accept new images from data source 

 Read prior results from storage 

 Application logic and tracker algorithms 

 Target nomination and track association 

 Maintain target(s) state information vs. time 

 Write new results to storage 
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3. Data storage: 

 Practical archive for imagery and track results 

 E.g. File system structure, or SQL database 

 Receives data from tracker 

 Sends data to tracker and user control 

 Contains sufficient information to “replay” tracking scenario 

4. Use interface: 

 Primary display of tracking results 

 Information update triggered by data source event loop 

 Primary interface for algorithm & sensor control parameters 

This portion of our Phase II SBIR effort has focused on the clear definition of software interfaces for the 

three large green arrows shown in Figure 25 where data is passing from one module to another.  The 

software functionality within each of these components is extended from previous government-funded 

efforts.  The notable exception in this case is the implementation of our most recent advances in joint 

spatial-spectral target feature exploitation. 

 

 

Figure 25.  Prototype tracker software architecture with four independent components: 1) Data source, 2) 
Tracker, 3) Data storage, and 4) User control. 
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A significant amount of our task for software prototype development has focused on the target tracker 

module.  This involves adapting the spatial-spectral tracker to the multiple-hypothesis tracker (MHT) 

framework, which was described earlier in concept form in Figure 23.  The MHT framework is important 

in order to manage multiple targets observed over extended periods of time.  MHT utilizes a soft-decision 

approach based on probabilities, where multiple possibilities for the target are maintained for some 

period of time and then discarded when they are determined to have low likelihood of being correct.  The 

decision is delayed so that more information can be collected to make a better decision.  In this 

framework, a potential track consists of a history of nominated objects across the looks up to the current 

time.  Tracking involves properly assigning nominated objects to the correct tracks.  

For this application, a target truth mask is used to initiate target tracks.  The first two observations of a 

target are used to compute the targets initial state.  The process of tracking proceeds as follows.  The 

filtered position and velocity of the track from the previous look are used to predict the position of the 

target in the current look.  A nominated object is associated with the track.  The filtered position and 

velocity are then computed to be used in the next look.  The final implemented data flow software 

architecture is shown below in Figure 26. 

 

 

Figure 26.  Software data flow for the Hyperspectral Assisted Tracking module. 

 

The software foundation framework consists of three application modules that communicate over TCP/IP 

for data transfer and control purposes.  The Target Generation module reads sensor data and generates 

target tracks based on currently selected settings.  The tracking results along with imagery are then sent 

to the Product Display module that constructs the RGB images of the tracking results.  These results are 

then passed to the Command and Control Computer (CnDC) for display to the user.  The CnDC also allows 

the user to change the tracking parameters 

The modules are set up to operate in the manner in which many real-time systems have already been 

successfully implemented.  The suite operates on a single look of sensor imagery at a time.  In principle 
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the target generation module could receive L1 and Geo-Registered data from a real-time system and 

perform tracking and display in the same manner as from data files with little modification. 

One goal of this suite was to make it easier to test new tracking modules.  In previous tracking tools, one 

application would generate the tracking results and another application would display the results.  This 

meant running the target generation application many times in order to establish the best tracking 

parameters.  In the HAT Suite, changes to the parameters are immediately applied and displayed for quick 

feedback. 

The use of TCP/IP networking messages makes solution highly flexible.  The modules can all run on 

separate computers which can be useful if processing power is an issue without resulting in too much 

latency. 

 

 

Figure 27.  Target tracking algorithm data flowchart. 

When a new look of imagery is available it is co-registered with the previous look to put the new look in 

the same frame of reference as the previous looks.  Possible targets are then nominated for tracking.  The 

possible targets are then associated with existing tracks or used to create a new track if no suitable track 

already exists.  The tracks are then updated with the new nomination measurements.  A filtered position 

is calculated which is used to predict the location of the target in the next look.  Targets are tracked by 

http://www.spacecomputer.com/


SCC-R-236-2   
 

  Space Computer Corporation 
  Los Angeles, California 
  www.spacecomputer.com 

maintaining a state of each target in every look.  The kinematic model consists of a constant velocity model 

which is valid if the time between looks is sufficiently low. 

The time interval between observations is given by 𝑇 and the state vector at time 𝑛𝑇 is given by the 

expression �⃗�(𝑛) = [𝑥(𝑛), �̇�(𝑛)]𝑇.  The constant velocity model is given by �⃗�(𝑛) = Φ�⃗�(𝑛 − 1), and with 

Φ = [
1 𝑇
0 1

].  An alpha-beta tracker is used to produce a filtered estimate for position based on a new 

measurements 𝑧(𝑛) for each look: 𝑧(𝑛) = 𝐻�⃗�(𝑛) + 𝜈(𝑛), with 𝐻 = [1, 0] and 𝜈(𝑛) is a Gaussian noise 

process.  The filtered estimate based on new measurement and previously filtered estimates is given by 

�⃗�′(𝑛) = [𝑖 − 𝐾(𝑛)]Φ�⃗�′(𝑛 − 1) + 𝐾𝑧(𝑛).  The vector 𝐾 is defined as 𝐾 = [
𝛼

𝛽/𝑇], where 𝛼 controls 

position smoothing, and 𝛽 control velocity smoothing.  Values for 𝛼 and 𝛽 each range between 0 and 1. 

4.1 Target Nomination by Frame Differences 
Nominating targets for tracking can be achieved by several methods.  This application has the option to 

utilize frame differencing to identify moving objects and a single band DAISY descriptor which is roughly 

equivalent to spatial template matching.  A standard technique used to identify targets for tracking is by 

looking at the difference between subsequent frames of imagery to identify the movers as illustrated in 

Figure 28. 

 

Figure 28.  Target nomination via frame difference calculation. 

Computing the difference between two looks of imagery in a single band identifies moving objects that 

can be tracked.  The two images on the left are images of a freeway off-ramp taken ~2s apart. The image 

on the right shows the difference between the two images.  The white and black spots show the locations 

of vehicles in the two looks.   A Threshold is applied to provide a list of nominated targets.  This method 

works poorly if the targets are stationary. 
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4.2 Target Nomination by Single-Band S-DAISY 
When there is sufficient spatial resolution of the imagery, the spatial features of the targets can be used 

to locate the same target in the next look by searching in the vicinity of the predicted position.  S-DAISY 

[7] is a spatial descriptor that can be treated as a signature in signature matched detection as illustrated 

in Figure 29 and Figure 30. 

 

 

Figure 29.  Single Band S-DAISY descriptor is used as a spatial feature signature to find the target in the next 
look.  (Left) A broadband image of a set of toy cars with different spatial features.  (Middle) An S-DAISY 
descriptor centered on one of the cars. (Right) The resulting spatial descriptor signature for the car. 

 

Application of the Single Band DAISY descriptor to detect the same car in a subsequent look using a 

matched filter.  The Matched Filter was computed for every pixel in the scene using the spatial signature 

of the car from the previous look (Figure 30).  The background statistics were computed on spatial cube 

generated by applying the same S-DAISY pattern to every pixel in the scene.  The matched filter shows the 

strongest detection for the target where the signature was extracted.   More spatial pixels on the cars will 

generally lead to better detection performance. 
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Figure 30.  S-DAISY descriptor implemented as detector for nomination. 

 

4.3 Target Association by Nearest-Neighbor 
Association attempts to associate the correct nominated target out of several targets with a track.  In this 

application we use the closest target to the predicted position and the most similar target based on the 

S-DAISY spectral-spatial feature.  One of the simplest ways to associate nomination with tracks is to 

choose the one closest to the predicated track position.  This method works well if the time between looks 

is sufficiently low and the vehicle remains unobstructed from view. 

4.4 Target Association by Full DAISY Comparison 
A spectral-spatial feature can be used to associate the nomination that has the most similar features to 

the target in track.  For this purpose we use the S-DAISY signatures applied to several bands constructed 

as shown in Figure 31. 
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Figure 31.  Example construction of the DAISY spatial-spectral signature. 

A notional example for producing a spectral-spatial feature for a 3-band image is shown in Figure 31.  The 

target consists of a simple Gaussian in the red band, a gradient in the x-direction in the green band and a 

gradient in the y-direction in the blue band.  The concatenated signatures encode both the spatial and 

spectral information of object. 

Since the signatures contain both the spatial and spectral features of the target we can compare the 

signatures of targets in one look to targets in another look to find the most similar target across looks.  

Ideally the targets should have the highest similarity metric with itself.  Figure 32 illustrates how the 

similarity matrix is computed for a group of targets across two looks for re-association. 
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Figure 32.  Target similarity metric computed from extracted spatial-spectral feature vectors. 

An example target similarity matrix (Figure 32, left) constructed by computing a whitened spectral angle 

similarity metric between every target in one look with all of the targets in another look using the statistics 

of the background descriptor cube.  The diagonal represents the similarity of the targets with themselves 

and the off-diagonal represent the similarity of targets with the other targets.  Perfect performance occurs 

when the maximum similarity metric occurs for each target with itself so that no other targets have a 

higher similarity. By dividing each column of the matrix with the value of the corresponding diagonal the 

association performance becomes more apparent (Figure 32, right). 

In previous work [8] [5] [4] we have shown how this is an effective measure of similarity.  The association 

performance improves with more target spatial resolution and spectral information.  In the target tracking 

application, the similarity metric is computed between the target in track and the nominated targets.  The 

target nomination with the highest similarity metric is assigned to the track. 

4.5 Input Data Formats 
The modules operate on data that stored on a one look per file basis in a common data directory. 

 Scene Spectral cubes: 

The scene files consist of a series of ENVI cubes (samples, lines and bands) stored one look per file with the 

following naming format: 

<SceneFname>XXXX.ext 

The file can start with any valid filename characters.  An N-digit number indicating the look index follow the 

filename start.  This ensures that the files are properly sorted based on their look index.  The extension does not 

matter as long the file is ENVI data.  An ENVI header is required with each file in with either of the following 

names to match the scene filename. 

<SceneFname>XXXX.hdr 

or  

<SceneFname>XXXX.ext.hdr 
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 Validity Masks: 

These files contain a mask of the valid imagery pixels with the associated scene spectral cube.  These files must 

contain only one band with a mask of the valid pixels in the scene data. A 0 indicates invalid data, while a 1 

indicates a valid pixel. 

The filenames based on the scene must match: 

<SceneFname>XXXX_validity.ext 

An appropriate header with each file is required. 

 Truth Masks: 

These files contain the known locations of the targets for the first two observations and are used to initiate the 

tracks tracking.  The files are integer format with 0 for the location of no targets and nonzero target IDs for each 

target.  The average position of pixels for each target is used for the position measurements in track initiation.  

The target IDs must be consistent across looks so the targets can be associated properly across the first two 

observations.  The files can contain truth masks for all looks, but only the first two observations will be used in 

the tool. 

The filenames based on the scene must match: 

<SceneFname>XXXX_truth.ext 

An appropriate header with each file is required. 

 Time Maps: 

The time at each pixel may not be the same depending on how the spectral data cubes were acquired.  For a line 

scanning system, the time at each position in the cube will vary since the image is built up by scanning.  This 

difference in time must be appropriately accounted for or tracking performance will suffer.  If the time map files 

are not present, the time of the look will be assumed to correspond to the look index.  This will be appropriate 

for data collected with a framing system. 

The filenames based on the scene must match: 

<SceneFname>XXXX_time.ext 

An appropriate header with each file is required. 

 

Example: 

A set a data files might look like the following as an example: 

scene_data_0000.dat 

scene_data_0000.dat.hdr 

scene_data_0000_time.dat 

scene_data_0000_time.dat.hdr 

scene_data_0000_truth.dat 

scene_data_0000_truth.dat.hdr 

scene_data_0000_validity.dat 

scene_data_0000_validity.dat.hdr 

scene_data_0001.dat 

scene_data_0001.dat.hdr 

scene_data_0001_time.dat 

scene_data_0001_time.dat.hdr 

scene_data_0001_truth.dat 

scene_data_0001_truth.dat.hdr 

scene_data_0001_validity.dat 

scene_data_0001_validity.dat.hdr 
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4.6 Application User Interface 
The main application control panel is shown below in Figure 33.  The file menu is used to load the data for 

processing and exiting the program.  The selection Open opens a file dialog for selection of the spectral 

imagery for processing.  The user chooses a single spectral cube file and the application determines all of 

the associated files.  The selection Exit closes the application. 

 

 

Figure 33.  Application primary control panel. 

 

The left window of the control panel above shows the full data imagery, while the right window shows a 

zoomed in section with overlaid tracking results.  The arrow keys control cycling through the looks via the 

look index control panel.  When the look index is incremented, tracking is performed with the currently 

selected options.  When the look index is decremented, the previous track states are loaded and no 

tracking is performed.  The current look index is displayed between the arrows that control the look index.  

The yellow box in the left window represents the currently selected region of interest.  The target markers 

in the right window consist of a measured position (X), a predicted position (box), and a filtered position 
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(plus).  The color of the markers is consistent for each target from look to look.  The shown displays are 

false-color RGB images of the input spectral data.  The size of the zoom window is controlled by the 

dropdown list at the top-right of the control panel.  

An optional display of the normalized difference image that can be displayed in the right control panel 

window is shown below in Figure 34.  This shows the difference image computed between the two looks 

along with overlaid target markers.   The bright and dark blobs are the basis for target nomination via 

frame difference (Section 4.1). 

 

Figure 34.  The zoomed image showing the normalized difference data product along with target markers. 

The nomination metrics are threshold to identify objects for tracking.  The parameters set the threshold 

values.  The options allow for a two sided threshold where pixel above a certain value are kept and below 

another value are kept.  This option is useful for the frame difference nomination.  If no thresholding is 

chosen then the tracking results will result in the targets remaining in their constant velocity predicted 

states without updating with new measurements.  These thresholded values affect the tracking in addition 

to the various chip display options.  

5. Conclusions 
Long-term continuous moving-target surveillance from airborne electro-optical sensors provides critical 

information for tactical awareness situations.  Tracking civilian vehicles in urban environments is a 

challenging problem for existing systems, which generally rely on high-resolution video imagery to identify 

targets by their spatial characteristics.  It is difficult for current spatial-based trackers to re-acquire target 

lock once the subject has been obscured from view for even moderate lengths of time. 
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The goal of this effort has been to demonstrate the exploitation of a vehicle target’s unique spectral 

signature as a means to improve overall tracker performance.  An example solution is to leverage the 

combined strengths of both spatial and spectral feature matching capabilities into a generalized multiple-

hypothesis tracker system.  This effort has demonstrated effective joint exploitation of spatial-spectral 

target features via the S-DSAISY algorithm.  A foundational software framework was developed that will 

enable future exploration of additional target tracking algorithm concepts. 
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