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Dynamics and Directional Locking of Colloids on
Quasicrystalline Substrates

C. Reichhardt and C.J. Olson Reichhardt
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA 87545

ABSTRACT

Recently it has been shown that novel colloidal orderings can occur on fivefold and sevenfold quasicrystalline
substrates created with optical arrays. Using numerical simulations we examine the types of dynamical phases
that arise for colloidal and other types of particles driven over quasicrystalline substrates. We find that even
though the substrate has no translational order, directional locking effects can occur in which the particles lock to
certain orientational symmetry directions of the substrate as the applied drive is rotated. We also find dynamical
commensuration effects where the magnitude of the locking undergoes oscillations as a function of the ratio of
the number of particles to the number of pinning sites. We also find that the dynamical structures formed
by the particles are markedly different for different driving directions and include disordered states, partially
ordered triangular lattices, and anisotropic Archimedean type ordering. The Archimedean type ordering was
previously observed experimentally for particles on quasiperiodic substrates in the absence of a drive. We find
that the dynamic locking is much more pronounced for fivefold substrates than for sevenfold substrates. We also
discuss how our results relate to the dynamical ordering observed in vortices and colloids driven over periodic
and random substrates.
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1. INTRODUCTION

Quasicrystals are interesting structures that have no translational ordering but still possess orientational order-
-ing.1*2 One of the best known examples is the fivefold Penrose tiling such as that shown in Fig. 1. Recently
it was experimentally demonstrated for charged colloidal particles interacting with fivefold quasicrystalline sub-
strates that a number of interesting ordering transitions can occur.>® For strong substrates the colloids simply
adopt the quasicrystalline ordering of the substrate. For weak substrates, the repulsive interactions between the
colloids dominate and the colloids form a weakly pinned triangular lattice. At intermediate substrate strength
the colloids form a novel Archimedean type structure where a tessellation of the colloid positions reveals a com-
bination of triangular and square tiles. The Archimedean tiling has a quasi-one dimensional structure that can
be aligned along any one of the five orientational ordering directions of the quasicrystalline array. Studies with
sevenfold coordinated substrates generally produce quasicrystalline or partially disordered colloidal configura-
tions.® There have also been several studies examining vortices in type-II superconductors with quasicrystalline
arrays of pinning sites.”® Vortices in superconductors have several similarities to charged colloids in that they
repel each another and form a triangular lattice in the absence of a substrate. In the vortex system, a series
of commensuration effects were observed as a function of vortex density.”® Commensuration effects have been
predicted and observed for vortex systems with square or triangular pinning arrays, when the effectiveness of
the pinning is enhanced at magnetic fields where the number of vortices is an integer multiple or rational ratio
of the number of pinning sites.* ! For a quasicrystalline pinning array, commensurate effects occur at integer
matching fields; however, strong matching effects were also observed at fillings corresponding to the golden mean
or rational fractions of the golden mean.”:8

Here we examine the dynamical structures that form when colloids and other particles are driven over fivefold
and sevenfold quasicrystalline substrates. When vortices are driven over periodic square or triangular substrates,
a rich variety of distinct dynamical phases are possible.!?716 1t would be interesting to see whether particles
driven over quasicrystalline arrays exhibit similar dynamical effects or whether the dynamics would more strongly
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Figure 1. Locations of the pinning sites for (a) a fivefold coordinated substrate and (b) a sevenfold coordinated substrate.

resemble those of particles driven over random substrates due to the lack of translational order in the quasicrys-
talline substrates. One effect observed on periodic substrates is directional locking of driven particles when the
direction of the external drive is rotated with respect to the substrate.!”2 In the absence of a substrate the
particles simply move in the direction of the external force; however, on a periodic substrate the particles lock
to certain substrate symmetry directions. This locking occurs for a range of external drive angles so that a plot
of the average velocity versus drive angle contains a series of steps corresponding to the locked motion. For a
square array, locking occurs for 8 = tan=!(m/n), with m and n integers. The steps appear at (m,n) = (0, 1) or
0°, (1,1) or 45°, (1,2) or 22.5°, and so forth.!7!8 The largest steps correspond to the smallest values of m and n.
Directional locking was initially proposed for vortices moving over square and triangular pinning arrays where
a series of steps with a devil’s staircase structure was predicted.!” A similar series of steps was also predicted
for a triangular pinning array at 6 = tan=!(v/3m/(2n + 1)), with m and n integers. Here the most prominent
lockings occur at 0°, 30°, and 60°.!7 In the initial work on vortices it was proposed that directional locking
should occur generally in other systems including colloids moving over optical trap arrays. Directional locking
was later observed experimentally for colloids moving over a square array of optical traps when the trap array
was rotated with respect to the external drive direction.!® Since then, there have been a wide range of studies
of directional locking in colloidal systems. One application of the effect is in particle separation, where a lateral
separation can be achieved when one species of colloid locks to a symmetry direction of the substrate but the
other species moves in the direction of the external drive.19-21,23,24

Directional locking effects can occur in the single or non-interacting particle limit; however, when interactions
are present it was shown in the initial vortex work that a variety of novel dynamical structures occur such as
disordered phases between the locking directions, square lattices, triangular lattices, and distorted lattices.l”
An open question is whether directional locking can arise for particles moving over quasicrystalline substrates.
It might be expected that since there is no translational order in the substrate, the particle dynamics would
resemble that of particles driven over random substrates; however, since the directional locking is related to the
orientational order of the substrate, it may be possible that directional locking could arise even for quasicrystalline
substrates. When interacting particles are driven over quasicrystalline substrates, they may forin a dynamically
ordered phase. This phase could resemble the smectic state observed for particles moving over random substrates,
or it could be similar to the dynamically ordered states found in the directionally locked states for particles moving
over periodic substrates.

2. COMPUTATIONAL MODEL

We consider a two-dimensional system with periodic boundary conditions in the z and y-directions. The sample
contains N, pinning sites placed in a fivefold or sevenfold quasicrystalline pattern as illustrated in Fig. 1. We add
N particles to the system, where we specifically consider charged colloids and vortices in type-II superconductors.



The motion of particle i is obtained by integrating the following overdamped equation of motion:

dR;
4t

=F¢ +FP + F*' + F]. (1)

Here = 1 is a phenomenological damping term. The first term is the particle-particle interaction force. For the
colloidal system it has the form F{¢ = — Zgéj VV(R;;)R with V(R;;) = (Eo/Rsj)e "R, Here By = 7Z*2 [dweey,
where € is the solvent dielectric constant, Z* is the effective colloid charge, and 1/« is the screening length. The

pinning sites are modeled as attractive parabolic potentials of radius R, with a maximum pinning force of Fp,
with F¥ = ZQL(FPREZ)/RP)G(RP - R_gz))ﬁgk. Here © is the Heaviside step function, R,(cp) is the location of
pinning site , REZ) =R, —R{|, and R?) = (R, - Rfcp))/Rt(.,f). The initial particle configurations are obtained
by simulated annealing from a high temperature molten state. The thermal Langevin kicks used during the
simulated annealing F7 have the properties (F/') = 0 and (F{ (t)F (t')) = 2nkgTé;;0(t —t') where kp is the
Boltzmann constant. After the annealing an external drive is applied at a varied angle,

Fe' = Asin(0(t))x + Acos(6(t))y. (2)

Here the force amplitude is A, § = wt, and w is the frequency of the rotation which we set very small so
as to avoid any transient effects. We set A/F, = 1.081 so the particles do not remain pinned. We measure
the velocity response in the z and y directions, (V;) = N} Zjvzl v-% and (V) = N'Y i v-y. We
use the same simulation method for the vortex system where the vortex-vortex interaction force has the form
= Z;\;, foK1(Rij/ MRy where K is the modified Bessel function, fo = ¢2/(2mue)?), and ¢o = h/2e is the
flux quantum. In superconductors, artificial pinning sites are generally made with nanoholes or magnetic dots;
however, for vortices in Bose-Einstein condensates, pinning sites can be made with optical traps.?6

3. DIRECTIONAL LOCKING AND ORDERING TRANSITIONS ON A
DECAGONAL SUBSTRATE

In Fig. 2(a) we plot the velocity response in the y-direction as the drive is gradually rotated counterclockwise away
from the z direction for a fivefold coordinated substrate. Figure 2(a) is for the colloidal case with N/N, = 2.9
and F, = 0.75. Here (V) versus 6 shows a series of steps which are indicative of directional locking. For a fivefold
substrate the most prominent lockings occur at integer multiples of § = 360°/10 = 36° marked as 0/1,1/1,2/1
and so forth. Additionally, smaller steps appear at rational fractional ratios of these steps including 3/2, 5/2, 1/4,
3/4, and 5/4, as highlighted in the.figure. In Fig. 2(b) we plot the corresponding fraction of sixfold coordinated
particles Py versus 6. For a lattice with perfect triangular order, Ps = 1.0. We find a series of peaks in Ps with
the most prominent steps centered at the 1/1, 2/1 and 0/1 lockings where the system has Fg =~ 0.78. There is
also a series of smaller peaks at the fractional locking steps. This result indicates that the structure of the system
changes in the different locking regions. A closeup of the (1,1) step from Fig. 2 is illustrated in Fig. 3. Here
there is a clear plateau in (V;) on the locking step indicating that the particle is moving along a fixed direction
even when the external force is not aligned in this direction. We note that in the absence of a substrate (V)
versus 6 would follow a smooth sinusoidal curve. In Fig. 4 we plot (V,) and Ps versus 6 for vortices moving
over a decagonal pinning array with N/N, = 3.225. Here a set of steps appears that is similar to those found in
the colloidal system, with the most prominent steps falling at 0/1,1/1, and 2/1. There are also smaller steps at
the fractional lockings. The velocity steps are accompanied by a series of peaks in Ps with the most prominent
peaks appearing at integer multiples of 36°. This result shows that it is possible for directional locking to occur
on quasicrystalline substrates and that the results are general to a variety of different systems.

We next consider the nature of the ordered and disordered moving structures on and near the locking steps.
In Fig. 5 we illustrate the Delaunay triangulation of the vortex system from Fig. 4 on the (0, 1) step [Fig. 5(a)],
the (1,1) step [Fig. 5(c)|, and just above the (1,1) step where the system is not locked [Fig. 5(e)]. Square tiles
are marked in a darker color (red) and triangular tiles are marked in a lighter color (white). On the locking
steps, all of the square tiles are aligned in the same direction, along 0° for the (0, 1) step and along 36° for
the (1,1,) step. The square tiles also generally form one-dimensional rows. The triangular tiles are aligned in
the same direction and also form one-dimensional rows. On the locking steps the system contains a mixture
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Figure 2. (a) The average velocity response (V,) vs 8 for colloids driven over a fivefold coordinated substrate with
N/Np = 2.9 and F, = 0.75. (b) The corresponding fraction of sixfold coordinated particles Ps vs 8. For a decagonal
substrate, directional locking occurs at integer multiples of # = 360/10 = 36°, corresponding to the steps marked 1/1 and
2/1. There are additional steps that correspond to rational fractional ratios of the x and y drives.
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Figure 3. (a) A closeup of (V) vs 6 on the 1/1 step from Fig. 2(a). (b) The corresponding Fs vs 8. This shows more
clearly that the system becomes ordered on the locking step.
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Figure 4. (a) The average velocity (V}) vs @ for vortices moving over a decagonal pinning array with N/, = 3.225. (b)
The corresponding Ps vs 6. The same directional locking and dynamic ordering observed for the colloids occurs for the
vortex system.

of square and triangular tiles which we call a dynamic Archimedean tiling. In the absence of an applied drive,
we note that the particles adopt a quasicrystalline structure and do not form an Archimedean tiling. When a
drive is applied, the effectiveness of the pinning is reduced and the particles form an Archimedean tiling that
is similar to the tiling found in static experiments for colloids on decagonal substrates.’®> We always observe
the formation of this type of Archimedean tiling along the integer locking directions for both the colloid and
vortex systems provided that the pinning is significantly strong. For weaker pinning the system forms an almost
completely triangular ordering similar to that observed in experiments with weak substrates.®** The dynamical
Archimedean tiling appears oriented only along integer multiples of 36°. This is the same behavior observed in
the static experiments, where Archimedean tilings were also oriented only along integer multiples of 36°. In the
static system, sometimes multiple orientations would appear in different regions of the sample separated by grain
boundaries. In our system the orientation of the Archimedean tiling is always the same throughout the entire
sample due to the symietry breaking induced by the applied driving force. In the unlocked regimes away from
the velocity steps, the square and triangular tilings are no longer aligned and the structure is strongly disordered.
To better quantify the ordering we also examine the structure factor S(k). In Fig. 5(b) we plot S(k) for the (0, 1)
step illustrated in Fig. 5(a), showing the appearance of a smectic structure with two prominent peaks. There
are also weaker peaks correspouding to the square and triangular ordering of the two sets of tiles. A similar
structure appears in Fig. 5(d) for the (1,1) state from Fig. 5(c), while in Fig. 5(f), S(k) for the non-step region
in Fig. 5(e) has a ring type structure indicative of liquid ordering. The colloidal system shows orderings similar
to those illustrated in Fig. 5 both on and off of the locking steps. We note that these structures can change as a
function of filling. Strong locking steps occur for 2 < N, /N, < 4.5 and for N, /N, < 1/2, while the locking steps
are very weak near N, /N, = 1.61. Near N,/N = 1.61 the orderings along the steps are mostly square rather
than Archimedean.

4. DIRECTIONAL LOCKING ON TETRADECAGONAL SUBSTRATES

We next consider the case for a tetradecagonal or sevenfold coordinated substrate. In Fig. 6(a) we plot (V)
versus # and in Fig. 6(b) we plot the corresponding Ps versus 6 for a colloidal system with N/N, = 2.9. In



I"igure 5. The Delaunay triangulation of the particles from the system in Fig. 4. The square tiles are dark colored (red)
and the triangular tiles are light colored (white). (a) On the 0/1 locking step the particles form a dynamic Archimedean
tiling with rows of squares and triangles aligned in the z direction. (b) The structure factor S(k) for the system in (a)
has a smectic structure. (c) A similar structure appears on the 1/1 locking step but is aligned along 36°. (d) S(k) for
the 1/1 locking shows a tilted smectic structure. (e) Just above the 1/1 locking step in an unlocked regime, the system
is disordered and there is no alignment of the tiles. (f) S(k) for the non-locking region in (c) has a ring type structure
indicative of a liquid ordering.

this case, locking steps occur at integer multiples of 8§ = 360/14 = 25.71°, with the largest locking steps at
0/1, 1/1, 2/1, 3/1, and 4/1. In general the locking steps for the tetradecagonal substrates are much smaller
than those for the decagonal substrates. We find some smaller steps near the fractional ratios of 1/4, 3/4, 5/4,
and 11/4. At the integer locking steps there are also peaks in Ps. Along the locking steps the structure of the
moving system does not have the Archimedean type ordering observed for the decagonal substrate; instead, the
ordering is more consistent with a moving smectic phase composed of sixfold coordinated particles moving along
one-dimensional channels separated by aligned dislocations. In the nonlocking regions, the particle structure is
disordered and a ring feature appears in S(k). The magnitude of the steps also depends on the filling of the
system. In Fig. 7(a) we plot (V) versus 8 for vortices on a tetradecagonal substrate at N/N, = 3.9 while Fig. 7(b)
shows the corresponding Ps versus 6. Here steps appear only at integer multiples of 25.71°. In Fig. &(a,b) we
plot (V) and Pg versus 8 for the same system at a lower filling of N/N, = 2.96. In this case the integer locking
steps are smaller; however, there are now clear fractional matching steps, as indicated by the peaks in Ps.

5. SUMMARY

We have investigated the dynamics of colloids and vortices moving over fivefold and sevenfold quasicrystalline
substrates. When the system is driven with a slowly rotating external drive, it exhibits directional locking similar
to that observed for periodic substrates. For decagonal arrays the locking occurs along the orientationally ordered
directions of the quasicrystalline substrate at angles that are integer multiples of 36°. There are also smaller
locking effects at fractional ratios of the locking angles. For sevenfold coordinated substrates, the directional
locking occurs along seven angles which are integer multiples of 25.7°. In general the locking steps are more
pronounced for the decagonal substrates than for the tetradecagonal substrates. On the locking steps the system
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Figure 6. (V,) vs 6 for colloids moving over a tetradecagonal array. Here the prominent lockings occur at integer multiples
of 6 = 360/14 = 25.71°. These steps are marked 1/1, 2/1, 3/1, and 4/1. There are also smaller steps that correspond to
rational fractional ratios of the intcger multiple steps. (b) The corresponding FPs vs 8 indicates that along the directional
locking steps the system is more ordered.
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Figure 7. (V) vs 6 for a vortex system driven over a tetradecagonal substrate at N/N, = 3.9. We find a similar set of
locking phases as in the colloid system of Fig. 6; however, only the integer locking steps occur. (b) The corresponding Fs
vs 6.

can undergo a transition from a disordered to an ordered phase. In the ordered phase the particles move in
one-dimensional channels that have a dynamic Archimedean structure on the decagonal substrates. In this case
a Delaunay triangulation of the particle positions reveals a series of aligned rows of square and triangular tiles.
This dynamical Archimedean ordering is similar to the Archimedean type tiling found for non-driven colloids on
decagonal substrates. When the ratio of the number of particles to the number of substrate minima is varied, the
width of the locking steps can also vary. When the locking steps are weakest, the particles form moving square
lattices along the locked steps. Our results show that directional locking effects can arise on substrates possessing
only orientational order but no translational order. In the future it would be interesting to investigate dynamical
locking for other types of systems such as attracting or aggregating particles. In this case the particles may form
clump like structures in the dynamically locked regimes and may break up when driven along the nonlocking
directions. It would also be interesting to examine the noise fluctuations in both the locking and nonlocking
regimes.

This work was carried out under the auspices of the NNSA of the U.S. Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396.

REFERENCES

[1] D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, “Metallic phase with long-range orientational order
and no translational symmetry.” Phys. Rev. Lett. 53, pp. 1951-1953, 1984,



0 25 50 75 100

Figure 8. (V4) vs 8 for a vortex system driven over a tetradecagonal substrate at N/N, = 2.96. (b) The corresponding Ps
vs 6. In this case fractional locking steps occur.

2]
[3]
[4]

[5]

J.-B Suck, M. Schreiber, and P. Haussler, eds. Quasicrystals: an introduction to structure, physical proper-
ties, and applications. Spinger-Verlag, Berlin 2002.

J. Mikhael, J. Roth, L. Helden and C. Bechinger, “Archimedean-like tiling on decagonal quasicrystalline
surfaces.” Nature 454, pp. 501-504, 2005.

M. Schmiedeberg and H. Stark, “Colloidal ordering on a 2D quasicrystalline substrate.” Phys. Rev. Lett.
101, pp. 218302, 2008.

M. Schmiedeberg, J. Mikhael, S. Rausch, J. Roth, L. Helden, C. Bechinger, and H. Stark, “Archimedean-like
colloidal tilings on substrates with decagonal and tetradecagonal syinmetry.” Eur. Phys. J. E 32, pp. 25-34,
2010.

J. Mikhael, M. Schimiedeberg, S. Rausch, J. Roth, H. Stark, and C. Bechinger, “Proliferation of anomalous
symmetries in colloidal monolayers subjected to quasiperiodic light fields.” Proc. Natl. Acad. Sci. (USA)
107, pp. 7214-7218, 2010.

M. Kemmler, C. Gurlich, A. Sterck, H. Pohler, M. Neuhaus, M. Siegel, R. Kleiner, and D. Koelle, “Com-
mensurability effects in superconducting Nb films with quasiperiodic pinning arrays.” Phys. Reuv. Lett. 97,
pp. 147003, 2006.

A.V. Silhanek, W. Gillijins, V.V. Moshchalkov, B.Y. Xhu, J. Moonens, and L.H.A. Leunissen, “Enhanced
pinning and proliferation of matching effects in a superconducting film with a Penrose array of magnetic
dots.” Appl. Phys. Lett. 89, pp. 152507, 2006.



[9] K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, and V.V. Moshchalkov, “Direct observation
of vortex dynamics in superconducting films with regular arrays of defects.” Science 274, pp. 1167-1170,
1996.

[10] C. Reichhardt, C.J. Olson, and F. Nori, “Commensurate and incommensurate vortex states in supercon-
ductors with periodic pinning arrays.” Phys. Rev. B 57, pp.7937-7943, 1998.

[11] C. Reichhardt and N. Grgnbech-Jensen, “Collective multivortex states in periodic arrays of traps.”
Phys. Rev. Lett. 85, pp. 2372-2375, 2000.

[12] C. Reichhardt, C.J Olson, and F. Nori “Dynamic phases of vortices in superconductors with periodic
pinning.” Phys. Rev. Leit. 78, pp. 2648-2651, 1997.

[13] C. Reichhardt and G.T. Zimdnyi, “Melting of moving vortex lattices in systems with periodic pinning.”
Phys. Rev. B 61, pp. 14354-14357, 2000.

[14] C. Reichhardt and C.J. Olson Reichhardt, “Moving vortex phases, dynamical symmetry breaking, and
jamming for vortices in honeycomb pinning arrays.” Phys. Rev. B 78, pp. 224511, 2008.

[15] J. Gutierrez, A.V. Silhanek, J. Van de Vondel, W. Gillijins, and V.V. Moshchalkov, “Transition from
turbulent to nearly laminar vortex flow in superconductors with periodic pinning.” Phys. Rev. B 80, pp.
140514, 2009.

[16] S. Avci, Z.L. Xiao, J. Hua, A. Imre, R. Divan, J. Pearson, U. Welp, W.K. Kwok, and G.W. Crabtree,
“Matching effect and dynamic phases of vortex matter in BigSroCaCug0g nanoribbon with a periodic array
of holes.” Appl. Phys. Lett. 97, pp. 042511, 2010.

[17] C. Reichhardt and F. Nori, “Phase locking, devil’s staircases, Farey trees, and Arnol’d tongues in driven
vortex lattices with periodic pinning.” Phys. Rev. Lett. 82, pp. 414-417, 1998.

[18] P.T. Korda, M.B. Taylor, and D.G. Grier, “Kinetically locked-in colloidal transport in an array of optical
tweezers.” Phys. Rev. Lett. 89, pp. 128301, 2002.

[19] M.P. MacDonald, G.C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice.” Nature 426,
pp. 421-424, 2003.

[20] R.L. Smith, G.C. Spalding, K. Dholakia, and M.P. MacDonald, “Colloidal sorting in dynamic optical
lattices.” J. Optics A 9, pp. S134-S138, 2007.

[21] M. MacDonald, G. Spalding, and K. Dholakia, “All-optical sorting.” Opt. Photon. News 15(12), pp. 23,
2004.

[22] C. Reichhardt and C.J. Olson Reichhardt, “Dynamic reginmes and spontaneous symmetry breaking for driven
colloids on triangular substrates.” Europhys. Lett. 68, pp. 303-309, 2004.

[23] A.M. Lacasta, J.M. Sancho, A.H. Romero, and K. Lindenberg, “Sorting on periodic surfaces.” Phys. Rev.
Lett. 94, pp. 160601, 2005.

[24] K. Xiao and D.G. Grier, “Multidimensional optical fractionation of colloidal particles with holographic
verification.” Phys. Rev. Lett. 104, pp. 028302, 2010.

[25] M. Balvin, E. Sohn, T. Iracki, G. Drazer, and J. Frechette, “Directional locking and the role of irreversible
interactions in deterministic hydrodynamics separations in microfluidic devices.” Phys. Rev. Lett. 103, pp.
078301, 2009.

(26] S. Tung, V. Schweikhard, and E.A. Cornell, “Observation of vortex pinning in Bose-Einstein condensates.”
Phys. Rev. Lett. 97, pp. 240402, 2006.



