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Residual Stresses in Aluminum Clad Uranium-lOwt%Molybdenum Fuel Plates 

D.W. Brown! , M. Okuniewski2
, 1. D. Almer3

, 1. S. Okasinski3
, B. Clausen! , L. Balogh! 

! Los Alamos National Laboratory 
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The mission ofthe Global Threat Reduction Initiative (GTRI) of the National Nuclear Security 
Administration (NNSA) in the U.S. Department of Energy is to reduce and protect vulnerable 
nuclear and radiological material located at civilian sites worldwide by providing support for countries ' 
own national programs. The GTRI Reactor Convert program converts research reactors from the use 
of highly enriched uranium (HEU) to low enriched uranium (LEU). The baseline fuel for 
conversion of high performance research reactors is aluminum clad monolithic uranium-IOwt.% 
molybdenum (UIOMo). One bonding technique for the fuel to the cladding is hot isostatic 
pressing. The thermal expansion ofUIOMo is roughly half that of aluminum, so a significant 
residual stress is expected following cooling from the pressing temperature. Finite element 
analysis (FEA) has been completed to calculate the residual stress and other properties under 
varying processing specifics, but model validation is necessary. The residual stress field was 
measured with O.lmm resolution on mini fuel plates (0.25 mm thick UIOMo, Imm thick AI­
clad) in transmission with high-energy x-ray diffraction at beamline lID-C at the Advanced 
Photon Source. The entire Debye rings of five UIOMo (bcc) peaks were collected using an area 
detector and "caked" into 24 diffraction patterns. This was repeated with the sample normal to 
the beam and rotated 45 ° and 60° about a vertical axis to allow the full strain, and subsequently 
the stress tensor to be determined. In-plane compressive stresses of greater than I50MPa were 
observed in the UI OMo. The diffraction results will be compared to the model and the 
importance of the measurements at three sample orientations discussed. 



RESIDUAL STRESSES IN ALUMINUM CLAD URANIUM-IOWT%MOLYBDENUM FUEL 
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The mission of the Global Threat Reduction Initiative (GTRI) of the National Nuclear Security 
Administration (NNSA) in the U.S. Department of Energy is to reduce and protect vulnerable nuclear 
and radiological material located at civilian sites worldwide by providing support for countries' own 
national programs. The GTRI Reactor Convert program converts research reactors from the use of 
highly enriched uranium (REU) to low enriched uranium (LEU). The baseline fuel for conversion of 
high performance research reactors is aluminum clad monolithic uranium-I Owt. % molybdenum 
(UI OMo). One bonding technique for the fuel to the cladding is hot isostatic pressing. The thermal 
expansion of VI OMo is roughly half that of aluminum, so a significant residual stress is expected 
following cooling from the pressing temperature. The residual stress field was measured with O.Imm 
resolution on mini fuel plates (0.25 mm thick UI OMo, I mtn thick AI-clad) in transmission with high­
energy x-ray diffraction at beamline IID-C at the Advanced Photon Source. In-plane compressive 
stresses approaching 250MPa were observed in the VI OMo, suggesting balancing yield-level tensile 
residual stresses in the aluminum cladding. 



Residual Stress in Mini Monolithic UIOMo Fuel Plates 

• Funded by the Reduced Enrichment for Research and Test 
Reactors (RERTR) program. 

• Replace HEU with LEU in research reactors. 

• Uranium 10wt% molybdenum foil clad with aluminum. 

• CTE mismatch results in residual stresses which can cause 
distortions during processing and use. 

·CTE Ul OMo~ 1 Oxl 0-6/C 

• CTE AI~22xl0-6/C 

• 1.5 mm total thicknes 

• O.25mm thick UI0Mo foil 

• Foil was cold rolled, then HIP bonded. 

• Diffraction residual stress measurements at the Advanced 
Photon Source. 
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Penetration of High Energy Xrays Through High-Z Material is a Game Changer 
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sidual Stress Measurements on 1-ID at Advanced Photon Source 

Beam from 

O.1XO.1mm beam -""""Tr--_ 

• X-ray energy = 86KeV, A=0.144A. 

• Beam cross section: 0.1 mm x 0.1 mm 

• Collection time at each point 0.7-1.5sec. 4 sec to save data and move sample. 

• Ceria standard used for detector calibration. 

• Oebye cones provide diffraction vectors nearly normal to the inCid~eaQ1. . :~A~m~ 



tress Tensor is Determined by Rotating Sample About a Vertical Orientation 

O.1XO.1mm beam 

-Measurements at 0)=0° (beam normal to sample), 45°, and 60° allow us to 
determine the entire strain/stress tensor 



It is Critical to Align Sample Accurately in the Diffractometer 
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Better than O.lmm positioning accuracy relative to the beam, corresponding to a 0.000030 
strain uncertainty. 

An order of magnitude less than measurement uncertainty. 



Sample vs. Laboratory Coordinate Systems 

83 (Normal) 

cos If/ == COS () B COS 7] sin (j) + sin () B cos (j) 

~ cos () B sin 7]. tan r == --------=------
cos () B cos 7] cos (j) - sin () B sin (j) 

82 
(Trans) 



2-D Detector Provides Lattice Parameters in a Plane 
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• Aluminum rings are "spotty" due to larger grains d-space (A) 
• Note texture in VI OMo, the (110) is strong along the original rolling direction. 

• Rings are "caked" into 24 I-d diffraction patterns . 

• 3 sample orientations w = 0° (normal to beam), 45° and 60°. 
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Texture is Apparent in Intensity Variation of Rings 
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Annealing ofUlOMo Foil During Bonding Evident in Decrease in Peak Width 
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• Narrowing of peak with HIP'ing tells us the microstructure has 
annealed. 
• Shift of the peak likely due to chemistry change, probably moly 
segregation during HIP'ing. 
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Find do by Assuming Normal Stress Components are Zero Far From Edge 

l+v v 
Assume isotropic mechanical properties: Bij = 17 O"ij -bij E O"kk 

( ) d(rp''If)-do l+v{ 2~ . 2~ . 2~} . 2 
~ rp, 'If == == 0'"11 COS «f/ + 0'"12 SIll «f/ + 0'"22 SIll «f/ SIll 'If + 

do E 

+ v { ~ . ~} . 2 1 + v v { } 
I I 0'"13 COS «f/ + 0'"23 SIll «f/ SIll 'If + 0'"33 - - 0'"22 + 0'"22 + 0'"33 

E E E 

Set a 33== a 13== a 23==O 

j rp, If/ )- do = 1 + V {O"II cos2 ¢ + 0"12 sin 2¢ + 0"22 sin 2 ¢ }sin 21f/ ~ {O"II + 0"22} 

do E ~ 
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Peak Broadenin!! Analvzed to Yield Dislocation Densitv and Crvstal Size 
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Shape of Diffraction "Rings" Tells About Stress State 
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Some Things You Can Discern From the Raw Strain Data 
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Tensor Equation Fits Measured Strains Very Well 
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Residual Strains Determined With O.100mm Resolution 
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Figure 5. (a.) Residual strains as a function distance from the short edge, y, 
on lines at x=1.5mm and 7.5mm. (b.) Expansion of the first 3mm to 
highlight the strong strain gradient near the foil edge. 



Extent of Sample Rotations Greatly Effects Strain Uncertainty 
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Residual Stress Tensor Mapped Over ~ of Foil 
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-275 

Expansion of Data Near Edge Highlights Rapid Variation of Stresses 
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Residual Stress in Mini Monolithic UIOMo Fuel Plates 

u22 Longitudinal Normal Stresses 
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Shear Stress Indicates Principle Axis Are Rotating 
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Summar 
• High energy xrays can be used to characterize microstructure of bulk samples, 
even with high Z. 

- Demonstrated residual stress, dislocation density, and texture 
measurements in AI-clad Uranium 10wt% Molybdenum fuel plates. 

• ",,250 MPa compressive residual stress in UI0Mo foil. 

- Suggests a yield level tensile stress in Aluminum cladding. 

• Tensile residual stress in normal direction indicates plastic deformation 
(probably in Aluminum) during cooling. 

• Rapid approach of transverse components to zero at edges suggests foil is not 
bonded on lateral edges. 

• Rotation of stress tensor in comer suggests same. 

• Asymmetry of stress field (longitudinal vs. transverse directions) is consistent 
with constraints during HIP'ing. 

• Dislocation density of 60 x 1 o 14/m2 in as-rolled foil. Reduce by 10x during 
HIP'ing. Properties of foils, in particular yield strength are likely different then 
assumed. 

• Strong rolling texture in Ul OMo foil. 


