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Residual Stresses in Aluminum Clad Uranium-10wt%Molybdenum Fuel Plates
D.W. Brown', M. Okuniewski’, J. D. Almer®, J. S. Okasinski’, B. Clausen', L. Balogh'
' Los Alamos National Laboratory

? Idaho National Laboratory

3 Argonne National Lab

The mission of the Global Threat Reduction Initiative (GTRI) of the National Nuclear Security
Administration (NNSA) in the U.S. Department of Energy is to reduce and protect vulnerable
nuclear and radiological material located at civilian sites worldwide by providing support for countries’
own national programs. The GTRI Reactor Convert program converts research reactors from the use
of highly enriched uranium (HEU) to low enriched uranium (LEU). The baseline fuel for
conversion of high performance research reactors is aluminum clad monolithic uranium-10wt.%
molybdenum (U10Mo). One bonding technique for the fuel to the cladding is hot isostatic
pressing. The thermal expansion of U10Mo is roughly half that of aluminum, so a significant
residual stress is expected following cooling from the pressing temperature. Finite element
analysis (FEA) has been completed to calculate the residual stress and other properties under
varying processing specifics, but model validation is necessary. The residual stress field was
measured with 0.1mm resolution on mini fuel plates (0.25 mm thick U10Mo, Imm thick Al-
clad) in transmission with high-energy x-ray diffraction at beamline 1ID-C at the Advanced
Photon Source. The entire Debye rings of five U10Mo (bcc) peaks were collected using an area
detector and “caked” into 24 diffraction patterns. This was repeated with the sample normal to
the beam and rotated 45° and 60° about a vertical axis to allow the full strain, and subsequently
the stress tensor to be determined. In-plane compressive stresses of greater than 150MPa were
observed in the Ul0Mo. The diffraction results will be compared to the model and the
importance of the measurements at three sample orientations discussed.



RESIDUAL STRESSES IN ALUMINUM CLAD URANIUM-10WT%MOLYBDENUM FUEL
PLATES

Don Brown!, Maria OkuniewskiZ, Bjorn Clausen!
! Los Alamos National Laboratory
2 Idaho National Laboratory

The mission of the Global Threat Reduction Initiative (GTRI) of the National Nuclear Security
Administration (NNSA) in the U.S. Department of Energy is to reduce and protect vulnerable nuclear
and radiological material located at civilian sites worldwide by providing support for countries’ own
national programs. The GTRI Reactor Convert program converts research reactors from the use of
highly enriched uranium (HEU) to low enriched uranium (LEU). The baseline fuel for conversion of
high performance research reactors is aluminum clad monolithic uranium-10wt.% molybdenum
(U10Mo). One bonding technique for the fuel to the cladding is hot isostatic pressing. The thermal
expansion of U10Mo is roughly half that of aluminum, so a significant residual stress is expected
following cooling from the pressing temperature. The residual stress field was measured with 0.1mm
resolution on mini fuel plates (0.25 mm thick U10Mo, 1mm thick Al-clad) in transmission with high-
energy x-ray diffraction at beamline 1I1D-C at the Advanced Photon Source. In-plane compressive
stresses approaching 250MPa were observed in the U10Mo, suggesting balancing yield-level tensile
residual stresses in the aluminum cladding.
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Residual Stress in Mini Monolithic U10Mo Fuel Plates

| Al cladding
* Funded by the Reduced Enrichment for Research and Test

Reactors (RERTR) program.
* Replace HEU with LEU in research reactors.
* Uranium 10wt% molybdenum foil clad with aluminum.

* CTE mismatch results in residual stresses which can cause
distortions during processing and use.

*CTE U10Mo~10x10%/C
* CTE Al~22x10%/C

150mm
90mm

* 1.5 mm total thicknes

* 0.25mm thick Ul10Mo foil 19mm
 Foil was cold rolled, then HIP bonded.

* Diffraction residual stress measurements at the Advanced e
Photon Source. 50mm 1.5mm
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Penetration of High Energy Xrays Through High-Z Material is a Game Changer
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esidual Stress Measurements on 1-ID at Advanced Photon Source
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« X-ray energy = 86KeV, 1=0.144A.
* Beam cross section : 0.1mm x 0.1 mm
* Collection time at each point 0.7-1.5sec. 4 sec to save data and move sample.

» Ceria standard used for detector calibration.

* Debye cones provide diffraction vectors nearly normal to the incideﬁbeﬂrln.
| » LOS Alamos



tress Tensor is Determined by Rotating Sample About a Vertical Orientation
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‘Measurements at ©=0° (beam normal to sample), 45°, and 60° allow us to
determine the entire strain/stress tensor
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It is Critical to Align Sample Accurately in the Diffractometer
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Better than 0.1mm positioning accuracy relative to the beam, corresponding to a 0.000030
strain uncertainty.

An order of magnitude less than measurement uncertainty.
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Sample vs. Laboratory Coordinate Systems
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2-D Detector Provides Lattice Parameters in a Plane
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* Aluminum rings are “spotty” due to larger grains d_space ( A)
* Note texture in U10Mo, the (110) is strong along the original rolling direction.
* Rings are “caked” into 24 1-d diffraction patterns .

* 3 sample orientations w = 0° (normal to beam), 45° and 60°. a Los Alamos



Texture is Apparent in Intensity Variation of Rings
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Annealing of U10Mo Foil During Bonding Evident in Decrease in Peak Width

|
- —Bare Ul10Mo (as-rolled) : —bare U10Mo (as-rolled) ”
— Al-Clad U10Mo — Al-clad Ul10Mo
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* Narrowing of peak with HIP ing tells us the microstructure has
annealed.

* Shift of the peak likely due to chemistry change, probably moly
segregation during HIP ing.
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Find d, by Assuming Normal Stress Components are Zero Far From Edge

1+v V

Assume 1sotropic mechanical properties : €; = 7 %~ 0j — O
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Peak Broadening Analyzed to Yield Dislocation Density and Crxstal Size
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* Bare U10Mo foil p = 60 x10'%/m?
* Al-Clad U10Mo p = 6x10'4/m?

PR

* Crystallite size in foil ~100nm . Los Alamos



Shape of Diffraction “Rings” Tells About Stress State
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Some Things You Can Discern From the Raw Strain Data
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Non-physical strains in as-
rolled material, suggests
something else is going
on.

Offset from 0 and 180
suggests shear strain
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Tensor Equation Fits Measured Strains Very Well
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* At =90 °,270°, ®» does not matter.

* At this point strain should not (and does not) depend on ®.

This was not forced !
Increases confidence in positioning accuracy. ya
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Residual Strains Determined With 0.100mm Resolution
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Figure 5. (a.) Residual strains as a function distance from the short edge, vy,
on lines at x=1.5mm and 7.5mm. (b.) Expansion of the first 3mm to
highlight the strong strain gradient near the foil edge.
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Extent of Sample Rotations Greatly Effects Strain Uncertainty

16
" —e—x = |.5mm
unc=0.8x10" — x =75 mm
o 14 1 B 1 | _
() o o R
= ' .
z iy i‘ y -,
i 2. VA Y
@12 T ) . Vi
ﬁ | 7 4
E I\ |
10 I |
fl |
8 '
'_'
i unc=2.5x10"*
6 "1 1 . A L - — ]
0 10 20 30 40

Longitudinal Distance From Foil Edge (mm)

In area where only 2 orientations were measured, uncertainty increases x3.
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Residual Stress Tensor Mapped Over Y of Foil
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Expansion of Data Near Edge Highlights Rapid Variation of Stresses
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Residual Stress in Mini Monolithic U10Mo Fuel Plates
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Shear Stress Indicates Principle Axis Are Rotating
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Summar

e High energy xrays can be used to characterize microstructure of bulk samples,
even with high Z.

— Demonstrated residual stress, dislocation density, and texture
measurements in Al-clad Uranium 10wt% Molybdenum fuel plates.

* ~250 MPa compressive residual stress in U10Mo foil.
— Suggests a yield level tensile stress in Aluminum cladding.

* Tensile residual stress in normal direction indicates plastic deformation
(probably in Aluminum) during cooling.

 Rapid approach of transverse components to zero at edges suggests foil is not
bonded on lateral edges.

* Rotation of stress tensor in corner suggests same.

* Asymmetry of stress field (longitudinal vs. transverse directions) 1s consistent
with constraints during HIP’ing.

* Dislocation density of 60 x 10'4/m? in as-rolled foil. Reduce by 10x during
HIP’ing. Properties of foils, in particular yield strength are likely different then
assumed.

* Strong rolling texture in U10Mo foil.
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