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Choosing Between Several Designed Experiments based on Multiple Design Performance Criteria

Christine Anderson-Cook, Los Alamos National Laboratory

Abstract

When selecting a best design for an experiment, it is beneficial to consider what the objectives of
the experiment are and to use several criteria that match these objectives to quantify differences between
the potential design choices. JMP software provides multiple options for creating designs to be compared,
and a rich set of design summaries that allow an experimenter to understand the trade-offs between
candidate designs and make a judicious choice appropriate for that experiment.

This paper demonstrates the process of constructing and evaluating designs for a specific
screening design example using the Pareto front and Data Filter approaches, and describes how this

process could be generalized to other design of experiment and response optimization settings.

1. Introduction
In design of experiments, the quality of a design can be measured by several criteria, each

representing different aspects of performance. For example, the D- criterion is useful for evaluating the
overall precision of the estimated model parameters whereas the I- and G- criteria focus on minimizing
prediction variance in the design region. Other criteria reflect a design’s robustness to model mis-
specification in terms of the degree of bias in the estimated coefficients or experimental error variance.
Good designs should balance precision in parameter estimation or prediction when the model is correct
with adequate bias protection when the specified model is incorrect (Anderson-Cook, 2010).

Consider a real case (Lu, Anderson-Cook and Robinson, 201 1) in which researchers wish to
select a designed experiment for studying the relationship between the response and five potentially active
factors (A-E), each at two levels (+1 and -1). Due to tight cost restrictions, the experimenters can only
collect 14 observations. Prior scientific knowledge indicates that the two-factor interactions AB, AC, BD,
and CE are most likely to exist, with the remaining two-way interactions less likely to be active or
important. Hence the researchers want to select an optimal 14-run design for estimating a model with all

five main effects and interactions AB, AC, BD, and CE, written here as

Y=p0,+B,4A+ BB+ p.C+p,D+B.E+ P AB+ B, AC+ p,,BD+ B..CE+¢. (1)

The objective is to estimate the ten model parameters (B;, B,, Bz, -+, B.;) as precisely as possible,

while limiting the impact of potential model misspecification (from some of the other interaction terms

being present) on the estimation of coefficients and experimental error variance.



2. Metrics to Evaluate the Designs
We now present some details about the three metrics considered. When the focus is on precise

parameter estimation, D-optimality is the most popular design optimality criterion due to its ease of
implementation and computation. The D-criterion is defined as | M(§) |=| X'(§)X(§) | /N*, where
X(§) isthe N x p model matrix for design & and P is the associated p x1 vector of regression

coefficients. The D-optimal design maximizes | M(E) | over the design space spanned by all possible

designs, &< Q. The D-efficiency of a particular design, &', is given by

D (&)= IM(é*)I/MgaXIM(é)I) g

To address the potential impact of model mis-specification, consider the general situation in

which the user specifies an inadequate model of the form y = X B, +& where Xis an N x p, matrix,

while the true model is y = X,B, + X,B, +&. For our example, the additional set of terms X,B, contains

the two-factor interactions (AD, AE, BC, BE, CD, DE). The bias vector of the specified model parameter

estimates is given by
E(Bl ) - Bl = [Bl + (Xl’Xl )_] XIIXZB2]_ Bl
= AB,,
where A =(X|X,)"' XX, is the alias matrix (see Myers, Montgomery, and Anderson-Cook, 2009, p.

418). A measure of transmitted bias to the estimated coefficients is the sum of squared transmitted bias
(SSB) given by
SSB =B,A'AB,.

While Bz is unknown, it is often assumed to follow the multivariate normal distribution f, ~ N(O, O';ZI)

(Draper and Guttman, 1992). Anderson-Cook, Borror and Jones (2009) consider the impact of changing
this assumption. It is straightforward to show that the expectation of SSB is given by
E(SSB) = o tr(AA").
An optimal design for minimizing the impact of aliasing on the estimated coefficients is one that
minimizes tr(AA’), as proposed by Bursztyn and Steinberg (2006).
Model mis-specification can also transmit bias to the estimate of o’ since
EMSE_)-o’ =B,[X,A-X,][X,A-X,]B,/ p
= B;R'Rﬁz /s

user



where MSE _  denotes the residual mean squared error from the mis-specified model and

user

R = X,A - X, . If positive bias is transmitted to the estimate of error, power to detect effects can be
reduced due to the inflated error variance estimate. An optimal design for this aspect is one that

minimizes tr(R'R) (Myers et al., 2009).

3. Process for Selecting a Best Design
The process for finding a best design for our purposes can be summarized by a multi-stage

algorithm, with the following steps:

1. Create a collection of designs, and measure D-efficiency, tr(AA") and tr(R'R) for all designs.

2. Construct the Pareto front, which consists of all designs which are not dominated by any other
designs (more formal definition below in Section 3.2)
3. Select a best design from the Pareto front which best suits the needs of the experimenter.
We now present some of the details about each of the following steps for the example described in the

Introduction.

3.1 Creating Collection of Design for Consideration
Since we are looking at a screening experiment where we wish to estimate a model with main
effects and selected two-way interactions, while protecting against alternate two-way interactions, a

natural choice of candidate locations from which to choose design locations are any combination of high

and low levels for each factor. Hence, we consider a candidate set comprised of 32=2° points, where
each has the form (£1,£1,£1,£1,%1). Since we are looking for a design with 14 runs, we consider any

design made up of 14 runs from our candidate set, where we allow replicates and hence can sample from
the 32 candidate points with replacement. Not all designs selected as a random set of runs will be able to
estimate the model in (1), and hence we discard any such choices.

There are multiple approaches for generating designs, from randomly generating a large set of
randomly constructed designs, to using a standard exchange algorithm, to using the PAPE algorithm (Lu,
Anderson-Cook and Robinson, 2011). For the illustration used in the talk, we generated a large number of
designs (2 million designs generated in under an hour on a standard desktop computer) and proceeded
from there to evaluate which of those should be considered further with the Pareto front approach. The
information needed for the remainder of the algorithm is a table with all criteria to be optimized in
individual columns. Once a “best” design has been selected, the user needs to be able to map this to the

original design matrix of 14 rows and 5 columns (A-E).



Figure 1 shows the pairwise scatterplot of all of the potential designs. Using the surface plot in
JMP (Graph > Surface Plot) is an excellent way to dynamically visualize the Pareto front, which generally
looks like an uneven outer surface of portion of a sphere. We can see that some trade-offs between criteria
are needed, as improving one design criterion typically comes at the expense of worsening another.
® 0 ()  All designs scatter . =

v [*IScatterplot Matrix

210
200

trR

Figure 1: Pairwise Scatterplot of All Generated Designs for D-efficiency, tr(AA’") and tr(R'R) .

3.2 Pareto Front Approach to Reduce Designs Considered
When balancing multiple objectives in design optimization, it is important to be able to identify

the tradeoffs between competing design objectives. The Pareto approach (Kasprzak and Lewis, 2001,



Gronwald et al., 2008, and Trautmann and Mehnen, 2009) enables the user to not only identify existing
tradeoffs among criteria, but it also finds a suite of potential solutions for diverse weighting and scaling
schemes associated with the criteria of interest.

Without loss of generality, assume the goal of a general multiple criteria design optimization

problem is to maximize C(>2) criteria simultaneously given constraints on the input factors. Let
£=(d,,d,,...,d,) €Q denote a design matrix of dimension Nxk where N is the number of design points

and k is the number of design variables. The set of all possible Nxk design matrices for a given candidate
set is denoted by Q. Let y =F(&) = (f,(§), /5(8), ..., /- (§))" denote the vector of criteria values

corresponding to & . The space containing all obtainable criteria vectors is called the criterion space.
A solution&, is said to Pareto dominate another solution&, if f,(§,)2 f, (&, ) for
all j€{1,2,...,C} and there exists at least one j € {1,2,...,C} such that f,(§,) > f,(§,) . In this case, the

criteria vector F(&, ) is said to be dominated by F(§,) . In layman’s terms, this means that the design &, is
at least as good as &, for all criteria, and better for at least one. In the remainder of the paper, the criteria

vector corresponding to a particular solution is referred to a point in the criterion space. A solution is
Pareto optimal if and only if no other solution dominates it and its corresponding criteria vector is a non-
dominated vector. Henceforth, the Pareto optimal set will refer to the set of Pareto optimal solutions and
the corresponding set of criteria vectors will be referred to as the Pareto front. A good overview of the
Pareto-related concepts is available in Marler and Arora (2004).

Methods for generating the Pareto optimal set continue to be a popular research topic. The
classical approach (Ngatchou et al., 2005) involves repeatedly finding optimal solutions using desirability
functions or constrained optimization with modified weightings or restrictions. This method is generally
inefficient and sensitive to the shape of the Pareto front as it often fails to capture the non-convex points
on the front. Recent techniques focus on direct generation of the Pareto front based on Pareto ranking of
the solutions. Among these approaches, genetic algorithms (Fonseca and Fleming 1993, Srinivas and Deb
1994, and Horn et al. 1994) and evolutionary algorithms (Zitzler and Thiele 1998) are most common. Lu
et al. (2011) describe the PAPE algorithm which can populate the Pareto front with an adaptation of a
point exchange algorithm based on a specified candidate set of design locations.

In JMP, the Pareto front can be easily extracted with the Row Selection option (Rows > Row

Selection > Select Dominant), where the columns of interest as well as the direction to optimize (here

maximize D-efficiency, and minimize both tr(AA') and tr(R'R) ) are specified. Figure 2 shows how to

select the direction of the optimization.
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Figure 2: Selection menu to specify maximization or minimization for different criteria.

v [*IScatterplot Matrix

124

114

104 7

A
~
]

N
.
.

T T T T T T T T
0.1 0.2 0.3 0.4 05 1 2 3 =4
Deft A

Figure 3: Pairwise Scatterplot of Pareto Front based D-efficiency, tr(AA’) and tr(R'R)



These rows which comprise the Pareto front can then be extracted and explored further. Figure 3
shows the Pareto front comprised of 333 values for the three-criteria optimization, where different colors

have been used to denote designs which are on the Pareto front found by optimizing the criteria in pairs

(red for D-efficiency and tr(AA"), green for D-efficiency and tr(R'R) ),blue for tr(AA") and

tr(R'R) ). Points which are only on the three-criteria front are shown in black. Note that if a design is

included in more than one two-criteria front, then it cannot be simultaneously shown in both colors for
which it would be chosen. Figure 4 shows the scatterplot of the Pareto front based on just two criteria, D-
efficiency and tr(AA’) ,where improvements in one criteria must necessarily lead to a worsening of the

other criteria in order for neither of the two points to dominate each other. This unique ordering of points

is not possible when three or more criteria are used.
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Figure 4: Pareto front based on two criteria: D-efficiency and tr(AA")

Note that the two criteria front shown in Figure 4 is comprised of 9 designs, and improving the D-

efficiency (increasing), must necessarily worsen tr(AA’) (increase), and vice versa. From this summary,

we see that the best possible value for D-efficiency is 0.5345, and the best possible for tr(AA’) is 2.345

(the best value for tr(R'R) s 0).



These 333 designs represent the set of all non-dominated designs, and form the collection from
which it is rational and defensible to select the single final “best” design, since they dominate all other

designs considered.

3.3 Selecting a “Best” Design

As with the step described in Section 3.1, there are multiple approaches for paring down the
multiple design alternatives found using the Pareto Front approach in Section 3.2 to identify the single
final design to run in the experiment.

Lu, Anderson-Cook and Robinson (2011) describe an approach to finding the best design using
the Utopia Point approach, which seeks to minimize the distance between points on the front with the
ideal location which optimizing all the criteria simultaneously (called the Utopia Point). Typically this
ideal does not exist for any possible design, and so this approach seeks to find the best alternative subject
to some scaling of the different criteria which matches the experimenter’s priorities. It has some
similarities to the desirability function approach (Derringer-Suich, 1980), but with an easy method for
exploring the robustness of the choice of design to different weightings of the criteria and forms for
combining them. Here we consider an alternative approach, which is appropriate if the experimenter has
clear ideas about what values of the different criteria are acceptable.

This approach uses the Data filter (found in Rows > Data Filter), and allows the user to specify
constraints on each of the different criteria, and rows satisfying the constraints are selected. The approach
starts with all rows selected, and the Data Filter showing the complete ranges of the data, as shown in

Figure 5. We see the data ranges for the three criteria are D-efficiency €[0.013,0.535],
tr(AA") €[2.345,12.242] and tr(R'R)e[0,64.317]

The user should adjust the ranges of each of the criteria in the order of importance that they feel
reflects their importance as experiment goals. With each additional constraint, the available range for the
remaining criteria shrinks. For example, in this case, we might feel that performing well for estimating the
model parameters for our chosen model (D-efficiency) is most important, and that we would like to
achieve at least 65% relative efficiency compared to the best available design (with D-efficiency value of
0.5345). Hence the lower bound of the Data Filter could be shifted to give a value of approximately
0.347. This selects 40 of the 333 possible designs as shown in Figure 6. Note how in the scatterplots, the
points highlighted fall to the right of the imaginary vertical line at 0.3418.



Figure 5: Starting point for Data Filter approach for selecting a best design
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Figure 6: Using the Data Filter to Select Design with at least 65% relative D-efficiency

Next we adjust the remaining criteria (here since we are seeking to minimize tr(AA’") and tr(R'R) , We

adjust the upper bound for each criterion) until we obtain a best design. Note that in this case, we adjusted

tr(AA’) first, and so this allowed us very little flexibility to further restrict the range of tr(R'R) . Figure

7 shows the final highlighted design based on this set of criteria.
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Figure 7: Final selected design using Data Filter approach

Figure 8 shows the final criterion values for the selected design based on this set of constraints. In

general, we recommend experimenting with the different thresholds to identify several different candidate

“best” designs, and then carefully comparing their criterion values to determine which suits the goals of

the experiment best.
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Figure 8: Data Table with Selected Final design

trA
6.573865
5.309411
8.65941
4.119376
6.883694
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5.277778
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45
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trR

19.71134
27.2776086
7.619048
43.151515
22.402814
7.474453
16
24.615385
23.496503
9.846154
19.42069
22.979228
28

31
6.726115
19.555556
20.134831
3.622642
10.223642
3.913043
32.455516
32
9.517949
48
22.810811
23.691228
3.323077
27.247525
40
42.666667

35.657143
4 770921

Once a best design has been identified, then the details of the design can be examined to see if the

geometry of the design in the factor space is appealing. Figure 9 shows the design with gray circles
denoting where observations exist. Note that for any of the factors, the levels of -1 and +1 can be
reversed. However, because of the non-symmetric model in (1), the factors cannot be relabeled (for

example, changing the roles of factor A and E) and still preserve the characteristics of D-optimality,

tr(AA’) and tr(R'R).
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Figure 9: Final design selected using Data Filter approach.

The design can be further evaluated in JMP with the DOE > Augment Design feature, which has
a large number of Design Evaluation tools available automatically. Figure 10 shows a snapshot of the list

of tools available to assess a design.

v Design Evaluation
» =IPrediction Varlance Profile
» Fraction of Design Space Plot
» IPrediction Varlance Surface
» Relative Varlance of Coefficlents
» Allas Matrix
» Color Map On Correlations
» Design Diagnostics

Figure 10: Snapshot of JMP list of Design Evaluation tools (accessible from Custom Design and

Augment Design)
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4. Conclusions

In design of experiments, a “best” design should be selected based on several criteria which
highlight varied aspects of a “good design”, such as the precision of parameter estimation and protection
against model misspecification. Quite often, these criteria cannot be simultaneously optimized and trade-
offs must be incorporated. We illustrated the Pareto approach for design construction and selection using
an example to find an optimal 14-run design involving five two-level factors and the specified model in
(1) using D-optimality, tr(AA") and tr(R'R).

This Pareto optimization approach combined with the Data Filter selection method allows the
user to identify a collection of best designs from which to select a final experiment to be run. The
approach is flexible enough to be applied to other design of experiment situations where other criteria
might be of primary interest. For creating the Pareto front and using the Data Filter to select a final
design, all that is required is a table (like the one shown in Figure 8) with a column for each criterion and
rows for all potential choices. It is also appropriate for response optimization approaches as well. Once a
set of responses with a corresponding table of candidate values has been identified, the same selection
procedure applies.

Many decisions involve complex trade-offs between competing objectives. Having a formal
method to eliminate dominated designs from consideration, and then selecting from among the Pareto
front candidates can lead to better understanding of available options and hence improved decision-

making.
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