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. Abstract 

Bayesian methods are theoretically optimal in many situations. Bayesian model 
averaging is generally considered the standard model for creating ensembles of 
learners using Bayesian methods, but this technique is often outperformed by more ad 
hoc methods in empirical studies. The reason for this failure has important theoretical 
implications for our understanding of why ensembles work. It has been proposed that 
Bayesian model averaging struggles in practice because it accounts for uncertainty 
about which model is correct but still operates under the assumption that only one of 
them is. In order to more effectively access the benefits inherent in ensembles, 
Bayesian strategies should therefore be directed more towards model combination 
rather than the model selection implicit in Bayesian model averaging . This work 
provides empirical verification for this hypothesis using several different Bayesian 
model combination approaches tested on a wide variety of classification problems. We 
show that even the most simplistic of Bayesian model combination strategies 
outperforms the traditional ad hoc techniques of bagging and boosting, as well as 
outperforming BMA over a wide variety of cases. This suggests that the power of 
ensembles does not come from their ability to account for model uncertainty, but 
instead comes from the changes in representational and preferential bias inherent in 
the process of combining several different models. 
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• Learning about F: 

p(f x,y) == p(y x,f)p(f) L--1'Drr.'n ~ 
fp(y x,f)p(f)dj 

• Classification or Regression: 

p(y x,DTrain ) == Ip(y x,j)p(j DTrain)dj 



~M J~CS or D)~~~/~) 

• Learning about F: 

p(f x, y) = p(y x, f) p(f) 11Jo~ I 

fp(y x,f)p(f)df 

• Classification or Regression : 

p(); x,DTrain ) == Ip(); x,j)p(j DTrain)dj 

• Decision making: 

" arg max ~ ( I·· d) ( .. I .. D ) d == L...J U ( 0 ) p 0 Y , pyx, Train 

d E D YEY 
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• Learning about F: 

p(f x, y) == p(y x, f) p(f) 11). .. 

fp(y x,f)p(f)df 

• Classification or Regression: 

p(y x,DTrain) == Ip(y x,j)p(j DTrain)dj 

• 0-1 Loss Decision making: 

rg max ··1·· D ) " - a p(y x, Train d- YEY 
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Iris Setosa 

Iris Virginica 

Info about 
·sepal length 
·sepal width 
• petal length 
·petal width 

I ris Versicolor 



~
 
~
 

s:: 
-
~
 

!..... 
~
 

0 

~
 

-0 
Q

 
u 
--Vl !..... 

~
 

~
 

V
l 

--!..... 

~
 
~
 

~
 

"'0 
:::J 

--
0 

~
 

..c 
-

ro 
ro 

0 
~
 

~
 

Q
) 

\t-
o. 

c:: 
• 

ro 
u 
--c:: --on !..... 

--> 
r
\
 

V
l 

~
 

--
:
~
 

ro 
!..... 

V
l 

c:::=
:::E

J 
0 

~
 

~
 

:
~
 

Q
) 

V
1

 

~
 

V
l 

--
~
 

!..... 



us~~ /~-) ~A~~~'OJ 

Info about 

j DTrain)dj 
·petal width 

Iri! Can we do better? 
Iris Virginica 

I ris Versicolor 
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Iris Setosa 

Iris Virginica 

[Jl Y~~)l~ ~V~)OY~~~~§~ 

Info about 
·sepal length 
·sepal width 
·petal length 
·petal width 

hypothesis2 

hypothesis4 

I ris Versicolor 
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Input: Unlabeled Instance 

~ 

~ ~ ~ ~ 
Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.1 

y 

Output: Class label 

~~>""'- ~ 
L,. tit' , 
•

,y ,"., 5 """r;, 
. - -~. ,,~x 

'=r!~~ ~~.~::t »t~ 
~ .. ~it~w Mf\-o .,;~ 

~ 
Iris Virginica: 
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Input: Unlabeled Instance 

~ 

~ '. h2 

~ ~ ~ 
Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.1 

? Y 

~ 
Iris Setosa: 

Output: Class label 

I~;~; :<\~~:fi:j~~~ ::,' til :n~::.,~ 
~~~t~~iI 

~ 
Iris Virginica: 
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• Bagging: One hypothesis, One vote 
• Boosting: Weight by predictive accuracy on the 

training set 
• BAYESIAN MODEL AVERAGING (BMA): Weight by 

the formal probability that each hypothesis is 
correct given all the data 

p(Yi IXi, D~ H) = L p(Yi IXi, h)p(hID ) 
h EH 

Xj: Unlabeled Instance 

W . W 
o .(J. .(J. o o 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iri s Set osa : 0.4 Iris Setosa: Iris Virginica: 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.1 

Iris Versicolor 
yj: Probability of class label 



"Bayes is right, and 
everything else is wrong, or 

an approximation." 

-James Carroll 

Please compare your algorithm to 
Bayesian Model Averaging 

- Reviewer for a conference where Kristine 
submitted her thesis research on ensemble learning 
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"Given the 'correct' model space and prior 
distribution, Bayesian model averaging is the 

optimal method for making predictions; in other 
words, no other approach can consistently 

achieve lower error rates than it does. " 

- Pedro Domingos 
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@) Domingos decided to put this theory to the 
test. 

@) 2000 empirical study of ensemble methods: 

• J48 
• Bagging 

• BMA 



~~ /~~ D ~~ ~YS 
J48 Bagging BMA 

Annealing 93.50 94.90 94.40 
Audiology 73.50 77.00 76.00 

Breast cancer 68.80 70.30 62.90 
Credit 85.70 87.20 82.20 

Diabetes 74.90 75.80 72.50 
Echocardio 66.50 70.30 65.70 

Glass 65.90 77.10 70.60 
Heart 77.90 82.80 76.90 

Hepatitis 80.10 84.00 77.50 
Horse colic 83.70 86.00 83.30 

Iris 94.70 94.70 93.30 
LED 59.00 61.00 60.00 

Labor 80.30 91.00 87.70 
Lenses 80.00 76.70 73.30 
Liver 66.60 74.20 67.00 

Lung cancer 55.00 45.00 55.80 
Lymphogr. 80.30 76.30 81.00 
Post-oper. 68.90 62.20 65.60 
Pro tumor 41.00 43.70 43.70 

Promoters 81.70 86.60 82.90 
Solar flare 71.20 69.40 70.30 

Sonar 75.40 80.30 72.70 
Soybean 100.00 98.00 98.00 
Voting 95.60 96.80 95.40 
Wine 88.80 93.30 88.70 
Zoo 90.10 91.00 93.00 

Average: 76.89 78.68 76.55 
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Bagging 

Average: 76.89 78.68 
Prorr Jters 81.70 86.60 82.90 --
Soljrflare 71.20 69.40 70.30 -

Sonar 75.40 80.30 72.70 - --
Soyb"an 100.00 98.00 98.00 
VAing 95.60 96.80 95.40 -
Wine 88.80 93.30 88.70 

~ 

Zoo 90.10 91.00 93,00 
~ ' " .. ,: " oA? t~ i~~ (, .,' /~ ". : ~~ "~,,.-.. ~- . :~' 



~~G~~ ~ ~x~ 
J48 -Annealing 93.50 

Audiology 73.50 77.00 
Breast cancer 68.80 70.30 

Credit 85.70 87.20 
Diabetes 74.90 75.80 

Echocardio 66.50 70.30 
Glass 65.90 77.10 
Heart 77.90 82.80 

Hepatitis 80.10 84.00 
Horse colic 83.70 86.00 

Iris 94.70 94.70 -
LED 59.00 61.00 

Labor 80.30 91.00 
Lenses 80.00 76.70 
Liver 66.60 74.20 

Lung cancer - I 
Lymphogr. 

Average: Post-ope_'. __ 

Pro tu rr..;,._o:...;r __ 

Prorr Jters 

B OI Jrflare ____ ~--------~---
Sonar -- ------~--------~---

Soyb~"~an~ _ _+-------_+---

81.70 I 86.60 
71.:':)0 I fl9 AO 
75.40 I RO.30 
100.00 I 9R.00 

__ \l~J~ti~n~g~ __ ~~ ________ +_----95.60 I 96.80 
W ine 88.80 I 93.30 
Zoo 

~~YS 
BMA 

94.40 
76.00 
62.90 
82.20 
72.50 
65.70 
70.60 
76.90 
77.50 
83.30 
93.30 
60.00 
87.70 
73.30 
67.00 

J48 Bagging 

76.89 78.68 
82.90 
70.30 
72.70 
98.00 
95.40 
88.70 
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• Bayesian Model Averaging gives too much 
weight to the maximum likelihood hypothesis 

p(Yi IXi, D~ H) = L p(Yi IXi, h)p(hI D ) 
hER 

p(h ID ) ex p(h) (1 - E)r (E)n - r 

Compare two classifiers: 
One with 95% predictive accuracy and one with 94% predictive accuracy 

(1 - ~)95(~)5 - 2 39 * 10- 9 
100 100 - . 

(1 - ~)94(~)6 - 1 39 * 10- 10 
100 ·· 100 - . 

Bayesian Model Averaging weights the first classifier as 
17 TIMES more likely! 
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"® 2003, comp'arison between BMA and stacking. 

® Similar results to Domingos 
• BMA is vastly outperformed by stacking 
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® BMA converges to model closest to the Data 
Generating Model (DGM) instead of converging to 
the combination closest to DGM! 

o 
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® BMA converges to model closest to the Data 
Generating Model (DGM) instead of converging to 
the combination closest to DGM! 
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® BMA converges to model closest to the Data 
Generating Model (DGM) instead of converging to 
the combination closest to DGM! 



OJ~~~5 O~5 ~o 

® BMA converges to model closest to the Data 
Generating Model (DGM) instead of converging to 
the combination closest to DGM! 
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® BMA converges to model closest to the Data 
Generating Model (DGM) instead of converging to 
the combination closest to DGM! 
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• Bayesian techniques are theoretically 
optimal if all underlying assumptions are 
correct 

• Which one of our underlying assumptions is 
flawed? 

---





~~MP~ (~ ~~YA~V 

" ... the only flaw with BMA is the belief 

that it is an algorithm for model combination" 

p(Yi I Xl., D ~ H) = L p(Yi lXil h)p(h ID) 
hEH 
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" ... the only flaw with BMA is the belief 

that it is an algorithm for model combination" 

p(Yi I Xi. ~ D ,H ) = L p(Yi lXil h)p(hID ) 
hER 

~ 
But BMA does return a 

combination! 
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" ... the only flaw with BMA is the belief 

that it is an algorithm for model combination" 

p(Yi IXi, D ,H ) = L p(Yi IXi, h)p(hID ) 
hER ~ 

Underlying assumption: 

BMA's combination is 
determined by the 

probability that each model 
is correct (the DGM). 

One, and only one model is right, and the rest are 
wrong. 
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® Learning about F: 

(f
" ) p(y x, f) p(f) 11)... - 1 

P x,Y == J p(y x, f) p(f)df 
® Classification or Regression: 

p(y X, DTrain) = f p(y x, I) p(1 DTrain )dl 

®BMA 

p(y X,DTrain,H) = LP(Y x,h)p(h DTrain ) 
hEH 
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BMA optimally integrates out uncertainty 
about which model is right, assuming that 
one and only one is right. 

p(Yi I Xi.~ D,H ) = L p(Yi IXi, h)p(hID) 
hEH 
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VM 
® If Theory 1 is right, then BMA is the optimal 

way to do ensembles, and will out perform 
other ensemble techniques. 

® Empirical results indicate that there must be 
more to it. 
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® Theory 1: Ensembles account for uncertainty 
about which model is correct 
• BMA does this optimally 

® Theory 2: Ensembles improve the 
representational bias of the learner 
• Ensembles enrich the hypothesis space of the 

learner so that together they can represent 
. hypotheses that no single member could 
represent alone 
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@ Theory 1: Ensembles account for uncertainty 
about which model is correct 
• BMA does this optimally 

@ Theory 2: Ensembles improve the 
representational bias of the learner 
• Ensembles enrich the hypothesis space of the 

learner so that together they can represent 
hypotheses that no single member could 
represent alone 

@ Theory 3: Ensembles improve the 
preferential bias of the learner 
• They act as a sort of regularization technique 

that reduces overfit 
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• Theory 2: Allowing ensembles of models 
enriches the hypothesis space 

vs. 

• Theory 3: Ensembles may have a more 
general bias that is less prone to overfit 

vs. 
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~~S~A~ 
Input: Unlabeled Instance 

~ ~ 
D D D D D 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Vlrglnica: 0.1 Iris Virginica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~ IT] 
D D D D D 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginlca: 0.3 Iris Virginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~ ~ 
D D D D D 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Vlrglnica: 0.3 Iris Vlrginlca: 0.3 Iris Virginica: 0.1 Iris Virglnica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

D) ~~AT~O~ 

Iris Setosa: 0.22 
Iris Virginica: 0.37 
Iris Versicolor: 0.41 

Iris Setosa: 0.13 
Iris Virginica: 0.27 
Iris Versicolor: 0.60 

Iris Setosa: 0.13 
Iris Virginica: 0.52 
Iris Versicolor: 0.45 

Output: 
Class 
label 
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Input: Unlabeled Instance Generate diverse 
model combinations 

w w 
o 0 o o o 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versico lor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~ w 
o 0 o o o 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor : 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~ w 
o o o o o 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica : 0.3 Iris Virginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

osa: 0.22 
ifginica: 0.37 

rsicolor: 0.41 

is Virginica: 0.27 
ris Versicolor: 0.60 

Iris Setosa: 0.13 
Iris Virginica: 0.52 
Iris Versicolor: 0.45 

~ 

Output: 
Class 
label 
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Input: Unlabeled Instance Generate diverse 
model combinations 

~ ~ 
D D D D D 

Iris Setosa: 0. 1 Iris Setosa: 0.3 Iris Setosa : 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica : 0.1 Iris Virginica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~ ~ 
D D D D D 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa : 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica : 0.1 Iris Virginica : 0.4 Iris Virginica : 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~ ~ 
D D D D D 

Iris Setosa : 0. 1 Iris Setosa : 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica: 0.3 Iris Vlrginica: 0.3 Iris Vlrginica: 0.1 Iris Virginlca: 0.4 Iris Virginlca: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolo r: 0.2 

osa: 0.22 
ifginica: 0.37 

rsicolor: 0.41 

is Virginica: 0.27 
ris Versicolor: 0.60 

Iris Setosa: 0.13 
Iris Virginica: 0.52 
Iris Versicolor: 0.45 

Output: 
Class 
label 

Use Bayesian 
Techniques to weight 
combination outputs 



v rcy 

~ ~ ~ y 
Input: Unlabeled Instance 

~~~~~ 
D D D D D 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica : 0.3 Iris Virginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4 Iris Virginica : 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~ ~ ~ ~ Ii}f" ' ....... '., ," 

" . 
'7"" .' .~. . '." . 

D D D D D 
Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica: O. I Iris Virginica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~ fu 
D D D D D 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginlca: 0.1 Iris Vlrginica: 0.4 Iris Virginica : 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

etc. 

v o 

y rc: 

Iris Setosa: 0.22 
Iris Virginica: 0.37 
Iris Versicolor: 0.41 

Iris Setosa: 0.13 
Iris Virginica: 0.27 
Iris Versicolor: 0.60 

Iris Setosa: 0.13 
Iris Virginica: 0.52 
Iris Versicolor: 0.45 

Output: 
Class 
label 



J48 Bagging Boosting BMA BMC-Inc 
anneal 98.44 98.22 99.55 98.22 98.89 

audiology 77.88 76.55 84.96 76.11 82.3 
autos 81.46 69.76 83.9 70.24 84.88 

~~~~l1r~ 
balance-scale 76.64 82.88 78.88 82.88 81.92 

bupa 68.7 71.01 71.59 70.43 71.88 
cancer-wise. 93.85 95.14 95.71 95.28 95.14 
cancer-yugo. 75.52 67.83 69.58 68.18 73.08 

car 92.36 92.19 96.12 92.01 93.75 
cmc 52.14 53.63 50.78 41.96 52.95 

credit-a 86.09 85.07 84.2 84.93 85m 
credit-g 70.5 74.4 69 .6 74.3 73.1 

dermatology 93.99 92.08 95.63 92.08 95.36 
diabetes 73.83 74.61 72.4 74.61 74.35 

echo 97.3 97.3 95.95 97.3 97.3 
ecoli-c 84.23 83.04 81.25 82.74 84.52 
glass 66.82 69.63 74.3 68.69 70.09 

haberman 71.9 73.2 72.55 73.2 74.51 
heart-cleveland 77.56 82.18 82.18 82.18 79.87 

heart-h 80.95 78.57 78.57 78.57 79.59 
heart-statlog 76.67 79.26 80.37 78.52 80 

hepatitis 83.87 84.52 85.81 83.87 83.87 
horse-colic 85.33 85.33 83.42 85.05 86.14 
hypothyroid 99.58 99.55 99.58 99.55 99.6 
ionosphere 91.45 90.88 93.16 90.6 93.45 

iris 96 94 93.33 94 95.33 
kr-vs-kp 99.44 99.12 99.5 99.12 99.44 

labor 73.68 85.96 89.47 87.72 84.21 
led 100 100 100 100 100 

lenses 83.33 66.67 70.83 58.33 79.17 
letter 100 100 100 100 100 

liver-disorders 68.7 71.01 71.59 70.43 71.88 
lungcancer 50 50 53.12 46.88 56.25 

lymph 77.03 78.38 81.08 79.05 80.41 
monks 96.53 99.54 100 96.99 100 

page-blocks 96.88 97.24 97.02 97.26 97.24 
postop 70 71.11 56.67 71.11 67.78 

primary-tumor 39.82 45.13 40.12 45.13 41.3 
promoters 81.13 83.96 85.85 85.85 81.13 
segment 96.93 96.97 98.48 96.88 97.45 

sick 98.81 98.49 99.18 98.46 98.97 
solar-flare 97.83 97.83 96.59 97.83 97.83 

sonar 71.15 77.4 77.88 77.4 74.52 
soybean 91.51 86.82 92.83 86.38 93.12 

spect 78.28 81.65 80.15 82.02 79.03 
tic-tac-toe 85.07 92.07 96.35 91.65 93.53 

vehicle 72.46 72.7 76.24 72.81 76.48 
vote 94.79 94.58 95.66 94.58 95.44 
wine 93.82 94.94 96.63 93.26 95.51 
yeast 56 60.04 56.4 31.2 60.51 
zoo 92.08 87.13 96.04 86.14 93.07 

average: 82.37 82.79 83.62 __ L~~_~ 81.64 83.93 



SUlYS 

Bagging 

Average: 82.37 82.79 

Boosting 

83.62 

BMC 
Linear 

83.93 



~~lY~ 

Bagging Boosting 

Average: 82.37 82.79 83.62 

Friedman Signed-Rank Test: 
Results significant (p < 0.01) 

Critical differences between BMC and 
two of the other four strategies 

BMC 
Linear 

83.93 
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Input: Unlabeled Instance 

~.15 ~.25 .... ca·. 1 ~ ....... ca·37 ~.10 
diu .". . Wa 

" '. ",;;' 

D D D D D 
f 

Iris Setosa: 0.22 
Iris Virginica: 0.37 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 Iris Versicolor: 0.41 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~~~~~ IhtJ Da ':' . '" . ~ 
~'.~" . -~ 

f ~ 
Output: 

D D D D D Iris Setosa: 0.13 
Iris Virginica: 0.27 Class 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 Iris Versicolor: 0.60 
label Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4 Iris Virginica: 0.5 

Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

~I r~~J~CWII ' r3~ I 

D D D D D 
f 

Iris Setosa: 0.13 
Iris Virginica: 0.52 

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 Iris Versicolor: 0.45 
Iris Virginica: 0.3 Iris Virginica: 0.3 Iris Virglnica: 0.1 Iris Virginica: 0.4 Iris Virginica: 0.5 
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2 

Update Dirichlet priors with most likely weights and resample ... 



J48 Bal(l(ing BoostinR BMA BMC-D 
anneal 98.44 98.22 99.55 98.22 98.89 

audiology 77.88 76.55 · 84.96 76.11 82.3 
aut os 81.46 69.76 83.9 70. 24 84.88 

s lY~ balance-scale 76.64 82.88 78.88 82.88 81.92 
bupa 68.7 71.01 71.59 70.43 71.88 

cancer-wise. 93.85 95.14 95.71 95.28 95 .14 
ca ncer-yugo. 75.52 67.83 69.58 68.18 73.08 

car 92.36 92.19 96.12 92.01 93.75 
cmc 52.14 53.63 50.78 41.96 52.95 

credit -a 86.09 85.07 84.2 84.93 85.07 
credit-g 70.5 74.4 69.6 74.3 73 .1 

dermatology 93.99 92.08 95.63 92.08 95.36 
diabetes 73.83 74.61 72.4 74.61 74.35 

echo 97.3 97.3 95.95 97.3 97.3 
ecol i-c 84.23 83.04 81.25 82.74 84.52 
glass 66.82 69.63 74.3 68.69 70.09 

haberman 71.9 73.2 72.55 73 .2 74.51 
heart-cleveland 77.56 82.18 82.18 82.18 79.87 

heart-h 80.95 78.57 78.57 78.57 79.59 
heart-statioR 76.67 79.26 80.37 78.52 80 

hepatitis 83.87 84.52 85.81 83.87 83.87 
horse-colic 85.33 85.33 83.42 85.05 86.14 
hypothyroid 99.58 99.55 99.58 99.55 99.6 
ionosphere 91.45 90.88 93.16 90.6 93.45 

iris 96 94 93.33 94 95.33 
kr-vs-kp 99.44 99.12 99.5 99.12 99.44 

labor 73.68 85.96 89.47 87.72 84.21 
led 100 100 100 100 100 

lenses 83.33 66.67 70.83 58.33 79.17 
letter 100 100 100 100 100 

liver-disord ers 68.7 71.01 71.59 70.43 71.88 
lungcancer 50 50 53.12 46.88 56.25 

lymph 77.03 78.38 81.08 79.05 80.41 
monks 96.53 99.54 100 96.99 100 

page-blocks 96.88 97.24 97.02 97.26 97.24 
postop 70 71. 11 56.67 71.11 67.78 

~ Jlrimary-tumor 39.82 45. 13 40.12 45.13 41.3 
promoters 81.13 83.96 85.85 85.85 81.13 
segment 96.93 96.97 98.48 96.88 97.45 

sick 98.81 98.49 99.18 98.46 98.97 
solar-flare 97.83 97.83 96.59 97.83 97.83 

sonar 71.15 77.4 77.88 77.4 74.52 
soybean 91.51 86.82 92.83 86.38 93.12 

spect 78.28 81.65 80.15 82.02 79.03 
tic-t ac-toe 85.07 92.07 96.35 91.65 93.53 

vehicle 72.46 72.7 76.24 72.81 76.48 
vote 94.79 94.58 95.66 94.58 95.44 
wine 93.82 94.94 96.63 93.26 95.51 
yeast 56 60.04 56.4 31.2 60.51 
zoo 92.08 87.13 96.04 86.14 93.07 

average: 82.37 82.79 83.62 81.64 84.02 



s ~~ 

Bagging 

Average: 82.37 82.79 

Boosting 

83.62 

BMC 
Dirichlet 

84.02 



OJ ~S~lTS 

Bagging Boosting 

Average: 82.37 82.79 83.62 

Friedman Signed-Rank Test: 
Results significant (p < 0.01) 

Critical differences between BMC and 
three of the other four strategies 

BMC 
Dirichlet 

84.02 





y 
CC ~A 

® Compute the optimal set of ensemble 
weights given a set of trained classifiers 

® Optimally train a set of classifi.ers given a 
fixed set of ensemble weights 

® Simultaneously train the classifiers and find 
the en'semble weights 



T~~ T YVr~S O~ 
D) /h\~~5~ 

" compute the optimal set of ensemble 
weights given a set of trained classifiers 

® Optimally train a set of classifiers given a 
fixed set of ensemble weights 

® Simultaneously train the classifiers and find 
the ensemble weights 
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" compute the optimal set of ensemble 
weights given a set of trained classifiers 

® Optimally train a set of classifiers given a 
fixed set of ensemble weights 

® Simultaneously train the classifiers and find 
the ensemble weights 
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~UlY~ 

CMAC Bagging BMA BCMAC 
Elusage 0.047 0.045 0.045 0.035 
Gascon 0.140 0.135 0.134 0.041 
longley 0.097 0.119 0.119 0.041 
step2d 0.019 0.018 0.022 0.018 

twoDimEgg 0.025 0.109 0.270 0.018 
optimalBMA 0.005 0.071 0.006 0.002 

Average: 0.0555 0.08283 0.09933 0.02583 



~s 

CMAC Bagging BCMAC 
Average: 0.0555 0.08283 0.09933 

J (MAC Bagging BMA BCMAC 

~
Elur age 0.047 0.045 0.045 0.035 
GJscon 0.140 0.135 0.134 0.041 --
,onglE", 0.097 0.119 0.119 0.041 
ste'Ld 0.019 0.018 0.022 0.018 

tw' Jim Egg 0.025 0.109 0.270 0.018 
r AimalBMA 0.005 0.071 0.006 (tOO) _.. . . . __ ._-

"~:;"' "" """>?:",?'~ ',' ;,":, - ,', "';' 



~ 

® The CMAC is an example of an ensemble with 
a fixed weighting scheme 

® The parameters for each member of the 
ensemble can be solved in closed form given 
the fixed weighting scheme 

® This approach significantly out performs 
traditional CMAC learning rules 



y~~ ~uy~~y~ ~ 
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" compute the optimal set of ensemble 
eights given a set of trained classifiers 

Optimally train a set of classifiers given a 
fixed set of ensemble weights 

~~~k& Simultaneously train the classifiers and find 
the ensemble weights 



~ClU~~O~S 

® Bayesian Model Averaging is not the optimal 
approach to model combination 
• It is the optimal approach for model selection 
• And it is outperformed by ad hoc techniques 

when the DGM is not in the model list 

® Even the most simple forms of Bayesian 
Model Combination outperform BMA and 
these ad hoc techniques 



~UTU~~ 

® Simultaneously train the classifiers and find 
the ensemble weights 

® Further work will investigate other methods 
of generating diversity among the component 
ensembles (e.g. non-linear combinations) or 
using models that take spacial considerations 
into account 




