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Abstract

Bayesian methods are theoretically optimal in many situations. Bayesian model
averaging is generally considered the standard model for creating ensembles of
learners using Bayesian methods, but this technique is often outperformed by more ad
hoc methods in empirical studies. ‘The reason for this failure has important theoretical
implications for our understanding of why ensembles work. It has been proposed that
Bayesian model averaging struggles in practice because it accounts for uncertainty
about which model is correct but still operates under the assumption that only one of
them is. In order to more effectively access the benefits inherent in ensembles,
Bayesian strategies should therefore be directed more towards model combination
rather than the model selection implicit in Bayesian model averaging. This work
provides empirical verification for this hypothesis using several different Bayesian
model combination approaches tested on a wide variety of classification problems. We
show that even the most simplistic of Bayesian model combination strategies
outperforms the traditional ad hoc techniques of bagging and boosting, as well as
outperforming BMA over a wide variety of cases. This suggests that the power of
ensembles does not come from their ability to account for model uncertainty, but
instead comes from the changes in representational and preferential bias inherent in
the process of combining several different models.
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* Learning about F:

015 )P
(f |x.y)=—2
L P

Repeat 1o get p(f ‘ DTrain)
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 Learning about F:

ix, /)p(f)
(f |x,p) =~
T o x Np(Hdf

* Classification or Regression:

p(3|%.Dy,) = [p(3 1%, /) P(S | Drin)f




| f AW | I ] R Vo Y o s | A Ul b )
J '\"»" AN L | YA AN \ | =t . | PR a8\ i VR
| AT . || ) NN BN s R ik ol 1 el F = 9 | A R RER R w
f WA /e, S y \ , y
A A ,-/f \\\ | | B ‘ \ A7 W : & B ’

 Learning about F:

01 %,./)p(f)
(f|%p)=—"
T o v e

* Classification or Regression:

p(3| %, Dy) = [ p(31 %, /)P | Dryainf

* Decision making:

arg max
deD

d = 2. U(0)p(o]3,d)p(3] %, D)

yeyY



L B AR A | | y / ol o & £\ | J \ | \ | (¢
o M |‘|' !If‘\'\""‘r;f'ﬂl”;' » :‘ N B MW A 3\ MO J W |,,| | i A WS R || N .
| == 0V Ry \ = | | B i Y ‘/f QN 0% 5 oy = e B @ ull N | | N

e Learning about F:

(vIx, /)p(f)
(f |x,p) ="
T o x e

e Classification or Regression:

p(3|%.Dy) = [p(31 %, ) p(f | Drin)df

e 0-1 Loss Decision making:

~ argmax. o
d= p(V|X, DTrain)
yveY



REALISTIC MACHINE LEARNING:

Training Data Input: Unlabeled Instance

Learning
Algorithm

hypothesis

U U

hypothesis Output: Class label




USING A LEARNER

Info about

»sepal length

»sepal width _
»petal length
»petal width

Iris Virginica

Iris Versicolor




USING A LEARNER

Info about ]

p(y | '5(’:9 DTrain) — L “ . (f I DTrain )df

ySepar: "petal width |

Iris Versicolor
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Info about ]

p(y | jé’ DTrain) — Ll “ . (f ‘ DTrain )df

sepal -petal width _J

Iris Versicolor




ENSEMBLES

® Multiple learners

VS.




ENSEMBLE TRAINING:

F a8 =
[ >
raiing vare => [~ (D =
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ENSEMBLE TR

AINING:

algorithm, hypothesis,

algorithm, hypothesis,

Training Data =) algorithm, hypothesis, '

algorithm, hypothesis,

$ 440

algorithms

hypothesiss




Iris Virginica

Info about
ssepal length
ssepal width
=petal length
»petal width

Iris Versicolor




»

#‘0 Input: Unlabeled Instance
)
O )
U 4 ) U )

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: Iris Virginica:
Iris Virginica: 0.3 lIris Virginica: 0.3  Iris Virginica: 0.5
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.1

|
Output: Class label




#"0 Input: Unlabeled Instance
J
o BN Y
4 U U 4 J

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: Iris Virginica:
Iris Virginica: 0.3  Iris Virginica: 0.3 Iris Virginica: 0.5
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.1
L Y J

Output: Class label




Lrw yolBLE OP TIONS FOR COMBINING
HYPOTHESES:

« Bagging: One hypothesis, One vote

= Boosting: Weight by predictive accuracy on the
training set
- BAYESIAN MODEL AVERAGING (BMA): Weight by

the formal probability that each hypothesis is
correct given all the data

plyilzi, D,H) = ) p(yili, h)p(h|D)
heH

Iris Setosa: 0.4 Irs Setosa: Iris Virginica:

ris Setosa: 0.1 Iris Set
Iris Virginica: 0.3 Iris Virgini 0 3 lris Virgi ni 3.5
Iris Versicolar: 0.6 Iris Ver .1_-_-!.-_u 0.4 Iris Versicolor: 0.1
\ J
1
. y;: Probability of class label

Iris Versicolor




BAYEN

“Bayes is right, and
everything else is wrong, or
an approximation.”

-James Carroll

HNIQUES

Please compare your algorithm to
Bayesian Model Averaging

- Reviewer for a conference where Kristine
submitted her thesis research on ensemble learning
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“Given the ‘correct’ model space and prior
distribution, Bayesian model averaging is the
optimal method for making predictions; in other
words, no other approach can consistently
achieve lower error rates than it does.”

- Pedro Domingos




DOMINGOS’ EXPERIMENTS

® Domingos decided to put this theory to the
test.

® 2000 empirical study of ensemble methods:
= J48
= Bagging
= BMA
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)48 Bagging BMA
Annealing 93.50 94.90 94.40
Audiology 73.50 77.00 76.00
Breast cancer 68.80 70.30 62.90
Credit 85.70 87.20 82.20
Diabetes 74.90 75.80 72.50
Echocardio 66.50 70.30 65.70
Glass 65.90 77.10 70.60
Heart 77.90 82.80 76.90
Hepatitis 80.10 84.00 77.50
Horse colic 83.70 86.00 83.30
Iris 94.70 94.70 93.30
LED 59.00 61.00 60.00
Labor 80.30 91.00 87.70
Lenses 80.00 76.70 73.30
Liver 66.60 74.20 67.00
Lung cancer 55.00 45.00 55.80
Lymphogr. 80.30 76.30 81.00
Post-oper. 68.90 62.20 65.60
Pr. tumor 41.00 43.70 43.70
Promoters 81.70 86.60 82.90
Solar flare 71.20 69.40 70.30
Sonar 75.40 80.30 72.70
Soybean 100.00 98.00 98.00
Voting 95.60 96.80 95.40
Wine 88.80 93.30 88.70
Z00 90.10 91.00 93.00
Average: 76.89 78.68 76.55
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JA8 Bagging BMA
Annealing 93.50 94.90 94.40
Audiology 73.50 - 77.00 76.00
Breast cancer 68.80 70.30 62.90
Credit 85.70 87.20 82.20
Diabetes 74.90 75.80 72.50
Echocardio 66.50 70.30 65.70
Glass 65.90 77.10 70.60
Heart 77.90 82.80 76.90
Hepatitis 80.10 84.00 77.50
Horse colic 83.70 86.00 83.30
Iris 94.70 94.70 93.30
LED 59.00 61.00 60.00
Labor 80.30 91.00 87.70
Lenses 80.00 76.70 73.30
Liver 66.60 74.20 67.00
Crenhogr J48 Bagging
Post-ope’. ¥
>2pe Average: 76.89 78.68 76.55
Pr. tunmor
Prom oters 81.70 86.60 82.90 ’
Solar flare 71.20 69.40 70.30
Sonar 75.40 80.30 72.70
Soyb .an 100.00 98.00 98.00
| V ,ting 95.60 96.80 95.40
| Wine 88.80 93.30 88.70
90.10 91.00 a3 .00
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J48 Bagging BMA
Annealing 93.50 94.90 94.40
Audiology 73.50 77.00 76.00
Breast cancer 68.80 70.30 62.90
Credit 85.70 87.20 82.20
Diabetes 74.90 75.80 72.50
Echocardio 66.50 70.30 65.70
Glass 65.90 77.10 70.60
Heart 77.90 82.80 76.90
Hepatitis 80.10 84.00 77.50
Horse colic 83.70 86.00 83.30
Iris 94.70 94.70 93.30
LED 59.00 61.00 60.00
Labor 80.30 91.00 87.70
Lenses 80.00 76.70 73.30
Liver | 66.60 74.20 67.00
Lung cancer ' C
oo | J48 | Bagging
F;,°5t'°pe" Average: 76.89 78.68 76.55
r.tumor
Promroters 81.70 86.60 82.90 ?
Solar flare 71.20 69.40 70.30 g
Sonar 75.40 80.30 72.70
Soyb .an 100.00 98.00 98.00
V ,ting 95.60 96.80 95.40
Wine 88.80 93.30 88.70
" e 90.10 | 91.00 93.00
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= Bayesian Model Averaging gives too much
weight to the maximum likelihood hypothesis

ply;|lz;. D H) = Z (yi|x;, h)p(h|D)
heH
p(h|D) > p(h)(1 —€)"(e)" ™"

Compare two classifiers:
One with 95% predictive accuracy and one with 94% predictive accuracy

(1 - 35)%(535)° = 2.39 x 1079

100 -100
(1— 35 5a)" = 13841070

Bayesian Model Averaging weights the first classifier as
17 TIMES more likely!
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'® 2003, comparison between BMA and stacking.

® Similar results to Domingos
= BMA is vastly outperformed by stacking

CLARKE'S EAPERIMS




CLARKE’S OBSERVAIION: 5
® BMA converges to model closest to the Data |

Generating Model (DGM) instead of converging to
the combination closest to DGM!
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® BMA converges to model closest to the Data
Generating Model (DGM) instead of converging to
the combination closest to DGM!
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CLARKE S UDSERVA :

® BMA converges to model closest to the Data |
Generating Model (DGM) instead of converging to
the combination closest to DGM!




CLARKE'S OBSERVATION: &
® BMA converges to model closest to the Data

Generating Model (DGM) instead of converging to
the combination closest to DGM!
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® BMA converges to model closest to the Data |
Generating Model (DGM) instead of converging to
the combination closest to DGM!
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CLARKE'S UBSERVAIION:

® BMA converges to model closest to the Data
Generating Model (DGM) instead of converging to
the combination closest to DGM!
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« Bayesian techniques are theoretically
optimal if all underlying assumptions are
correct

« Which one of our underlying assumptions is
flawed?

2







MINKA'S COMMENTARY

“...the only flaw with BMA is the belief
that it is an algorithm for model combination”

ply;lxz;, D, H) = Z plyilz;, h)p(h|D)
heH
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‘...the only flaw with BMA is the belief
that it is an algorithm for model combination”

plyi|lz;, D.H) = Z plyile:. h)p(h|D)
heH

But BMA does return a
combination!
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“...the only flaw with BMA is the belief
that it is an algorithm for model combination”

p(yilei, D.H) =Y " p(y;|a;, h)p(h| D)

heH ‘

BMA’s combination is
determined by the
probability that each model
is correct (the DGM).

Underlying assumption:
One, and only one model is right, and the rest are
wrong.
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® Learning about F: %
ix, f)p(f) =
(f 1%, )=+
P e D

® Classification or Regression:

p(3|%,Dy,.) = [P35 /) p(f | Dyi)dlf
® BMA
p(y 1%, Dy, H) = ) p(91%,1) p(h| Dy, )

heH
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BMA optimally integrates out uncertainty
about which model is right, assuming that
one and only one is right.

ply;lz;, D.H) = Z ply;|lzi, h)p(h|D)
hell |
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@ Theory 1: Ensembles account for uncertainty
about which model is correct

= BMA does this optimally




THE PROUBLEM

@ If Theory 1 is right, then BMA is the optimal
way to do ensembles, and will out perform
other ensemble techniques.

® Empirical results indicate that there must be
more to it.




WHY DO ENSEMBLES WORK?

® Theory 1: Ensembles account for uncertainty
about which model is correct

= BMA does this optimally

® Theory 2: Ensembles improve the
representational bias of the learner

= Ensembles enrich the hypothesis space of the
learner so that together they can represent
hypotheses that no single member could
represent alone




Enriched Hypothesis Spa€e
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® Theory 1: Ensembles account for uncertainty
about which model is correct

= BMA does this optimally

® Theory 2: Ensembles improve the
representational bias of the learner
= Ensembles enrich the hypothesis space of the
learner so that together they can represent

hypotheses that no single member could
represent alone

® Theory 3: Ensembles improve the
preferential bias of the learner

= They act as a sort of regularization technique
that reduces overfit
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Improved Prefereptial Bias




Approximate
Probability Output




MODEL COMBINATIONS:
« Theory 2: Allowing ensembles of models
enriches the hypothesis space

« Theory 3: Ensembles may have a more
general bias that is less prone to overfit

VS.




p(y;|z;, D, H) = Z p(yi|x;, h)p(h|D)
heH

DGM
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p(yilz;. D,H) = > " ply;|;, h)p(h|D)
heH
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BAYESIAN MODEL AVERAGING:

ITERATE OVER MODEL COMBINATIONS

ply;|lx;. D.H) = Z plyilz;. h)p(h|D)
heH

\ ¢

plyilz;, D.H,E) =Y p(y;|x:, H.e)p(e|D)

=0 D)
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:\"0 Input: Unlabeled Instance

>

Iris Setosa: 0.22
@ @ @ @ @ - Iris Virginica: 0.37

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 Iris Versicolor: 0.41
Iris Virginica: 0.3  Iris Virginica: 0.3 IrlsVlrglnica 0.1 IrisVirginica: 0.4  [ris Virginica: 0.5
fre Versicolor oo fps Verstcolor: 004 s Versicolor: 0.5 Iris Versicolor: 0.2  Iris Versicolor: 0.2

: : Output:
Iris Se :0.13
{ 1y 4 4 4 L e Virts;)i;a;ca: 0.27 > Class

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa'0.3 Iris Versicolor: 0.60
Iris Virginica: 0.3 iris Virginica: 0.3  Iris Virginica: 0.1 Iris Virginica: 0.4  Iri= Virginica: 0.° /abe/

Iris Versicolor: 0.6 Iris Versicolor: 6.4 iris Versicolor: 0.5 Iris Versicolor: 0.2 InsVerswolor 0.2

Iris Setosa: 0.13
@ @ @ ‘lv @ - Iris Virginica: 0.52

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 Iris Versicolor: 0.45
Iris Virginica: 0.3  Iris Virginica: 0.3  Iris Virginica: 0.1 Iris Virginica: 0.4  [ris Virginica: 0.5
Irie Versicolor: 006 IrisVersicolor 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2

- /
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:ﬁé Input: Unlabeled Instance

/

AN MODEL COMBINAT IO

Generate diverse
model combinations

o

ris Setosa: 0.22
@/ @ @ @ @ is Vifginica: 0.37

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa; 0.4 Iris Setosa: 0.3 i rsicolor: 0.41
fris Vlrglmca 0.3 s Virginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4 Iric Virginica: 0.5
frisVersicolor 0.0 Iris Versicolor: 004 Iris Versicalor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2

IN BN BN BN EE

U U U U U

Ifis Setosa: 0.13 Output:
is Virginica: 0.27 > Class

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 IrlsSetosa 0 3 ris Versicolor: 0.60
Iris Virginica: 0.3  Iris Virginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4 [ric Virginic F Iabel
Iris Versicolor; 0.6 Iris Versicolor: 0.4  Iris Versicolor: 0.5 Iris Versicolor: 0.2 IrlsVerslcolor 0 2

) KN KN KN DN

U U U U U

Iris Setosa: 0.13
Iris Virginica: 0.52

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 Iris Versicolor: 0.45
Iris Virginica: 0.3 IrisV}rgmlca 0 3 Iris Virginica: 0.1 Iris Virginica: 0.4  Iris Virginica: 0.5
Iris Versicolor: 0.6 Iris colo Iris Versicalor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2

- _/




w/h&\//h SIAN MODEL COMBINATION

Generate diverse
model combinations

U L U U U

:\ﬁo Input: Unlabeled Instance

~

ris Setosa: 0.22
is Yirginica: 0.37

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 ris Setosa: 0.4 Iris Setosa 0.3 rsicolor: 0.41
Irls Vlrgmica 0.3 Iris Virginica: 0.3 Ir|5V|rngca 01 IrisVirginica:0.4 Iris Virginica: 0.5
versicolor 06 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2

N

@ @ @ @ @ Iris Setosa: 0.13 OUtPUt-
is Virginica: 0.27 Class

Iris Setosa: 0.1 Iris Setasa: 0.3 Iris Setosa: 0.4 ris Setosa: 0.4 Iris Setosa: 0.3 ris Versicolor: 0.60

Iris Virginica: 0.3  Iris Virginica: 0.3  Iris Vlrglmca 0.1 lIris Virginica: 0.4  Irls Virginica: 0.5 Iabe,

Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris Versicolor: 0.5 Iris Versicolor: 0.2 IrisVersicolor:0.2J

U L U U U

Iris Setosa: 0.13
Iris Virginica: 0.52

Iris Setosa: 0.1 tris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 Iris Versicolor: 0.45
Iris Virginica: 0.3  Iris Virginica: 0.3  Iris Virginica: 0.1  Iris Virginica: 0.4  Iris Virginica: 0.5
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Irie Versicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2

Use Bayesian
Techniques to weight
combination outputs

: _/
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@ Iris Setosa: 0.22
- lIris Virginica: 0.37
Iris Versicolor: 0.41

U U b g

Iris Setosa: 0.1 Iris Setosa: 0.3
Iris Vlrglnlca 0.3 Iris Vlrglnica 0.3

Iris Versi or: 0.6 Iris Vers

Iris Setosa: 0.3

Irls Virginica: 0.5

Iris Setosa: 0.4 Iris Setosa: 0.4
Iris Virginica: 0.1 InsVlrgmlca 0.4

olor: 0.4 Iris Versicolor: (.5 Iris Versicolor: 0.2 !nsVersrcolor 0.2

2 :

Iris Setosa: 0.3
Iris Virginica: 0.3
Iris Versicol 1.4 Iris Versicols

Iris Setosa: 0.1
Iris Virginica: 0.3

Iis Setosa: 0.1
Iris Virginica: 0.3

Iris Setosa: 0.3
Iris Virginica: 0.3

Iris Setosa: 0.4

Iris Virginica: 0.1
0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2

U

Iris Setosa: 0.4

Iris Virginica: 0.1
0.4 Iris Versicolor: 0.5

g

Iris Setosa: 0.4 Iris Setosa: 0.3
Iris Virginica: 0.4 |1l

Virginica: 0.5

3

U U

Iris Setosa: 0.4 Iris Setosa: 0.3
Iris Virginica: 0.4 Iris Virginica: 0.5
Iris Versicolor: 0.2 Iris Versicolor: 0.2

etc.

Iris Setosa: 0.13
Iris Virginica: 0.27

Iris Versicolor: 0.60

Iris Setosa: 0.13
Iris Virginica: 0.52

Iris Versicolor: 0.45

S

Output:
Class
label




148 Basgins BotLtinﬁ BMA BMC-Inc
anneal 98.44 98.22 99.55 98.22 98.89
audiology 77.88 76.55 84.96 76.11 82.3
autos 81.46 69.76 83.9 70.24 84.88
balance-scale 76.64 82.88 78.88 82.88 81.92
bupa 68.7 71.01 71.59 70.43 71.88
cancer-wisc. 93.85 95.14 95.71 95.28 95.14
cancer-yugo. 75.52 67.83 69.58 68.18 73.08
car 92.36 92.19 96.12 92.01 93.75
cmc 52.14 53.63 50.78 41.96 52.95
credit-a 86.09 85.07 84.2 84.93 85.07
credit-g 70.5 74.4 69.6 74.3 73.1
dermatology 93.99 92.08 95.63 92.08 95.36
diabetes 73.83 74.61 72.4 74.61 74.35
echo 97.3 97.3 95.95 97.3 97.3
ecoli-c 84.23 83.04 81.25 82.74 84.52
glass 66.82 69.63 74.3 68.69 70.09
haberman 71.9 73.2 72.55 73.2 74.51
heart-cleveland 77.56 82.18 82.18 82.18 79.87
heart-h 80.95 78.57 78.57 78.57 79.59
heart-statlog 76.67 79.26 80.37 78.52 80
hepatitis 83.87 84.52 85.81 83.87 83.87
horse-colic 85.33 85.33 83.42 85.05 86.14
hypothyroid 99.58 99.55 99.58 99.55 99.6
ionosphere 91.45 90.88 93.16 90.6 93.45
iris 96 94 93.33 94 95.33
kr-vs-kp 99.44 99.12 99.5 99.12 99.44
labor 73.68 85.96 89.47 87.72 84.21
led 100 100 100 100 100
lenses 83.33 66.67 70.83 58.33 79.17
letter 100 100 100 100 100
liver-disorders 68.7 71.01 71.59 70.43 71.88
lungcancer 50 50 53.12 46.88 56.25
lymph 77.03 78.38 81.08 79.05 80.41
monks 96.53 99.54 100 96.99 100
page-blocks 96.88 97.24 97.02 97.26 97.24
postop 70 71.11 56.67 71.11 67.78
primary-tumor 39.82 45.13 40.12 45.13 41.3
promoters 81.13 83.96 85.85 85.85 81.13
segment 96.93 96.97 98.48 96.88 97.45
sick 98.81 98.49 99.18 98.46 98.97
solar-flare 97.83 97.83 96.59 97.83 97.83
sonar 71.15 77.4 77.88 77.4 74.52
soybean 91.51 86.82 92.83 86.38 93.12
spect 78.28 81.65 80.15 82.02 79.03
tic-tac-toe 85.07 92.07 96.35 91.65 93.53
vehicle 72.46 72.7 76.24 72.81 76.48
vote 94.79 94.58 95.66 94.58 95.44
wine 93.82 94.94 96.63 93.26 95.51
yeast 56 60.04 56.4 31.2 60.51
200 92.08 87.13 36.04 86.14 93.07
average: 82.37 —23 83.62 81.64 83.93




148 Bam Boosting BMA BMC-Inc
anneal 98.44 98.22 99.55 98.22 98.89
audiology 77.88 76.55 84.96 76.11 82.3
autos 81.46 69.76 83.9 70.24 84.88
0 | | [] —(— balance-scale 76.64 82.88 78.88 82.88 81.92
L | & | i S bupa 68.7 71.01 71.59 70.43 71.88
hv'f_ L2850 _h D cancer-wisc. 93.85 95.14 95.71 95.28 95.14
‘ ' : cancer-yugo. 75.52 67.83 69.58 68.18 73.08
car 92.36 92.19 96.12 92.01 93.75
cme 52.14 53.63 50.78 41.96 52.95
credit-a 86.09 85.07 84.2 84.93 85.07
credit-g 70.5 74.4 69.6 74.3 73.1
dermatology 93.99 92.08 95,63 92.08 95.36
diabetes 73.83 74.61 72.4 74.61 7435
echo 97.3 97.3 95.95 97.3 97.3
ecoli-c 84.23 83.04 81.25 82.74 84.52
glass 66.82 69.63 74.3 68.69 70.09
haberman 71.9 73.2 72.55 73.2 74.51
heart-cleveland 77.56 82.18 82.18 82.18 79.87
heart-h 80.95 78.57 78.57 78.57 79.59
heart-statlog 76.67 79.26 80.37 78.52 80
hepatitis 83.87 84.52 85.81 83.87 83.87

J48 Bagging | Boosting

Average:  82.37  82.79  83.62  81.64
100
1 i . .0} 71.88
3 —NYes 56.25
| | . | (1) 8108 80.41
; - 100 100
_ page-b) ' 97.24
| i 67.78
| 19.81 40.12 41.3
2113 85 85 81.13
sEgment 96.93 §8.48 97.45
sick BE.821 99.18 98.97
sollar-flare 97.83 96.53 97.83
sOnar 7115 77.88 74.52
soybean 9151 82.83 93.12
specl 78.28 80.15 79.03
tc-tac-toe H45.07 96.35 93.53
vehicle 72.46 76.24 76.48
vote 94.79 95.66 95.44
winhe 93.82 96.63 95.51
yaast 56 56.4 60.51
200 97_.0§ 96_._04 93.07 o
average: 82.37 83.62 83.93




148 Bﬁﬁﬁiﬂﬁ Boostin# BMA 8MC-Inc
anneal 98.44 98.22 99.55 98.22 98.89
audiology 77.88 76.55 84.96 76.11 82.3
autos 81.46 69.76 83.9 70.24 84.88
| \ - | ‘ | {,; balance-scale 76.64 82.88 78.88 82.88 81.92
4 L | & bupa 68.7 7101 7159 70.43 71.88
AN 1@ ‘ R .» cancer-wisc. 93.85 95.14 95.71 95.28 95.14
' ’ cancer-yugo. 75.52 67.83 69.58 68.18 73.08
car 92.36 92.19 96.12 92.01 93.75
cmc 52.14 53.63 50.78 41.96 52.95
credit-a 86.09 85.07 84.2 84.93 85.07
credit-g 70.5 74.4 69.6 74.3 73.1
dermatology 93.99 92.08 95.63 92,08 95.36
diabetes 73.83 74.61 72.4 74.61 74.35
echo 97.3 97.3 95.95 97.3 97.3
ecoli-c 84.23 83.04 81.25 82.74 84.52
glass 66.82 69.63 74.3 68.69 70.09
haberman 71.9 73.2 72.55 73.2 74.51
heart-clevetand 77.56 82.18 82.18 82.18 79.87
heart-h 80.95 78.57 78.57 78.57 79.59
heart-statlog 76.67 79.26 80.37 78.52 80
hepatitis 83.87 84.52 85.81 83.87 83.87
86.14
J48 Baggin Boostin e
gg1ng g To3as |
95.33
99.44
84.21
100
Average:  82.37  82.79  83.62  81.64  83.93 =]
* 100
2 55 71.88
50 3 T 56.25
B3 81.08 9.05 80.41
N R e 1699 100
B onas 97.26 a7.24
_pamap i 71.11 67.78
imaty-tur 5.1 45,13 413
i 31.13 2396 45,85 §5.85 81.13
grent 16.93 9637 98.48 95.88 97.45
cick 98 R1 98.49 9418 98.45 98.97
97.43 96,59 97.83 97.83
5 ’ 131 . . 77.4 77.88 77.4 74.52
Friedman Signed-Rank Test:
| . o peo i y 81.65 80.15 82.02 79.03
Results significant (p < 0.01) 253
72.7 76.24 72.81 76.48
94.58 95.66 94.58 95.44
94,94 96.63 93.26 95.51
60.04 56.4 31.2 60.51
Critical differences beftweenm and i i
R
82.79 83.62 81.64 83.93

two of the other four strategies
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:\Ql’ Input: Unlabeled Instance

0.15 0.25 0.13 0.37 0.10

Iris Setosa: 0.22
@ @ @ g @ - Iris Virginica: 0.37

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 Iris Versicolor: 0.41
Iris Virginica: 0.3 IrisV]romlca 0.3 IrlsVIrgmica 0.1 irisVirginica: 0.4 [ris Virainica: 0.5
Iris Versicolor: 0.6 Iris Versicolor: 0.4 Iris e or: 0.5 dris Versicolor: 0.2 IrlsVemcolor 0.2

0.22 0.44 I 0.03 l | 0.08 ' 0.23

@ @ @ Iris Setosa: 0.13 OUtpUt-
- lIris Virginica: 0.27 > Class

Iris Setosa: 0.1 Iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 iris Setosa: 0.3 Iris Versicolor: 0.60

Iris Virginica: 0.3 IrisVlrglmca 0.3 |r|sV|rgm1ca 01 Iris Virginica: 0.4  Iri< Virginica: 0.5 label

Iris Versicolor: 0.6 Iris Vers 0ot s Versicolar: 0.5 Iris Versicolor: 0.2 lrisVersncolor 0.2

0.45 0.04 | 0.31 ! I 0.17 t 0.03 .
@ @ n Iris Setosa: 0.13

4 - Iris Virginica: 0.52

Iris Setosa: 0.1 iris Setosa: 0.3 Iris Setosa: 0.4 Iris Setosa: 0.4 Iris Setosa: 0.3 Iris Versicolor: 0.45

Iris Virginica: 0.3 IrisVirginica: 0.3 Iris Virginica: 0.1 Iris Virginica: 0.4  [ris Virginica: 0.5

Iris Versicalor: 0.6 Iris Versicolor: 0.4 IrisVersicolor: 0.5 Iris Versicolor: 0.2 Iris Versicolor: 0.2

: /

Update Dirichlet priors with most likely weights and resample...




148 Bagging BoostinL BMA BMC-D
anneal 98.44 98.22 99.55 98.22 98.89
audiology 77.88 76.55 . 84.96 76.11 82.3
autos 81.46 69.76 83.9 70.24 84.88
balance-scale 76.64 82.88 78.88 82.88 81.92
bupa 68.7 71.01 71.59 70.43 71.88
cancer-wisc. 93.85 95.14 95.71 95.28 95.14
cancer-yugo. 75.52 67.83 69.58 68.18 73.08
car 92.36 92.19 96.12 92.01 93.75
cmce 52.14 53.63 50.78 41.96 52.95
credit-a 86.09 85.07 84.2 84.93 85.07
credit-g 70.5 74.4 69.6 74.3 73.1
dermatology 93.99 92.08 95.63 92.08 95.36
diabetes 73.83 74.61 72.4 74.61 74.35
echo 97.3 97.3 95.95 97.3 97.3
ecoli-c 84.23 83.04 81.25 82.74 84.52
glass 66.82 69.63 74.3 68.69 70.09
haberman 71.9 73.2 72.55 73.2 74.51
heart-cleveland 77.56 82.18 82.18 82.18 79.87
heart-h 80.95 78.57 78.57 78.57 79.59
heart-statlog 76.67 79.26 80.37 78.52 80
hepatitis 83.87 84.52 85.81 83.87 83.87
horse-colic 85.33 85.33 83.42 85.05 86.14
hypothyroid 99.58 99.55 99.58 99.55 99.6
jonosphere 91.45 90.88 93.16 90.6 93.45
iris 96 94 93.33 94 95.33
kr-vs-kp 99.44 99.12 99.5 99.12 99.44
labor 73.68 85.96 89.47 87.72 84.21
led 100 100 100 100 100
lenses 83.33 66.67 70.83 58.33 79.17
letter 100 100 100 100 100
liver-disorders 68.7 71.01 71.59 70.43 71.88
lungcancer 50 50 53.12 46.88 56.25
lymph 77.03 78.38 81.08 79.05 80.41
monks 96.53 99.54 100 96.99 100
page-blocks 56.88 97.24 97.02 97.26 97.24
postop 70 71.11 56.67 71.11 67.78
primary-tumor 39.82 45.13 40.12 45.13 41,3
promoters 81.13 83.96 85.85 85.85 81.13
segment 96.93 96.97 98.48 96.88 97.45
sick 98.81 98.49 99.18 98.46 98.97
solar-flare 97.83 97.83 96.59 97.83 97.83
sonar 71.15 77.4 77.88 77.4 74.52
soybean 91.51 86.82 92.83 86.38 93.12
spect 78.28 81.65 80.15 82.02 79.03
tic-tac-toe 85.07 92.07 96.35 91.65 93.53
vehicle 72.46 72.7 76.24 72.81 76.48
vote 94.79 94.58 95.66 94.58 95.44
wine 93.82 94.94 96.63 93.26 95.51
yeast 56 60.04 56.4 31.2 60.51
200 92.08 87.13 96.04 =36.14 93.07
average: 82.37 82.79 83.62 81.64 84.02




J48 Bagging Boostin BMA 8MC-D

anneal 98.44 98.22 99.55 98.22 98.89

audiology 77.88 76.55 84.96 76.11 82.3

autos 81.46 69.76 83.9 70.24 84.88

| [7— \ || i | i balance-scale 76.64 82.88 78.88 82.88 81.92
/. =] < l | J G - bupa 68.7 71.01 71.59 70.43 71.88
AN e | @ § BN B cancer-wisc. 9385 95.14 95.71 95.28 95.14
) ) cancer-yugo. 75.52 67.83 69.58 68.18 73.08

car 92.36 92.19 96.12 92.01 93.75

cmc 52.14 53.63 50.78 41.96 52.95

credit-a 86.09 85.07 84.2 84.93 85.07

credit-g 70.5 74.4 69.6 74.3 73.1

dermatology 93.99 92.08 95.63 92.08 95.36

diabetes 73.83 74.61 72.4 74.61 74.35

echa 97.3 97.3 95.95 97.3 97.3

ecoli-¢ 84.23 83.04 81.25 82.74 84.52

glass 66.82 69.63 74.3 68.69 70.09

haberman 71.9 73.2 72.55 73.2 74.51

heart-cleveland 77.56 82.18 82.18 82.18 79.87

heart-h 80.95 78.57 78.57 78.57 79.59

heart-statlog 76.67 79.26 80.37 78.52 80

hepatitis 83.87 84.52 85.81 83.87 83.87

J48 Bagging | Boosting BMA BMC
Dirichlet

Average: 82.37 82.79 83.62 81.64 84.02

100
i a4 W ) % 1 o N ol B Y 71.88
o i .. J -3 5 k- 5,88 56.25
1 7838 8108 79.05 80.41
B 1 1 G0 %4 100 96.99 100
i o Ll I 1084 S7.24 §7.0 97.26 17.24
E o) 71.11 56.5 7111 57.78
o moi 3 45.13 40.12 45,13 413
omoters 83.96 85.85 8585 81.13
Eament 96.97 98.48 §6.88 97.45
slck 98.49 99.18 98.46 98.97
solar-fare 97.83 96.59 97.83 97.83
sonar 774 77.88 77.4 74.52
soybean 26.82 92.83 86.38 93.12
spEc! 81.65 80.15 82.02 79.03
lic-tac-toe 92.07 96.35 91.65 93.53
vehicle 72.7 76.24 72.81 76.48
voie 94.58 95.66 94.58 95.44
wine 94.94 96.63 93.26 95.51
yeast 60.04 56.4 31.2 60.51
00 87.13 96.04 86.14 93.07 |
average: __82.79 83.62 81.64 84.02




J48 Bagging Boostin BMA BMC-D
anneal 98.44 98.22 99.55 98.22 98.89
audiology 77.88 76.55 84.96 76.11 82.3
autos 81.46 69.76 83.9 70.24 84.88
)\ L= - (. balance-scale 76.64 82.88 78.88 82.88 81.92
Ly RL H 'y bupa 68.7 71.01 71.59 70.43 71.88
L. L | cancer-wisc. 93.85 95.14 95.71 95.28 95.14
: cancer-yugo. 75.52 67.83 69.58 68.18 73.08
car 92.36 92.19 96.12 92.01 93.75
cmc 52.14 53.63 50.78 41.96 52.95
credit-a 86.09 85.07 84.2 84.93 85.07
credit-g 70.5 74.4 69.6 74.3 73.1
dermatology 93.99 92.08 95.63 92.08 95.36
diabetes 73.83 74.61 72.4 74.61 74.35
echo 97.3 97.3 95.95 97.3 97.3
ecoli-c 84.23 83.04 81.25 82.74 84.52
glass 66.82 69.63 74.3 68.69 70.09
haberman 719 73.2 72.55 73.2 74.51
heart-cleveland 77.56 82.18 82.18 82.18 79.87
heart-h 80.95 78.57 78.57 78.57 79.59
heart-statlog 76.67 79.26 80.37 78.52 80
hepatitis 83.87 84.52 85.81 83.87 83.87

J48 Bagging | Boosting BMC
Dirichlet

82.37 82.79 83.62

Average:

Friedman Signed-Rank Test:
Results significant (p < 0.01)

-

Critical differences between BMC and
three of the other four strategies
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THE WORLD OF BAYESIAR
ENSEMBLES
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® Compute the optimal set of ensemble

weights given a set of trained classifiers

® Optimally train a set of classifiers given a
fixed set of ensemble weights

® Simultaneously train the classifiers and find
the ensemble weights
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\Q{Compute the optimal set of ensemble
weights given a set of trained classifiers

® Optimally train a set of classifiers given a
fixed set of ensemble weights

® Simultaneously train the classifiers and find
the ensemble weights
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\©/Compute the optimal set of ensemble
weights given a set of trained classifiers

@ Optimally train a set of classifiers given a
fixed set of ensemble weights

® Simultaneously train the classifiers and find
the ensemble weights




CMAC Typology
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CMAC Typology

v=L1:4




CMAC Typology

v=L14+L2:.




CMAC Typology

v=L1:4+L2:2+
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if f € {\x.g(x,w)[Vx € RP . g(x,w)
2 iet WO ()}

otherwise

= N(wl|po, Xo)
])(U‘KL-. f) — lV(l/‘f(’L) Ey)

p(ylz. N(yHw, %),




° Q 7
Bayesian Update l@‘@

1 = po + Ki(yr — Huo).
% = (I- KiH)(Z).

K, = (Zo)H' (HE)H" +%,) "
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A\,
CMAC Bagging BMA BCMAC
Elusage 0.047 0.045 0.045 0.035
Gascon 0.140 0.135 0.134 0.041
longley 0.097 0.119 0.119 0.041
step2d 0.019 0.018 0.022 0.018
twoDimEgg 0.025 0.109 0.270 0.018
optimalBMA 0.005 0.071 0.006 0.002
Average: 0.0555 | 0.08283 | 0.09933 | 0.02583




|| CMAC | Bagging | BMA | BCMAC

Average: 0.0555 0.08283  0.09933  0.02583

CMAC | Bagging | BMA | BCMAC V
Elucage 0.047 0.045 0.045 0.035
G ascon 0.140 8135 0.134 0.041
ongle, 0.097 01319 0,119 0.041
| ster Zd 0.019 0.018 0.022 0.018
| twroimEgg | 0025 | 0109 | 0270 | 0.018
rgimalBMA | 0.005 | 0.071 0.006 ().002
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UBSERVAIIONS

® The CMAC is an example of an ensemble with
a fixed weighting scheme

® The parameters for each member of the
ensemble can be solved in closed form given
the fixed weighting scheme

® This approach significantly out performs
traditional CMAC learning rules
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\{Compute the optimal set of ensemble

\fveights given a set of trained classifiers
O

ptimally train a set of classifiers given a
fixed set of ensemble weights
Futu

worn® Simultaneously train the classifiers and find
the ensemble weights




CONCLUSIONS

® Bayesian Model Averaging is not the optimal
approach to model combination
= [t is the optimal approach for model selection
= And it is outperformed by ad hoc techniques

when the DGM is not in the model list

® Even the most simple forms of Bayesian
Model Combination outperform BMA and
these ad hoc techniques




® Simultaneously train the classifiers and find
the ensemble weights

® Further work will investigate other methods
of generating diversity among the component
ensembles (e.g. non-linear combinations) or
using models that take spacial considerations
into account
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