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QCD BOUND STATES AND THEIR RESPONSE TO
EXTREMES OF TEMPERATURE AND DENSITY

P. MARIS AND C. D. ROBERTS
Physics Division, Bldg. 203, Argonne National Laboratory
Argonne IL 60439-4843, USA

We describe the application of Dyson-Schwinger equations to the calculation of
hadron observables. The studies at zero temperature (T") and quark chemical po-
tential (z) provide a springboard for the extension to finite-(T, ). Our exemplars
highlight that much of hadronic physics can be understood as simply a manifes-
tation of the nonperturbative, momentum-dependent dressing of the elementary
Schwinger functions in QCD.

1 DSE Essentials

The Dyson-Schwinger equations (DSEs) provide a Poincaré invariant, contin-
uum approach to solving quantum field theories. They are an infinite tower
of coupled integral equations, with the equation for a particular n-point func-
tion involving at least one m > n-point function. A tractable problem is only
obtained if one truncates the system, and historically this has provided an
impediment to the application of DSEs: a priori it can be difficult to judge
whether a particular truncation scheme will yield qualitatively or quantita-
tively reliable results for the quantity sought. As integral equations, the anal-
ysis of observables is a numerical problem and hence a critical evaluation of
truncation schemes often requires access to high-speed computers.* With such
tools now commonplace, this evaluation can be pursued fruitfully.

The development of efficacious truncation schemes in not a purely numer-
ical task, and neither is it always obviously systematic. For some, this last
point diminishes the appeal of the approach. However, with growing commu-
nity involvement and interest, the qualitatively robust results and intuitive
understanding that the DSEs can provide is becoming clear. Indeed, someone
familiar with the application of DSEs in the late-70s and early-80s might be
surprised with the progress that has been made. It is now clear! that trun-
cations which preserve the global symmetries of a theory; for example, chiral
symmetry in QCD, are relatively easy to define and implement and, while it
is more difficult to preserve local gauge symmetries, much progress has been
made with Abelian theories? and more is being learnt about non-Abelian ones.

3The human and computational resources required are still modest compared with those
consumed in contemporary numerical simulations of lattice-QCD.
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The simplest truncation scheme for the DSEs is the weak-coupling expan-
sion. It shows that the DSEs contain perturbation theory; i.e, for any given
theory the weak-coupling expansion generates all the diagrams of perturba-
tion theory. However, the most important feature of the DSEs is the antithesis
of this weak-coupling expansion: the DSEs are intrinsically nonperturbative
and their solution contains information that is not present in perturbation
theory. They are ideal for the study of dynamical chiral symmetry breaking
(DCSB) and confinement in QCD, and of hadronic bound state structure and
properties. In this application they provide a means of elucidating identifiable
signatures of the quark-gluon substructure of hadrons.

Their intrinsically nonperturbative nature also makes them well suited to
studying QCD at finite-(T, ), where the characteristics of the phase transition
to a quark-gluon plasma are a primary subject. The order of the transition,
the critical exponents, and the response of bound states to changes in these
intensive variables: all must be elucidated. The latter because there lies the
signals that will identify the formation of the plasma and hence guide the
current and future experimental searches.

1.1 Gluon Propagator

In Landau gauge the two-point, dressed-gluon Schwinger function, or dressed-
gluon propagator, has the form

kuk,\ G(k? 2
7D = (8- B2 XD g = L @

where IT(k?) is the vacuum polarisation, which contains all the dynamical infor-
mation about gluon propagation. Studies of the gluon DSE have been reported
by many authors® with the conclusion that, if the ghost-loop is unimportant,
then the charge-antiscreening 3-gluon vertex dominates and, relative to the
free gauge boson propagator, the dressed gluon propagator is significantly en-
hanced in the vicinity of k2 = 0.> The enhancement persists to k2 ~ 1-2 GeV?,
where a perturbative analysis becomes quantitatively reliable. In the neigh-
bourhood of k2 = 0 the enhancement can be represented® as a regularisation

5The possibility that G(k?) is finite or vanishes at k2 = 0 is canvassed in these proceedings.
In the absence of particle-like singularities in the quark-gluon vertex such behaviour is very
difficult to reconcile with the observable phenomena of QCD.% A particle-like singularity is
one of the form (P?)~%, & € (0,1]. In this case one can write a spectral decomposition for
the vertex in which the spectral densities are non-negative. This is impossibleifa > 1. a=1
is the ideal case of an isolated, §-function singularity in the spectral densities and hence an
isolated, free-particle pole. & € (0,1) corresponds to an accumulation, at the particle pole,
of branch points associated with multiparticle production.
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of 1/k* as a distribution. A dressed-gluon propagator of this type generates
confinement® and DCSB without fine-tuning.
1.2 Quark Propagator

In a covariant gauge the two-point, dressed-quark Schwinger function, or dressed-
quark propagator, can be written in a number of equivalent forms

1
St) = iv-p+X(p) @
1 .
T iv-pA@) + B(®) ~iy-pov(p®) + os(p?). @)

Z(p) is the dressed-quark self-energy, which satisfies

A
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where I';(g; p) is the renormalised dressed-quark-gluon vertex, mpq, is the La-
grangian current-quark bare mass and [ qA = A d4q/(27)* represents mnemon-
ically a translationally-invariant regularisation of the integral, with A the regu-
larisation mass-scale. The quark-gluon-vertex and quark wave function renor-
malisation constants, Z;(u?,A%) and Z,(u2, A?), depend on the renormalisa-
tion point, p, and the regularisation mass-scale, as does the mass renormalisa-
tion constant Z,,(u?, A2) := Zp(u?, A%)~1Z,(u2, A2).

The quark mass-function is M(p?) := B(p?®)/A(p?) and, as illustrated .
in Fig. 1,% solving the quark DSE using an infrared-enhanced dressed-gluon
propagator and a dressed-quark-gluon vertex, ', (p, ), that does not exhibit
particle-like singularities at (p — ¢)? = 0, one obtains a quark mass-function
that mirrors the infrared enhancement of the dressed-gluon propagator. Using
the one-loop formula for the running mass, these results were obtained with
current-quark masses corresponding to

mtl‘CieV m: GeV mi GeV ,m% GeV
6.6 MeV 140 MeV 1.0GeV 3.4GeV.

The quark DSE was also solved in the chiral limit, which in QCD is ob-
tained by setting the Lagrangian current-quark bare mass to zero® One ob-
serves immediately that the mass-function is nonzero even in this case. That

()

€One aspect of confinement is the absence of quark and gluon production thresholds in
colour-singlet-to-singlet S-matrix amplitudes. This is ensured if the dressed-quark and -
gluon propagators do not have a Lehmann representation.
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Figure 1: Dressed-quark mass-function obtained in solving the quark DSE.

is DCSB: a momentum-dependent quark mass, generated dynamically, in the
absence of any term in the action that breaks chiral symmetry explicitly. This
entails a nonzero value for the quark condensate in the chiral limit. That
M(p®) # 0 in the chiral limit is independent of the details of the infrared-
enhanced dressed-gluon propagator. *

Figure 1 illustrates that for light quarks (u, d and s) there are two distinct
domains: perturbative and nonperturbative. In the perturbative domain the
magnitude of M(p?) is governed by the the current-quark mass. For p? <
1GeV? the mass-function rises sharply. This is the nonperturbative domain
where the magnitude of M (p?) is determined by the DCSB mechanism; i.e., the
enhancement in the dressed-gluon propagator. This emphasises that DCSB is
more than just a nonzero value of the quark condensate in the chiral limit!

The solution of p?> = M(p?)? defines a Euclidean constituent-quark mass,
ME. For a given quark flavour, the ratio MF /mf is a single, quantitative
measure of the importance of the DCSB mechanism in modifying the quark’s
propagation characteristics. As illustrated in Eq. (6),

flavour |u/d|s]c|b| ¢
M~ 150|10|2.3|1.4|—> 1

Muna20 GeV

(6)

this ratio provides for a natural classification of quarks as either light or heavy.
For light-quarks the ratio is characteristically 10-100 while for heavy-quarks
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it is only 1-2. The values of this ratio signal the existence of a characteristic
DCSB mass-scale: M,. At p? > 0 the propagation characteristics of a flavour
with m? < M, are altered significantly by the DCSB mechanism, while for
flavours with m’; > M, it is irrelevant, and explicit chiral symmetry breaking
dominates. It is apparent from the figure that M, ~ 0.2GeV ~ Aqcp. This
forms the basis for simplifications in the study of heavy-meson observables?

1.3 Hadrons: Bound States

The properties of hadrons can be understood in terms of their substructure by
studying covariant bound state equations: the Bethe-Salpeter equation (BSE)
for mesons and the covariant Fadde’ev equation for baryons. The mesons have
been studied most extensively and their internal structure is described by a
Bethe-Salpeter amplitude obtained as a solution of

A
[Cx(k; P, = / xz(g P)ls- Kii(a, 5 P), (7

q

x#(g; P) := S(a+)Tu(g; P)S(g-), S(g) = diag(Su(q), Sa(a), Ss(a)s---); g+ =
g+np P, q- =q—(1—1p) P, with P the total momentum of the bound state
and observables independent of 77p; and r,...,u represent colour-, Dirac- and
flavour-matrix indices. For a pseudoscalar bound state the amplitude has the
form

T (k; P) = T [z-EH(k; P) +7- PFy(k; P) ®)
+v-kk-PGy(k; P) + Ouv k#PuHH(k;P)] .

where T# is a flavour matrix that determines the mesonic channel under con-
sideration; e.g., TK™ := (1/2) (A* +i)%), with {),j =1...8} the Gell-Mann
matrices. In Eq. (7), K is the renormalised, fully-amputated, quark-antiquark
scattering kernel and important in the successful application of DSEs is that
it has a systematic skeleton expansion in terms of the elementary, dressed-
particle Schwinger functions; e.g., the dressed-quark and -gluon propagators.
This particular expansion} with its analogue for the kernel in the quark DSE,
provides a means of constructing a kernel that, order-by-order in the number
of vertices, ensures the preservation of vector and axial-vector Ward-Takahashi
identities.

In any study of meson properties, one chooses a truncation for K. The
BSE is then fully specified and straightforward to solve, yielding the bound
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Figure 2: First two orders in a skeleton expansion of the quark-antiquark scattering kernel.
In this expansion, the propagators are dressed but the vertices are bare.

state mass and amplitude. The “ladder” truncation of K combined with the
“rainbow” truncation of the quark DSE [['; — 4, in Eq. (4)] is the simplest
and most often used. The expansion of Fig. 2 provides the explanation for
why this Ward-Takahashi identity preserving truncation is accurate for flavour-
nonsinglet pseudoscalar and vector mesons: there are cancellations between the
higher-order diagrams. And also why it provides a poor approximation in the
study of scalar mesons, where the higher-order terms do not cancel, and for
flavour-singlet mesons where it omits timelike gluon exchange diagrams.

2 A Mass Formula

The dressed-axial-vector vertex satisfies a DSE whose kernel is K, and because
of the systematic expansion described in Sec. 1.3 it follows® that the axial-
vector Ward-Takahashi identity (AV-WTI):

~iP,LE, (k; P) = (9)
-1 T TH H H
S (k+)’757 +95—5-57 (k=) — M IS’ (k; P) — T5'(k; P) My,
[M(,) = diag(m#,m};, m#,...) is the current-quark mass matrix] is satisfied in
any thoughtful truncation of the DSEs. That entails many important results®

1) The axial-vector vertex has a pole at P2 = —m% whose residue is f,
the leptonic decay constant:

A 1 N
faPa=2 [ Ju[(@") wns@ta@PS@)], (0
q
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with the trace over colour, Dirac and flavour indices.
2) In the chiral limit

fuEn(k;0) = Bo(k?), Fr(k;0) + 2 fuFy(k;0) = Ao(k?),
Gr(k;0) + 2 fuGr(k;0) = 245(k%), Hr(k;0)+2 fuHu(k;0) =0,
(11)

where Ao(k?) and By(k?) are the solutions of Eq. (4) in the chiral limit, and
Fp, Gr and Hg are calculable functions in I‘é’ . This shows that when chiral
symmetry is dynamically broken: 1) the flavour-nonsinglet, pseudoscalar BSE
has a massless solution; 2) the Bethe-Salpeter amplitude for the massless bound
state has a term proportional to 75 alone, with the momentum-dependence
of Ex(k;0) completely determined by that of Bo(k?), in addition to terms
proportional to other pseudoscalar Dirac structures that are nonzero in general;
and 3) the axial-vector vertex, Pé{,(k; P), is dominated by the pseudoscalar
bound state pole for P2 ~ 0. The converse is also true.

3) The pseudoscalar vertex also has a pole at P? = —m% whose residue is

A
i =2 [ S [(T%) 25000 )Pu(a PIS(e-)] - (12)

4) There is an identity between the residues of the pseudoscalar meson
pole in the axial-vector and pseudoscalar vertices that is satisfied independent
of the magnitude of the current quark mass:

famy =7 My, My = traavour [M(,‘) {TH, (TH)t}] . (13)

2.1 Corollaries

Equation (13) is a mass formula for flavour-octet pseudoscalar mesons. For
small current-quark masses, using Eqs. (8) and (11), Eq. (12) yields

A
T?f == '_](.)' (qq>2 y = (‘7‘1)2 = Zy (#21A2) N, trDirac [Sﬁt=0(Q)] ’ (14)
f
H q

where ((jq)g is the chiral limit vacuum quark condensate, which is renormalisation-
point dependent but independent of the gauge parameter and the regularisa-

tion mass-scale:® (7g)%.) g.v = — (0.241 GeV)3. Now one obtains immediately
from Egs. (13) and (14)

famz = — [mf +mf)(@a), + O (#7) (15)

flsmies = ~ [mh +m5](@g)y, + O () , (16)
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which exemplify what is commonly known as the Gell-Mann-Oakes-Renner
relation. [, is the renormalisation-point-independent current-quark mass.]
In a typical, model calculation® Eq. (15) is accurate to 7%, while Eq. (16)
receives corrections of 43% from O (/2) and higher, see Fig. 3.

In the heavy-quark limit, 7p = 1 in Eq. (7) and the heavy-meson velocity
(vu) and binding energy (E) are defined via: P := myv,, v2 = -1, My =
(MQ +E), with My the heavy-meson mass and MQ = Mg = 1Mg; see Sec. 1.2.
In this case’, at leading order in 1/Mpy,

5(@+P) = ;i;—-—;—ﬂ; (17)
Tu(g;P) = VMuTu(g P), (18)

where the canonical normalisation condition for I'g(g; P) is independent of
Mp. Using Egs. (17) and (18) in Eq. (10) one obtains

faoxcl/y/ My (19)
and this along with Egs. (12) and (13) yields
Mp xmg. (20)

A model study® shows Eq. (20) to be valid for /g = 7is, and this is confirmed
by data, Fig. 3. However, both calculations and available data suggest that
Eq. (19) is not manifest until /g > 7h..

3 PFinite T and p

The study of QCD at finite temperature and baryon number density proceeds
via the introduction of the intensive variables: temperature and quark chemical
potential. These are additional mass-scales, with which the coupling can run
and hence, for T >> Aqep and/or g >> Aqep, as(Q? =0,T, i) ~ 0. It follows
that at finite temperature and/or baryon number density there is a phase
of QCD in which quarks and gluons are weakly interacting, irrespective of the
momentum transfer; i.e., 2 quark-gluon plasma. Such a phase of matter existed
approximately one microsecond after the big-bang. In this phase confinement
and DCSB are absent and the nature of the strong interaction spectrum is
qualitatively different.

Nonperturbative methods are necessary to study the phase transition,
which is characterised by qualitative changes in order parameters such as the
quark condensate. One widely used approach is the numerical simulation of

8




6000.0 T T —— T

.
i, i
4000.0 | o 1
3
£ .
E! ',’/’
20000 }__,,4 -
0 o" o : ' 1 s
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
m, (MaV)

Figure 3: Pseudoscalar meson mass as a function of the mass of the heaviest constituent,
71242 Only the 7 does not lie on the same straight line.

finite temperature lattice-QCD, with the first simulations in the early eighties
and extensive efforts since thenl® The commonly used quenched approxima-
tion is inadequate for studying the phase diagram of finite temperature QCD
because the details of the transition depend sensitively on the number of active
(light) flavours. It is therefore necessary to include the fermion determinant.

That is even more important in the presence of g, which modifies the
fermion piece of the Euclidean action: ¥-8 +m — - 8 — yap + m, and thus
the fermion determinant acquires an explicit imaginary part. The p % 0 QCD
action being complex entails that the study of finite density is significantly
more difficult than that of finite temperature. Simulations that ignore the
fermion determinant at p # O encounter a forbidden region, which begins at
£ =my/2}0 and since m, — 0 in the chiral limit this is a serious limitation,
preventing a reliable study of chiral symmetry restoration. The phase of the
fermion determinant is essential in eliminating this artefact!!

The contemporary application of DSEs at finite temperature and chemical
potential is a straightforward extension of the T = 0 = p studies. The direct
approach is to develop a finite-T" extension of Ansdtze for the dressed-gluon
propagator. The quark DSE can then be solved and, having the dressed-quark
and -gluon propagators, the response of bound states to increases in T and p
can be studied. As a nonperturbative approach that allows the simultaneous
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study of DCSB and confinement, the DSEs have a significant overlap with lat-
tice simulations: each quantity that can be estimated using lattice simulations
can also be calculated using the DSEs. This means they can be used to check
the lattice simulations, and importantly, that lattice simulations can be used
to constrain their model-dependent aspects. Once agreement is obtained on
the common domain, the DSEs can be used to explore phenomena presently
inaccessible to lattice simulations.

3.1 Finite-(T, p) Quark DSE

The renormalised dressed-quark propagator at finite-(T, ) has the form

1
S(@,0k) = e ——— ——
(7o) 17 - D A(P, Or) + ivs 0k C (P, &) + B(P, @r)
= —i7 - Poa(P,@x) — iva Droc(P,0r) + o5(F, ) (22)

(21)

where @y := wg + ip. The complex scalar functions: A(F,@r), B(P,@:) and
C(P,@x) satisfy: F(f,&r)* = F(P,&~k—1), F = A,B,C, and although not
explicitly indicated they are functions only of |5]? and @3.
S(p,@x) satisfies the DSE
S=Y(p,x) = 25447 - P+ Za (14 @ + Mom) + Z'(5,@%); (23)
where the regularised self energy is ‘

BB, @x) = i7 - DTy (B, @x) + ivaon S (B, n) + Ep(Fran) ,  (24)

A
(D, @x) =/1 %92 Dy (97— G, @n —cﬁz)%tr [Py S(q, @)Tu(q, &; B, @x)]
q (25)
A oo A d3 .
fig = TER o0 I (5% and Pa = ~(28/2%)ir -p, Pp = 2y, Pc =

~(Z1 /0 )ivs-
The finite-(T, y£), Landau-gauge dressed-gluon propagator has the form

9°Du(5,Q) = BL(5,9) Ar(5,9Q) + PL(5) Ac(p,Q), (26)
- 0; pand/orv =4, o7
P#"(m = 5,'_7' - p;)%; rr=123 ! (27)

with PT,(p) + PL (9, 1) = 80 — puPu /) Pabos v =1,...,4.
In studying confinement one cannot assume that the analytic structure of
a dressed propagator is the same as that of the free particle propagator: it must
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be determined dynamically. The f := (7, &x)-dependence of A and C is quali-
tatively important since it can conspire with that of B to eliminate free-particle
poles in the dressed-quark propagator!? In this case the propagator does not
have a Lehmann representation so that, in general, the Matsubara sum cannot
be evaluated analytically. More importantly, it either complicates or precludes
a real-time formulation of the finite temperature theory, which makes the study
of nonequilibrium thermodynamics a very challenging problem. In addition,
the fx-dependence of A and C can be a crucial factor in determining the be-
haviour of bulk thermodynamic quantities such as the pressure and entropy;
being responsible for these quantities reaching their respective ultrarelativistic
limits only for very large values of T and p. It is therefore important in any
DSE study to retain A(px) and C(5x), and their dependence on Py.

3.2 Phase Transitions and Order Parameters

One order parameter for the chiral symmetry restoration transition is well
known - it is the quark condensate, defined via the renormalised dressed-quark
propagator, Eq. (14). An equivalent order parameter is

X :=Re BO(ﬁ= 0, G’O) ’ (28)

which makes it clear that the zeroth Matsubara mode determines the charac-
ter of the chiral phase transition. An order parameter for confinement, valid
for both light- and heavy-quarks, was introduced in Ref. [13]. It is a single,
quantitative measure of whether or not a Schwinger function has a Lehmann
representation, and it has been used'* to striking effect in QEDj3.

3.8 Study at (T #0,p=0)

Deconfinement and chiral symmetry restoration have been studied!? in a DSE-
model of two-light-flavour QCD. The quark DSE was solved using a one-
parameter model!® dressed-gluon propagator, which provided a good descrip-
tion of 7 and p-meson observables at T' = 0 = p. The transitions are coincident
and second-order at a critical temperature of T, =~ 150 MeV, with the same
estimated critical exponents: 8 = 0.33 = 0.03. Both the pion mass, m., and
the pion leptonic decay constant, f, are insensitive to T for T < 0.7 T.. How-
ever, as T — T, the pion mass increases substantially, as thermal fluctuations
overwhelm quark-antiquark attraction in the pseudoscalar channel, until, at
T =T, f~ — 0 and there is no bound state. These results confirm those of
contemporary numerical simulations of finite-T lattice-QCD 8.
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3.4 Complementary study at (T =0,p # 0)

The p # 0 behaviour of this model has also been explored.}” The dressed-gluon
propagator has the simple form
g(kz) 16 1 - e—[kz/“mf)]
—k—2 = -5—71'2 47r2mf¢54(k) -+ -—k.z—'— , (29)
where!® m, = 0.69 GeV is a mass-scale that marks the boundary between the
perturbative and nonperturbative domains, and the quark DSE was solved in
rainbow approximation. The solution has the form

S(pp) = =17 - Poa(ppy) — Mawy oc(py) +o8(P) (30)

where py := (F,w)), With wpy) := ps +1p, and there are two distinct types: a
Nambu-Goldstone mode characterised by op, # 0; and a Wigner-Weyl mode
characterised by g, = 0.

The possibility of a phase transition is explored by calculating the relative
stability of the different phases, which is measured by the difference between
the tree-level auxiliary-field effective-action:

1 = .
2w, W, P = a1
A |51?Af + wf,,C5 + B3
In A 2 + 2 —_0 + 2 A ,
/P { [ 712 A + wi, C3 |51 (0.40 — 6 40) + Wiy (0G5 — Gco)

where A and C represent the solution of Eq. (23) obtained when By = 0;
i.e.,, when DCSB is absent. This solution exists for all y. B(g) defines a -
dependent “bag constant”!® It is positive when the Nambu-Goldstone phase
is dynamically favoured; i.e., has the highest pressure, and becomes negative
when the Wigner pressure becomes larger. Hence the critical chemical potential
is the zero of B(p), which is gz, = 375 MeV. The abrupt switch from the Nambu-
Goldstone to the Wigner-Weyl mode signals a first order transition.

The chiral order parameter increases with increasing chemical potential
up to pc, with x(1c)/x(0) = 1.2, whereas the deconfinement order parameter,
k(u), is insensitive to increasing . At p. they both drop immediately and dis-
continuously to zero, as expected of coincident, first-order phase transitions.
The increase of ¥ with p is a necessary consequence of the momentum depen-
dence of the scalar piece of the quark self energy, B(p|,))*® The vacuum quark
condensate behaves in qualitatively the same manner as x.

Even though the chiral order parameter increases with p, mr decreases
slowly as g increases, with m.(u = 0.7p.)/m.(0) = 0.94. At this point
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my begins to increase although, for p < p., m,(1) does not exceed m.(0),
which precludes pion condensation. The behaviour of m results from mutually
compensating increases in f2 and (mfz(ijq)(),,. fx is insensitive to the chemical
potential until z = 0.7 y;, when it increases sharply so that fr(u7)/f-(e =
0) = 1.25. The relative insensitivity of m, and f, to changes in u, until very
near p., mirrors the behaviour of these observables at finite-T'}3 For example,
it leads only to a 14% increase in the m — pv decay width at g =~ 0.9 p.. The
universal scaling conjecture of Ref. [20] is inconsistent with the anticorrelation
observed between the p-dependence of fr and m,.

Comparing the p-dependence of f, and m, with their T-dependence, one
observes an anticorrelation; e.g., at 4 = 0, f, falls continuously to zero as T
is increased towards T. =~ 150 MeV. This is a necessary consequence of the
momentum-dependence of the quark self-energy.

Note A: For these observables the natural dimension is mass-squared, and
their behaviour at finite 7" and u is determined by

Re(w) ~ [T - 2], (32

where the T-dependence arises from the introduction of the fermion Mat-
subara frequency: ps — (2n 4 1)xT. Hence when such a quantity de-
creases with T it will increase with p, and vice-versa2!

The confined-quark vacuum consists of quark-antiquark pairs correlated
in a scalar condensate.

Note B: Increasing p increases the scalar density: (—(gg)). This result is an
expected consequence of confinement, which entails that each additional
quark must be locally paired with an antiquark thereby increasing the
density of condensate pairs as p is increased.

For this reason, as long as p < p., there is no excess of particles over antipar-
ticles in the vacuum and hence the baryon number density remains zero;f i.e.,
p‘é"‘d = 0, Vu < p.. This is just the statement that quark-antiquark pairs
confined in the condensate do not contribute to the baryon number density.

The quark pressure, P*+4[u], can be calculated!® and one finds that af-
ter deconfinement it increases rapidly, as the condensate “breaks-up”, and
an excess of quarks over antiquarks develops. The baryon-number density,
Pt = (1/3)8P*+%/dy, also increases rapidly, with

P5 (1~ 2pc) 2 3o, (33)

where pp =0.16 fm ™2 is the equilibrium density of nuclear matter. For compar-
ison, the central core density expected in a 1.4 M neutron star is 3.6-4.1 pg22
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Finally, at p ~ 5p., the quark pressure saturates the ultrarelativistic limit:
Putd = y4/(272), and there is a simple relation between baryon-density and
chemical-potential:

« 12,8
P (W) = 5 T Va2 sue, (34)

so that p%” +dr(5u.) ~ 350p0. Thus the quark pressure in the deconfined
domain overwhelms any finite, additive contribution of hadrons to the equation
of state, which anticipating this was neglected in Ref. [17]. This discussion
suggests that a quark-gluon plasma may be present in the core of dense neutron
stars.

3.5 Simulteneous study of (T # 0, u # 0)

This is a difficult problem and the most complete study!® to date employs a
simple Ansatz for the dressed-gluon propagator:

2
9%Dpu (B, %) = (a,,,, - %) 278 ?j,- 610 63(F) (35)
which exhibits the infrared enhancement suggested by Ref. [5]. As an infrared-
dominant model that does not represent well the behaviour of D, (7, Q) away
from |p]2 + Q2 ~ 0, some model-dependent artefacts arise. However, there is
significant merit in its simplicity and, since the artefacts are easily identified,
the model remains useful as a means of elucidating many of the qualitative
features of more sophisticated Ansdtze.
With this model, using the rainbow approximation, the quark DSE is!

S™HF,w) = Sy (B, @x) + %ff'rus (B, @x) Yo - (36)

A simplicity inherent in Eq. (35) is now apparent: it allows the reduction of
an integral equation to an algebraic equation, in whose solution many of the
qualitative features of more sophisticated models are manifest.

In the chiral limit Eq. (36) reduces to a quadratic equation for B(p;), which
has two qualitatively distinct solutions. The “Nambu-Goldstone” solution, for

which
Y- 2y o 12
B(pr) = { VT —4Pk» Re(5;) < 3 (37)
0, otherwise
2
; Re(7%) < -

C(br) =

- N

3 (38
(1+‘/1+%, , otherwise, )
k
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describes a phase of this model in which: 1) chiral symmetry is dynamically
broken, because one has a nonzero quark mass-function, B(f¢), in the absence
of a current-quark mass; and 2) the dressed-quarks are confined, because the
propagator described by these functions does not have a Lehmann representa-
tion. The alternative “Wigner” solution, for which

- Py 2
B =0, 6@ =1 (14 1+ 2], (39)

describes a phase of the model without DCSB and confinement.
The relative stability of the different phases is measured by a (T, p)-
dependent vacuum pressure difference, which in the chiral limit is

B(T,p) = (40)
lmax
7* 2N, Nf / dyy® {Re (227) —Re (C’(p )) —MIﬁ?C(ﬁz)zl} ,

with: T = T/17, E = p/n; lnes is the largest value of ! for which w, <
(1/4) + B2 and this also specifies w,,., A2 =& —af, ;i = (§,@ +w) "The
condition B(T, i) = 0 defines the phase boundary in the (g, T)-plane.

Again, the deconfinement and chiral symmetry restoration transitions are
coincident. For p = 0 the transition is second order and the critical tempera-
ture is T2 = 0.159 7, which using the value of 7 = 1.06 GeV obtained by fitting
the & and p masses corresponds to T2 = 0.170 GeV. This is only 12% larger
than the value reported in Sec. 3.3, a.nd the order of the transition is the same.
For any u # O the transition is first-order. For T' = 0 the critical chemical
potential is 0 = 0.3 GeV, which is a2 30% smaller than the result in Sec. 3.4.
The discontinuity in the order parameters vanishes as g — 0.

The quark pressure, P, is calculated easily in this model. Confinement
means that P, = 0 in the confined domain. In the deconfined domain it
approaches

1 =
4 272 44
Pyp:=1" NeNpros (,u +2m?p?T? + 1571’ T ) ) (41)

the ultrarelativistic, free particle limit, at large values of T and . The ap-
proach to this limit is slow, however. For example, at T ~ 0.3 ~ 272, or
B~ 1.0~ 302, P, is only 0.5 Pyr. A qualitatively similar result is observed in
numerical simulations of finite-T" lattice-QCD1¢ This feature results from the
persistence of the momentum dependent modifications of the quark propagator
into the deconfined domain, and predicts that there is a2 “mirroring” of finite-T'
behaviour in the dependence of the bulk thermodynamic quantities on p.
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3.6 = and p properties

The model discussed in the last section has been used?! to study the (T, p)-
dependence of 7w and p properties, and to elucidate other features of models
that employ a more sophisticated Ansatzfor the dressed-gluon propagator. For
example, the vacuum quark condensate takes the simple form

=1 2er S5 [V re (V3-w-a): @

=0

at T =0 = p, (—(gq)) = n3/(807%) = (0.117)3. (—(dg)) decreases with T but
increases with p, up to a critical value of p.(T") when it drops discontinuously to
zero, in agreement with the behaviour reported in Secs. 3.3 and 3.4, see Note B.
This vacuum rearrangement is manifest in the behaviour of the necessarily-
momentum-dependent scalar part of the quark self energy, B(px).

The leptonic decay constant also has a simple form in the chiral limit:

lmax
2= 216N°T Z (1+4ﬁ2—4a;,2—§-.7\,2) : (43)

Characteristic in Egs. (42) and (43) is the combination p2 — w2, see Note A.
Without calculation, Eq. (43) indicates that fr will decrease with T' and in-
crease with p. This provides a simple elucidation of the results described in
Secs. 3.3 and 3.4

The (T, p)-response of the 7 and p masses is determined by the BSE

2 - -
Tp(Br; Pr) = —nz Re {’7,4 S(p: + %Pz) T (Bs; Pr) S(B: — %Pz) ’Yp} ,  (44)

where P, := (ﬁ, Q,), with the bound state mass obtained by considering Pro.
The 7 equation admits the solution

Tr(Po) =1 (i6y +7- Pby) (45)

and the calculated (T, )-dependence of the mass is depicted in Fig. 4.
For the p-meson there are two components: one longitudinal and one trans-
verse to P. The solution of the BSE has the form

r Ya Op+ (46)
P = o 1 = . =3 _ Y
( 7T P) %
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Figure 4: M,4 and mx as a function of i for T = 0,0.1. On the scale of this figure, mx
is insensitive to this variation of T. The current-quark mass is m = 0.0117n, which for
7 = 1.06 GeV yields M,q. =770MeV and my = 140MeV at T=0=p.

where 0, labels the longitudinal and ,.. the transverse solution. The eigen-
value equation obtained from (44) for the bound state mass, M,+, is

2
L Re{os(wf, — {ML) - [£dy — 202 ov(edy - M2} =1.
(47)
The equation for the transverse component is obtained with [—w?, —
(1/4)M2_] in (47). Using the chiral-limit solutions, Eq. (37), one obtains
immediately that

M 3_ = %1)2, independent of T and u. (48)

Even for nonzero current-quark mass, M,_. changes by less than 1% as T and
4 are increased from zero toward their critical values. Its insensitivity is con-
sistent with the absence of a constant mass-shift in the transverse polarisation
tensor for a gauge-boson.

For the longitudinal component one obtains in the chiral limit:

M2, = 2% — 4(4? - 7°T?). (49)

The characteristic combination [u? — #2T2] again indicates the anticorrelation
between the response of M, to T and its response to u, and, like a gauge-
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boson Debye mass, that M2, rises linearly with T2 for p = 0. The m # 0
solution of Eq. (47) for the longitudinal component is plotted in Fig. 4: M,
increases with increasing T' and decreases as p increases.

Equation (47) can also be applied to the ¢-meson. The transverse com-
ponent is insensitive to T and p, and the behaviour of the longitudinal mass,
M., is qualitatively the same as that of the p-meson: it increases with T and
decreases with p. Using 7 = 1.06 GeV, the model yields Mys. = 1.02GeV for
m, =180MeV at T =0 = p.

In a 2-flavour, free-quark gas at T = 0 the baryon number density is
pe = 2u3/(37%), by which gauge nuclear matter density, pp = 0.16fm™3,
corresponds to p = pp := 260 MeV = 0.2457. At this chemical potential the
algebraic model yields

Mo (po) = 0.75Mp1.(n = 0) , Mgy (o) % 0.85Mps(n=0).  (50)

The study summarised in Sec. 3.4 indicates that a better representation of the
ultraviolet behaviour of the dressed-gluon propagator expands the horizontal
scale in Fig. 4, with the critical chemical potential increased by 25%. This
suggests that a more realistic estimate is obtained by evaluating the mass at
1o = 0.207, which yields

M (1)  0.85Mpi (1 = 0) , Mg (uh) = 090Mpi(=0);  (51)

a small, quantitative modification. The difference between Egs. (50) and (51)
is a measure of the theoretical uncertainty in the estimates in each case. At
the critical chemical potential for T = 0, M4 = 0.65 M, (1 = 0) and Mgy =
0.80 My4(p = 0).

This simple model preserves the momentum-dependence of gluon and quark
dressing, which is an important qualitative feature of more sophisticated stud-
ies. Its simplicity means that many of the consequences of that dressing can be
demonstrated algebraically. For example, it elucidates the origin of an anticor-
relation, found for a range of quantities, between their response to increasing
T and that to increasing z. And the (T, u)-dependence of (—{gg)) and fr, un-
derstood algebraically, is opposite to that observed for m,.., hence the scaling
law conjectured in Ref. [20] is inconsistent with this calculation, as it is with
others of this type.

4 Concluding Remarks

This contribution illustrates the contemporary application of Dyson-Schwinger
equations to the analysis of observable strong interaction phenomena, high-
lighting positive aspects and successes. Many recent, interesting studies have
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been neglected: calculations of the cross section for diffractive, vector meson
electroproduction?? the electric dipole moment of the p-meson24 and the elec-
tromagnetic pion form factor;?® an exploration of 7-7 mixing;?® and others
reviewed in Ref. [27]). However, a simple enquiry of

“http://xxx.lanl.gov/find /hep-ph”
with the keywords: “Dyson-Schwinger” or “Schwinger-Dyson”, will provide a
guide to other current research.

In all phenomenological applications, modelling is involved, in particular,
of the behaviour of the dressed Schwinger functions in the infrared. (The ultra-
violet behaviour is fixed because of the connection with perturbation theory.)
This is tied to the need to make truncations in order to define a tractable
problem. Questions will always be asked regarding the fidelity of this mod-
elling. The answers can only come slowly as, for example, more is learnt about
the constraints that Ward Identities and Slavnov-Taylor identities in the the-
ory can provide. That approach has been particularly fruitful in QED2 and
already in the development of a systematic truncation procedure for the ker-
nel of the quark DSE and meson BSE! In the meantime, and as is common,
phenomenological applications provide a key to understanding which elements
of the approach need improvement: the approach itself must also be explored
under extreme conditions. )
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