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We describe the application of Dyson-Schwinger equations to the calculation of
hadron observable. The studies at zero temperature (T) and quark chemical po-
tential (p) provide a springboard for the extension to finite-(T, p). Our exemplars
highlight that much of hadronic physics can be understood as simply a manifes-
tation of the nonperturbative, momentum-dependent dressing of the elementary
Schwinger functions in QCD.

1 DSE Essentials

The Dyson-Schwinger equations (DSES) provide a Poincar6 invariant, contin-
uum approach to solving quantum field theories. They are an inf%ite tower
of coupled integral equations, with the equation for a particukwn-point func-
tion involving at least one m > n-point function. A, tractable problem is only .
obtained if one truncates the system, and historically this has provided an
impediment to the application of DSES: a pn-ori it can be dficult to judge
whether a particular truncation scheme will yield qualitatively or quantita-
tively reliable results for the quantity sought. As integral equations, the anal-
ysis of observable is a numerical problem and hence’ a critical evaluation of
truncation schemes often requiresaccess to high-speed computers.= With such
tools now commonplace, this evaluation can be pursued @Mully.

The development of efficacioustruncation schemes in not a purely numer-
ical task, and neither is it always obviously systematic. For some, thk last
point diminishesthe appeal of the approach. However, with growing commu-
nity involvement and interest, the qualitatively robust results and intuitive
understandingthat the DSEScan provide is becoming clear. Indeed, someone
familiar with the application of DSES in the late-70s and early-80s might be
surprised with the progress that has been made. It is now clearl that trun-
cations which preserve the global symmetriesof a theory; for example, chiral
symmetry in QCD, are relatively easy to define and implement and, while it
is more difficult to preserve local gauge symmetries, much progress hss been
made with Abelian theories2and more is being learnt about non-Abelian ones.

“The human and computational resources required are still modest compared with those
consumed in contemporary numerical simulations of lattice-QCD.
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The simplest truncation scheme for the DSESis the weak-coupling expan-
sion. It shows that the DSES contain perturbation theory; i.e, for any given
theory the weak-coupling expansion generates all the diagrams of perturba-
tion theory. However, the most important feature of the DSESis the antithesis
of thk weak-coupling expansioxx the DSES are intrinsically nonperturbative
and their solution contains information that is not present in perturbation
theory. They are ideal for the study of dynamical chiral symmetry breaking
(DCSB) and confinement in QCD, and of hadronic bound state structure and
properties. In this application they provide a means of elucidating identifiable
signaturesof the quark-gluon substructure of hadrons.

Their intrinsicallynonperturbative nature also makesthem well suited to
studying QCD at finite-(T, p), where the characteristicsof the phase transition
to a quark-gluon plasma are a primary subject. The order of the transition,
the critical exponents, and the response of bound states to changes in these
intensive variables: all must be elucidated. The latter because there lies the
signals that will identify the formation of the plasma and hence guide the
current and fiture experimental searches.

1.1 Gluon Propagator

In Landau gauge the two-point, dressed-gluon Schwingerfunction, or dressed-
gluon propagator, has the form

wherel_I(k2)is the vacuum polarisation, which containsall the dynamical infor-
mation about gluon propagation. Studies of the gluon DSE have been reported
by many authors3 with the conclusion that, if the ghost-loop is unimportant,
then the charge-antiscreening3-gluon vertex dominates and, relative to the
free gauge boson propagator, the dressed gluon propagator is significantlyen-
hanced in the vicinity of k2 = O.b The enhancementpersiststo k2 N 1-2 GeV2,
where a perturbative analysis becomes quantitatively reliable. In the neigh-
borhood of k2 = O the enhancement can be represented as a regularisation

bThe possi~llitythat g(~z ) isfiniteor vanishes at k2 = Ois canvassed in these Procee~lWs.

In the absence of particle-like singularities in the quark-gluon vertex such behaviour is very
difficult to reconcile with the observable phenomena of QCD.4 A particle-like singularity is
one of the form (P2)-a, a G (O,1]. In this case one can write a spectral decomposition for
the vertex in which the spectral densities are non-negative. Thk is impossible if a >1. a = 1
is the ideal c=e of an isolated, 6-function singularity in the spectral densities and hence an
isolated, free-particle pole. a c (O, 1) corresponds to an accumulation, at the particle pole,
of branch points associated with multiparticle production.
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of l/k4 as a distribution. A dressed-gluon propagator of thk type generates
confinement and DCSB withoutfine-tuning.

1.2 Quark Propagator

In a covariantgauge the two-point, dressed-quarkSchwingerfunction, or dressed-
quark propagator, can be written in a number of equivalent forms

s(p) := 1
i’y *p+ x(p) (2)

1.—
“– i~ -pA(#) + B(@)

= –i~.pcqf(pz) +US(P2). (3)

Z(p) is the dressed-quarkself-energy, which satisfies

~(p) = (z2–l)i~.p+&?7Zbm+ 21
J

A g2DPv(p– q)~7PS(q)r:(g,p) , (4)
9

where 17~(q;p) is the renormalked dressed-quark-gluonvertex, mb~ is the La-
grangiancurrent-quarkbare massand ~q*:= ~A d4q/(27r)4representsmnemon-
ically a translationally-invariant regukwisationof the integral,with A the regu-
Iarisationmass-scale. The quark-gluon-vertex and quark wave function renor-
malization constants, 21(P2,A2) and 22 (p2, A2), depend on the renormalisa-
tion point, p, and the regularisationmass-scale,as does the mass renormalisa-
tion constant Z~(p2, A2) := Z2(p2, A2)-1Z4(p2, A2).

The quark mass-function is A4(p2) := 13(p2)/A(p2) and, as illustrated
in Fig. 1,6 solving the quark DSE using an infrared-enhanced dressed-gluon
propagator and a dressed-quark-gluon vertex, r~ (p, q), that does not exhM
particle-like singularitiesat (p – q)2 = O, one obtains a quark mass-function
that mirrorsthe infraredenhancement of the dressed-gluonpropagator. Using
the one-loop formula for the running mass, these results were obtained with
current-quarkmassescorresponding to

~:fdeV ml GeV ml GeV 1 GeVmb
6.6MeV 14; MeV l.; GeV 3.4 GeV. (5)

The quark DSE was also solved in the chiral limit, which in QCD is ob-
tained by setting the Lagrangian current-quark bare mass to zero~ One ob-
serves immediately that the mass-function is nonzero even in this case. That

COne aspect of confinement is the absence of quark and gluon production thresholds in
colour-singlet-to-singlet S-matrix amplitudes. Thk is ensured if the dressed-quark and -
gluon propagators do not have a Lehmann representation.

3



.

3> -------- /’”
------ ,./

~ -----
,//

-------

/
--- b-quark

2 - ---- c-quark
~

/
----- s-quark

g L--- — uld-quark

“g
2Z

1

---------------------- ---
0

0 1 2 3 4 5
p (GeV)

Figure 1: Dressed-quark mass-function obtained in solving the quark DSE.

is DCSB: a momentum-dependent quark mass, generated dynamically, in the
absence of any term in the action that breaks chkd symmetry explicitly. Thk
entails a nonzero value for the quark condensate in the chlral limit. That
ikf(p2) # O in the chiral limit is independent of the details of the infrared-
enhanced dressed-gluon propagator. ‘

Figure 1 illustratesthat for light quarks (u, d ands) there are two distinct
domains: perturbative and nonperturbative. J.hthe perturbative domain the
magnitude of J4(p2) is governed by the the current-quark mass. For p2 <
1 GeV2 the mass-fimction rises sharply. This is the nonperturbative domain
where the magnitude of lkf(p2) is determinedby the DCSB mechanisw i.e., the
enhancement in the dressed-gluonpropagator. This emphasisesthat DCSB is
more than just a nonzero value of the quark condensate in the chiral limit!

The solution of p2 = ikf(p2)2 defines a Euclidean constituent-quarkmass,
h4E. For a given quark flavour, the ratio i%l~/m~ is a single, quantitative
measure of the importance of the DCSB mechanism in modifying the quark’s
propagation characteristics. As illustrated in Eq. (6),

(6)

this ratio provides for a natural classificationof quarksas either light or heavy.
For light-quarks the ratio is characteristically 10-100 while for heavy-quarks
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it is only 1-2. The values of this ratio signal the existence of a characteristic
DCSB mass-scale: J4x. At p2 >0 the propagation characteristicsof a flavour
with m; < itlx are altered significantly by the DCSB mechanism, while for
flavours with nz~ >>kfx it is irrelevant, and explicit chhal symmetry breaking
dominates. It is apparent from the figure that iklx N 0.2 GeV ~ AQCD. This
forms the basis for simplificationsin the study of heavy-meson observable?

1.3 Hadrons: Bound States

The properties of hadrons can be understood in terms of their substructure by
studying covariant bound state equations: the Bethe-Salpeter equation (BSE)
for mesons and the covariantFadde’ev equation for baryons. The mesons have
been studied most extensively and their internal structure is described by a
Bethe-Salpeter amplitude obtained as a solution of

Xjq(q; P) := s(~+)rH(~;qs(~_), s(~) = diag(SU(q), S~(q), S,(q),.. .); q+ =
q+7?PP, fp = q – (1 – qp) P, with P the total momentum of the bound state
and observable independent of qp; and r,. . . ,Urepresent colour-, Dirac- and
flavour-matrix indices. For a pseudoscalar bound state the amplitude has the
form

where TH is a flavour matrix that determines the mesonic channel under con-
sideration; e.g., TK+ := (1/2) (A4+ iA5), with {Ai,j = 1... 8} the Gell-Mann
matrices. In Eq. (7), K is the renormalked, filly-amputated, quark-antiquark
scattering kernel and important in the successful application of DSES is that
it has a systematic skeleton expansion in terms of the elementary, dressed-
particle Schwinger fhnctions; e.g., the dressed-quark and -gluon propagators.
This particular expansion; with its analogue for the kernelin the quark DSE,
provides a means of constructing a kernel that, order-by-order in the number
of vertices, ensuresthe preservationof vector and axial-vector Ward-Takahashi
identities.

In any study of meson properties, one chooses a truncation for K. The
BSE is then fully specified and straightforward to solve, yielding the bound
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Figure 2: First two orders in a skeleton expansion of the quark-antiquark scattering kernel.
In this expansion, the propagators are dressed but the vertices are bare.

state mass and amplitude. The “ladder” truncation of K combined with the
“rainbow” truncation of the quark DSE [r~ + -YPin Eq. (4)] is the simplest
and most often used. The expansion of Fig. 2 provides the explanation for
why thisWard-Takahashiidentity preservingtruncation is accurate for flavour-
nonsingletpseudoscalarand vector mesons: there are cancellationsbetweenthe
higher-order diagrams. And also why it provides a poor approximation in the
study of scalar mesons, where the higher-order terms do not- cancel, and for
flavour-singletmesons where it omits timelike gluon exchange diagrams.

2 A Mass Formula

The dressed-axial-vectorvertex satisfiesa DSE whose kernelis K, and because
of the systematic expansion described in Sec. 1.3 it follows6 that the axial-
vector Ward-Takahashl identity (AV-WTI):

-wpgp (k; P) = (9)

TH TH
s-l(k+)75T + ~~~ s-1 (k-) - M(P) r~(k; P) – r?(k P) M(p),

[WA = dhd~:, m;, mg,... ) is the current-quarkmass matrix] is satisfiedin
any thoughtful truncation of the DSES. That entailsmany important results!

1) The axial-vector vertex has a pole at P2 = –m& whose residue is fH,
the Ieptonic decay constant:

6
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with the trace over colour, Dirac and flavour indices.
2) In the chiral limit

fHEH(k; 0) = Bo(k’), FR(k; O) + 2 fHFH(k; O)= Ao(k2) ,
GR(~; O)+ 2 fi@H(k; 0) = 2A~(k2) , HR(k; O) + 2 fHHH(k; O)= 0,

(11)
where A. (k2) and B. (k’) are the solutions of Eq. (4) in the chiral limit, and
FR, GR and HR are calculable functions in R$P. This shows that when cldral
symmetry is dynamically broken: 1) the flavour-nonsinglet,pseudoscalarBSE
hasa masslesssolution; 2) the Bethe-Salpeter amplitudefor the masslessbound
state has a term proportional to 75 alone, with the momentum-dependence
of .EH(k; O) completely determined by that of B. (k2), in addition to terms
proportional to other pseudoscalarDirac structuresthat arenonzero in general;
and 3) the axial-vector vertex, r$ (k; P), is dominated by the pseudoscalar
bound state pole for P2 R O. The converse is also true.

3) The pseudoscalar vertex also has a pole at P2 = –mfi whose residue is

hi+ =&~A~tr[(~H)’75s(*+)rH(q; p)~(q-)] . (12)

4) There is an identity between the residues of the pseudoscalar meson
pole in the axial-vector and pseudosca,larvertices that is satisfiedindependent
of the magnitude of the current quark mass

f~ mfi =THMH, MH :=tmav~.~ [M(p) {TH,(TH)’}] . (n)

2.1 Corollaries

Equation (13) is a mass formula for flavour-octet pseudoscalar mesons. For
small current-quark masses,using Eqs. (8) and (11), Eq. (12) yields

A

1(T% = — ~ ~q)~ , – (~q)~ := z4(p2, A2) N=
fH J trm,aC[Sfi=o(q)] , (14)

q

where (~q)~ is the chirallimitvacuum quark condensate, whichis renormalisation-
point dependent but independent of the gauge parameter and the regularisa-
tion ma,ss-scale$(~q)~=l G=V = - (0.241 GeV)3. Now one obtains immediately
from Eqs. (13) and (14)
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which exemplify what is commonly known as the Gell-Mann-Oakes-Renner
relation. [fi~ is the renormalisation-point-independentcurrent-quark mass.]
In a typical, model calculation Eq. (15) is accurate to 7%, while Eq. (16)
receives corrections of 43% from O (iiz~) and higher, see Fig. 3.

In the heavy-quark limit, qp = 1 in Eq. (7) and the heavy-meson velocity
(VP) and binding energy (E) are defined via P := m~ VP,V2= –1, M~ :=

(fiQ +E), with M~ the heavy-mesonmass and fi~ z M; % *Q; see Sec. 1.2.
In this case7, at leading order in I/MH,

(17)

(18)

where the canonical normalkation condition for ~H (q; P) is independent of
MH. Using Eqs. (17) and (18) in Eq. (10) one obtains

f~ a I/& (19)

and this along with Eqs. (12) and (13) yields

A model study8 shows Eq. (20) to be valid for fiQ ~ iiis, and this is confirmed
by data, Fig. 3. However, both calculations and available data suggest that
Eq. (19) is not manifeStuntil 7??Q> tic.

3 Finite T and p

The study of QCD at finite temperature and baryon number density proceeds
via the introduction of the intensivevariables: temperatureand quarkchemical
potential. These are additional mass-scales, with which the coupling can run
and hence, for T>> AQCDand/or p >> AQCD,cr.s(Q2= O,T, p) N O. It follows
that at finite temperature and/or baryon number density there is a phase
of QCD in which quarks and gluons are weakly interacting, imespective of the
momentum transfer; i.e., a quark-gluonplasma. Such a phaseof matter existed
approximately one microsecond after the big-bang. In this phase confinement
and DCSB are absent and the nature of the strong interaction spectrum is
qualitatively different.

Nonperturbative methods are necessary to study the phase transition,
which is characterised by quaMative changes in order parameterssuch as the
quark condensate. One widely used approach is the numerical simulation of
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Figure 3: Pseudoscalar meson mass as a function of the mass of the heaviest constituent,
fig ? Only the z does not lie on the same straight line.

finite temperature lattice-QCD, with the first simulationsin the early eighties
16The commonly used quenched approxima-and extensive efforts since then.

tion is inadequate for studying the phase diagram of finite temperature QCD
because the details of the transitiondepend sensitivelyon the number of active
(light) ilavours. It is therefore necessary to include the fermion determinant.

That is even more important in the presence of p, whkh modties the
fermion piece of the Euclidean action: ~. i?+ m + ~” i3– 7.iP+ m, and thus
the fermion determinant acquires an explicit imaginary part. The p # OQCD
action being complex entails that the study of iirdte density is significantly
more difficult than that of finite temperature. Simulations that ignore the
fermion determinant at p # O encounter a forbidden region, whkh begins at
P = mr/2~0 and since mr ~ Oin the chlral limit this is a serious limitation,
preventing a reliable study of chiral symmetry restoration. The phase of the
fermion determinant is essentialin eliminatingthis artefact?l

The contemporary application of DSESat finite temperature and chemical
potential is a straightforward extension of the T = O = P studies. The duect
approach is to develop a finiteT extension of Anstitze for the dressed-gluon
propagator. The quark DSE can then be solved and, having the dressed-quark
and -gluon propagators, the response of bound states to increasesin T and p
can be studied. As a nonperturbative approach that allows the simultaneous

9



study of DCSB and confinement, the DSEShave a significantoverlap with lat-
tice simulations: each quantity that can be estimated using lattice simulations
can also be calculated using the DSES. This means they can be used to check
the lattice simulations, and importantly, that lattice simulationscan be used
to constrain their model-dependent aspects. Once agreement is obtained on
the common domain, the DSES can be used to explore phenomena presently
inaccessible to lattice simulations.

3.1 Finite-(T, p) Quark DSE

The renormalised dressed-quarkpropagator at finit&(T, p) has the form

(21)

where & := fA)k+ ip. The complex scakir functions: A(F, @), B@-, fik) and
C(@~ok) satisfi ~@~ &)” = X(I??fi-&l), ~ = A, B, C, and although not
explicitly indicated they are functions only of ]fi2 and G;.

S(P, Ok) satisfiesthe DSE

where the regularisedself energy is

.
(25)

J: := T ~~_~ fA $& and PA := –(Z$/p2)i~ . p, PB := Zl, PC :=
‘(Z@k)i~A.

The finite-(T, p), Landau-gauge dressed-gluon propagator has the form

{

o;
P:”(ZI:= ~.

p and/or v = 4,
PiPj
~2 ~ P,v=l,2,3 ‘

(27)
~j—‘“

with PPTV(P)+ P~JP, PA) = 6PV—PPp~l~~=l papa; p, v = 1,...,4.
In studying confinementone cannot assume that the analytic structure of .

a dressedpropagator is the same as that of the free particle propagato~ it must
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be determineddynamically. The flk := (E ti~)-dependenceof A and C is quali-
tatively important since it can conspire with that of B to eliminatefie~particle

12In this case the propagator does notpoles in the dressed-quarkpropagator.
have a Lehmannrepresentationso that, in general,the Matsubara sum cannot
be evaluatedanalytically. More importantly, it eithercomplicates or precludes
a real-timeformulationof the finite temperaturetheory,which makesthe study
of nonequilibrium thermodynamics a very challengingproblem. In addition,
the @k-dependenceof A and C can be a crucial factor in determining the be-
haviour of bulk thermodynamic quantities such as the pressure and entropy;
being responsiblefor these quantities reachingtheir respective ultrarelativistic
limits only for very large values of T and p. It is therefore important in any
DSE study to retain A@~) and C’(~k), and their dependence on fik.

3.2 Phase Transitions and Order Parameters

One order parameter for the chiral symmetry restoration transition is well
known - it is the quark condensate, defined via the renormaliseddressed-quark
propagator, Eq. (14). An equivalent order parameteris

X:= Re130(jf= O,&O), (28)

which makes it clear that the zeroth Matsubara mode determines the charac-
ter of the chiral phase transition. An order parameter for confinement, vaUd
for both light- and heavy-quarks, was introduced in Ref. [13]. It is a single,
quantitative measure of whether or not a Schwingerfimction has a Lehrnann
representation,and it has been used14to strikingeffect in QED3.

3.3 Study at (T # O,p = O)

Reconfinementand chiralsymmetry restorationhave been studied13in a DSE
model of two-light-flavour QCD. The quark DSE was solved using a one-
parameter modells dressed-gluon propagator, which provided a good descrip-
tion of n and pmeson observable at T = O= y. The transitionsare coincident
and second-order at a critical temperature of T= N 150MeV, with the same
estimated critical exponents: B = 0.33 + 0.03. Both the pion mass, mm, and
the pion leptonic decay constant, Jn, are insensitiveto T for T ~ 0.7TC. How-
ever, as T + T=, the pion mass increasessubstantially,as thermal fluctuations
overwhelm quark-antiquark attraction in the pseudoscalar channel, until, at
T = T., f. + O and there is no bound state. These results confirm those of
contemporary numerical simulationsof finite-T lattic&QCD 16.
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3.4 Complemental study at (T = O,p # O)

The p # Obehaviour of thk model has also been explored.17The dressed-gluon
propagator has the simple form

Cx~2) = 16T2

[

47r%z:64(k) +
1 – e-[k2/(@)]

~2 1k2 ‘
(29)

wherels mt = 0.69 GeV is a mass-scale that marks the boundary between the
perturbative and nonperturbative domains, and the quark DSE was solved in
rainbow approximation. The solution has the form

where PIP]:= (@’,oJ~I),with ‘M := PA+ ip, and there are two distinct typex a
Nambu-Goldstone mode characterised by aBO~ O; and a Wigner-Weyl mode
characterisedby ~EOs O.

The possibility of a phase transition is explored by calculatingthe relative
stability of the different phases, whkh is measured by the dfierence between
the tree-level auxiliary-fieldeffective-action:

+iw ‘=
(31)

where ~ and ~ represent the solution of Eq. (23) obtained when B. s O;
i.e., when DCSB is absent. This solution exists for all p. B(p) defines a p-
dependent “bag constant”?8 It is positive when the Nambu-Goldstone phase
is dynamically favoure~ i.e., has the highest pressure, and becomes negative
when the Wlgner pressurebecomes larger. Hence the criticalchemicalpotential
is the zero of B(p), which isp. = 375 MeV. The abrupt switchfrom the Nambu-
Goldstone to the Wlgner-Weyl mode signals a first order transition.

The chhal order parameter increases with increasing chemical potential
up to p=, with x(pJ/x(0) s 1.2, whereas the reconfinement order parameter,
K(P), is insensitiveto increasingp. At p. they both drop immediatelyand dis-
continuously to zero, as expected of coincident, first-order phase transitions.
The increase of X with p is a necessary consequence of the momentum depen-
dence of the scalar piece of the quark self energy, 13(PIPl)~9The vacuum qumk
condensate behaves in qualkatively the same manner as X.

Even though the cldral order parameter increases with p, mr decreases
slowly as p increases, with mm(p x 0.7 p.)/nzm(0) s 0.94. At this point
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m. begins to increase although, for p < p=, m.(p) does not exceed nzX(0),
which precludespion condensation. The behaviour of m. resultsfrom mutually
compensating increasesin ~~ and (m~(@C)n. fr is insensitiveto the chemical
potential until p s 0.7PC,when it increases sharply so that fn(p:)/fr(p =
O) x 1.25. The relative insensitivityof m. and f. to changes in p, until very
near PC,mirrors the behaviour of these observable at finite-T?3 For example,
it leads only to a 14% increasein the r ~ pv decay width at p N 0.9p=. The
universalscaling conjecture of Ref. [20] is inconsistentwith the anticorrelation
observed between the p-dependence of fr and mz.

Comparing the p-dependence off. and m% with their T-dependence, one
observes an anticorrelation; e.g., at p = O, f. falls continuously to zero as T
is increased towards T= N 150MeV. Thk is a necessary consequence of the
momentum-dependence of the quark self-energy.

Note A: For these observable the natural dimension is mass-squared, and
their behaviour at finite T and p is determined by

l?e(w~l) N [IT22’2– P21, (32)

where the T-dependence arisesfrom the introduction of the fermion Mat-
subara frequency. p4 + (2n + l)xT. Hence when such a quantity de-
creases with T it will increase with p, and vice-versa?

The confined-quark vacuum consists of quark-antiquarkpairs correlated
in a scalar condensate.

Note B: Increasing p increasesthe scalar density: (–(@). This result is an
expected consequenceof confinement, whkh entailsthat each additional
quark must be locally paired with an antiquark thereby increasing the
density of condensate pairs as p is increased.

For this reason, as long as p < p=, there is no excess of particlesover antipar-
ticles in the vacuum and hence the baryon number densityremainszero~g i.e.,
PB+d = O, VP < p.. This is just the statement that quark-antiquarkpairs
confined in the condensate do not contribute to the baryon number density.

The quark pressure, P“+d[p], can be calculatedly and one finds that af-
ter reconfinement it increases rapidly, as the condensate “breaks-up”, and
an excess of quarks over antiquarks develops. The baryon-number density,
P;+d = (1/3) dP’+d/8v, also increases rapidly, with

P;’-d(P = Z%) = 3P0 , (33)

where p. = “0.16fro-3 is the equilibrium density of nuclearmatter. For compar-
ison, the central core densityexpected in a 1.4 M@ neutron star is 3.6-4.1 po?2
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Finally, at p N 5pC, the quark pressure saturates the ultrarelativisticlimit:
Pu+d = 4P /(2~2), ad there is a simple relation between baryon-density and
chemical-potential:

“F+d’(P)=;$,VP25P. >PB (34)

so that p&+d~ (5P=) ~ 350PO. Thus the quark pressure in the reconfined
domain overwhelmsany finite, additive contribution of hadrons to the equation
of state, which anticipating this was neglected in Ref. [17]. Thk discussion
suggeststhat a quark-gluon plasmamaybe presentin the core of denseneutron
stars.

3.5 Simultaneous study of (T # O,p # O)

This is a difficult problem and the most complete
simple Ansatz for the dressed-gluonpropagato~

studylg to date employs a

which exldblts the inkred enhancementsuggested by Ref. [5]. As an infked-
dominant model that does not ~epresentwell the behaviour of DP.@, ok) away
from lf12+ Cl’ -k - 0, some model-dependent artefacts arise. However, there is
significantmerit in its simplicity and, since the artefacts are easily identified,
the model remains useful as a means of elucidating many of the qualitative
featuresof more sophisticated Ansitze.

With this model, using the rainbow approximation, the quark DSE isl

s-l~~~k) = @@~tik) + ~q2~vS@tik)Tv . (36)

A simplicity inherent in Eq. (35) is now apparent: it allows the reduction of
an integral equation to an algebraic equation, in whose solution many of the
qualitative features of more sophisticated models are manifest.

In the chirallimit Eq. (36) reducesto a quadratic equationfor B@~), which
has two qualitatively distinct solutions. The “Nambu-Goldstone” solution, for
which

B(@k) =
{

/7-i%t w%)< $
0, otherwise

(37)
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describes a phase of this model in which: 1) chiral symmetry is dynamically
broken, because one has a nonzero quark mass-function, B(~J, in the absence
of a current-quark mass; and 2) the dressed-quarksare confined, because the
propagator described by these functions does not have a Lehmannrepresenta-
tion. The alternative “Wigner” solution, for which

(39)

describes a phase of the model without DCSB and confinement.
The relative stability of the different phases is measured by a (T, p)-

dependent vacuum pressuredifference, which in the chiial limit is

f?(T, p) = (40)

“’NcNf$~J” ‘“2 {Re(2’’)-Re(@&) -hl’’c21}21}

with: ~ = T/q, ji = p/q; lma= is the hugest value of i for which Q? 5
(1/4) + ji2 and this also specifiesWlma=,X2 = U~~aX– ti~, F1= (@,ol +iji)~~he
condition B(T, p) s O definesthe phase boundary in the (p, T)-plane.

Again, the reconfinement and chiial symmetry restoration transitionsare
coincident. For p = Othe transition is second order and the critical tempera-
ture is T: = 0.159 q, which using the value of q = 1.06 GeV obtained by fitting
the z and p masses corresponds to T: = 0.170 GeV. ThB is only 12% larger
than the value reported in Sec. 3.3, and the order of the transitionis the same.
For any p # O the transition is first-order. For T = O the critical chemical
potential is p: = 0.3 GeV, which is x 30% smaller than the result in Sec. 3.4.
The discontinuity in the order parametersvanishesasp+ O.

The quark pressure, Pq, is calculated easily in this model. Confinement
means that Pq = O in the confined domain. In the reconfined domain it
approaches

1
PuR .– —‘– q~NcNf 12X2

( )
ji4 + 27r2p2T2+ ;7r’T4 , (41)

the ultrarelativistic, free particle limit, at large values of ~ and P. The ap-
proach to this limit is slow, however. For example, at 2? * 0.3 * 2~~, or
P N 1.0 N 3P:, Pq is only 0.5 PUR. A qualitatively similarresult is observed in
numerical simulations of finite-T lattice-QCD.16This feature resultsfrom the
persistenceof the momentum dependent modifications of the quarkpropagator
into the reconfined domain, and predicts that there is a “mirroring” of finite-T
behaviour in the dependence of the bulk thermodynamic quantitieson p.
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3.6 x and p properties

The model discussed in the last section has been used21to study the (T, p)-
dependence of n and p properties, and to elucidate other features of models
that employ a more sophkticated Ansatzfor the dressed-gluonpropagator. For
example, the vacuum quark condensate takes the simple form

at T = O= p, (–(~q)) = q3/(80 m2)= (0.11q)3. (–(@q)) decreaseswith T but
increases with p, up to a critical value of PC(T) whenit drops discontinuouslyto
zero, in agreementwith the behaviour reported in Sees.3.3 and 3.4, see Note B.
This vacuum rearrangement is manifeat in the behaviour of the necessarily-
momentum-dependentscalar part of the quark self energy, I@).

The leptonic decay constant also has a simple form in the chkal limit:

(43)

Characteristicin Eqs. (42) and (43) is the combination p2 – w;, see Note A.
Without czdculation, Eq. (43) indicates that f. will decrease with T and in-
creasewith p. Thk provides a simple elucidation of the results described in
Sees. 3.3 and 3.4

The (T, p)-response of the r and p masses is determined by the BSE

where ~1 := (~, ft~), with the bound state massobtained by considering ~tGo.
The mequation admits the solution

rm(~o)= 75 (ml+T” Fe2) (45)

and the calculated (T, p)-dependence of the mass is depicted in Fig. 4.
For t~e p-meson there are two components: one longitudinaland one trami-

verse to P. The solution of the BSE has the form
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Figure 4: MP+ and mr as a function of D for ~ = 0,0.1. On the scale of thii figwe, rn%
is insensitive to th~ variation of T. The current-quark mass is m = 0.011 q, which for

v = 1.06 GeV yields MP+ = 770 MeV and mx = 140 MeV at T = O= p.

where Oti labels the longitudinal and OP. the transversesolution. The eigen-
value equation obtained from (44) for the bound state mass, ktP&,is

(47)
The equation for the transverse component is obtained with [–w%+ –

(1/4)J$-] in (47). Using the chiral-limit solutions, Eq. (37), one obtains
immediately that

M;_ = ~ q2, independent of T and p. (48)

Even for nonzero current-quarkmass, J4P_ changes by less than 1% as T and
p are increased from zero toward their critical values. Its insensitivity is con-
sistent with the absence of a constant mass-shiftin the transversepolarisation
tensor for a gauge-boson.

For the longitudinal component one obtains in the chiral limit:

M;+ = ~q2 – 4(P2 – r2T2) . (49)

The characteristiccombination ~2 - n2T2] again indicates the anticorrelation
between the response of J4P+ to T and its response to p, and, like a gauge
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boson Debye mass, that M;+ rises linearly with T2 for p = O. The m # O
solution of Eq. (47) for the longitudinal component is plotted in Fig. 4: A4fi
increases with increasingT and decreases as p increases.

Equation (47) can also be applied to the @meson. The transverse com-
ponent is insensitiveto T and p, and the behaviour of the Iongitudkd mass,
M@+, is qualitativelythe same as that of the p-meson: it increaseswith T and
decreases with p. Usingq = 1.06 GeV, the model yields L@ = 1.02 GeV for
m= =180 MeVat T= O=p.

In a 2-flavour, free-quark gas at T = O the baryon number density is
pB = 2p3/(3n2), by which gauge nuclear matter density, PO= 0.16 fro-3,
corresponds to p = p. := 260MeV = 0.245 q. At this chemical potential the
algebraic model yields

The study summarisedin Sec. 3.4 indicates that a better representationof the
ultraviolet behaviour of the dressed-gluon propagator expands the horizontal
scale in Fig. 4, with the critical chemical potential increased by 25%. This
suggests that a more realiitic estimate is obtained by evaluatingthe mass at
P; = 0.20q, which yields

ikfp+(p&)s 0.85&fp+(p = O) , AZ++(p&)= 0.90J4~(p = O); (51)

a small, quantitativemodification. The differencebetween Eqs. (50) and (51)
is a measure of the theoretical uncertainty in the estimatesin each case. At
the critical chemicalpotential for T = O, MP+ s 0.6534P+(P = O) and M@+ x
0.80 iW4+(p = O).

This simplemodelpreservesthe momentum-dependenceof gluon and quark
dressing, which is an important qualitative feature of more soph~ticated stud-
ies. Its simplicitymeansthat many of the consequencesof that dressingcan be
demonstrated algebraically.For example, it elucidatesthe origin of an anticor-
relation, found for a range of quantities, between their response to increasing
T and that to increasingp. And the (T, p)-dependence of (–(@q)) and ~., un-
derstood algebraically,is opposite to that observed for mP+, hence the scalhg
law conjectured in Ref. [20] is inconsistent with this calculation, as it is with
others of thk type.

4 Concluding Remarks

This contribution illustratesthe contemporary applicationof Dyson-Schwinger
equations to the analysis of observable strong interaction phenomena, high-
lighting positive aspects and successes. Many recent, interestingstudies have
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been neglected: calculations of thecross section for diffractive, vector meson
23the electricdipole moment of the &meson~4 and the elec-electroproduction,

tromagnetic pion form factor;25 an exploration of q-q’ mixin~26 and others
reviewed in Ref. [27]. However,a simple enquiry of

“http://xxx.lanLgov/find/hep-ph”
with the keywords: “Dyson-Schwinger” or “Schwinger-Dyson”, will provide a
guide to other current research.

In all phenomenological applications, modelling is involved, in particular,
of the behaviour of the dressedSchwingerfunctions in the infrared. (The ultra-
violet behaviour is fixed because of the connection with perturbation theory.)
This is tied to the need to make truncations in order to define a tractable
problem. Questions will always be asked regarding the fidelity of this mod-
elling. The answerscan only come slowly as, for example, more is learntabout
the constraints that Ward Identitiesand Slavnov-Taylor identities in the the-
ory can provide. That approach has been particularly fruitfil in QED; and
already in the development of a systematic truncation procedure for the ker-
nel of the quark DSE and meson BSE? In the meantime, and as is common,
phenomenological applicationsprovide a key to understandingwhich elements
of the approach need improvement: the approach itself must also be explored
under .pxtremeconditions.
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