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GRC Abstract

Influence of Grain Boundary Structure and Distribution on Dynamic (Shock) Response of
Materials

Juan P. Escobedo-Diaz, Ellen K. Cerreta, Darcie Dennis-Koller, Curt A. Bronkhorst, Saryu
Fensin, Ricardo A. Lebensohn and Davis Tonks.

Plate impact experiments were conducted to examine the influence of defect density, in
this case grain boundary distribution, on the dynamic tensile response of Cu . Grain boundary
~ distribution was altered through heat treatment, which altered grain size. The peak compressive
stress was maintained at ~1.5 GPa for all experiments, low enough to cause an early stage of
incipient spall damage that can be correlated to the surrounding. The quantitative post-impact
metallographic analyses of recovered samples showed that for the materials with grain sizes
larger than 30 pm the void volume fraction and the average void size increased with increasing
grain size. In the 30 and 200 um samples, void growth and coalescence was observed to
dominate the damage behavior, whereas in 60 and 100 um sized grains samples, most of the
damage was restricted to individual, isolated voids. Electron backscatter diffraction (EBSD)
observations showed that voids preferentially nucleate and grow at grain boundaries with high
angle misorientation. However, special boundaries corresponding to I (low angle, <5°) and X3

(~ 60° <111> misorientation) type were more resistant to void formation.
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Motivation: why dynamic (shock) response?

Damage due to dynamic failure (shock phenomena)

Identifying the physical mechanisms responsible for dynamic material failure during shock loading provides a

capability of designing and predicting material response to extreme conditions.
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We attempt to address some key questions

————

1. Can we partition deterministic processes (controllable)
vs. stochastic (random) processes?

2. Can we develop a multi-scale understanding of these
processes?

3. Can we capture the essential physics in our
models?

4. Can we control these behaviors through

x|

To do this, we want to understand the connections between
loading environment and the characteristics of a material

Isolating Kinetic and Spatial Effects - |
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3D Micro-tomography,
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Isolating Kinetic and Spatial Effects - Il

High strain rate
Single Crystal
Theory

Macro-scale Continuum Theory
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Experimental Observations
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Experimental configuration

In the lab: A gas gun platform can be utilized to study shock wave interactions within materials.

Catch tank \ '

Plate impact
technique

7

Real-time response: Free surface velocities.
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Similar loading conditions: peak velocity (Vel,), pulse duration(PD) and release rate(R,).
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Material response in a dynamic tensile experiment (spall)
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Dynamic Response vs. Grain Boundary (defects) distribution
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Optical .analysis

Shot 1s-1430 (30 um)

Shot 1s-1440 (60 um)

Shot 1s-1476 (100 pum)

Shot 1s-1434 (200 m)

Micro x-ray tomography

Void%

2D=041

3D =064

Tomography results (3D)
qualitatively agree with
optical (2D)

Patterson et al, Microscopy and Microanalysis, in review (2011). 12




Damage quantification
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Void area fraction as function of the grain size

Void area fraction does not show linear
trend

Void size distribution.

Damage characteristics

100 um
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Void growth/coalescence vs. grain size

Higher misorientation (~plastic work) is observed in the
60 pm sample.

Kernel Misorientation

Properties from EBSD data: Taylor Factor and boundary type
R | }- 40
v ° I|0
;._- II _)
55 [ h
% ° ) =
i |
—— _II
.38~
M,
,"‘l‘; ——
Taylor Factor G. Béundary type
Grain boundary structure as the determining factor for preferred void nucleation location.
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Grain boundary type

T Shock
direction

Polycrystalline (60 um)  Multi-crystalline (200pm)  Columnar grained (3g)

Grain boundary # £3 as the determining factor for preferred void nucleation location.

Main experimental findings

o The special £3 (~ 60°) grain boundaries resistant to void nucleation, indicating that
lattice coincidence may be important to damage mitigation.

o Grain size determines the spatial distribution and size of the defects (i.e. grain
boundaries), inherently dictating the preferred mechanism for damage evolution:

- Individual void growth with accompanying plastic dissipation in intermediate
grain sized samples (60 pm).

- Coalescence more dominant in the 200 {(and 30) um samples due to the
proximity of interacting growing voids.

« Los Alam
lu?ns»u[-a|r.ruv?l§ UNCLASSIFIED
Operated by Los Alamos National Secury, LLC for the U 5 Department of Enecgy's NNSA 2
NYSA

-7/21/2011



Modeling Efforts

Response to Shock Grain Boundary Structure.

Atomistic scale

e

Ordered GB

Disrdered GB

Higher generation of defects at disordered grain boundaries.
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Plastic flow and void interaction

Mesoscale

EBSD
Misorientation

Plastic flow and void interaction

Plastic fields between voids determine damage behavior: void growth vs. coalescence.
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Boundary Response to stress state

Prassure

The highest calculated stress, strain and pressure gradients £3 boundary
indicating its higher strength.

Experimental Observations
&

Modeling Efforts

|

Damage mechanism
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Mechanism for damage evolution

Potential nucleation sites Void nucleation

Misorientation Maps
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Summary

s Shock loading and microstructure are intimately connected
to the dynamic material response.

= A critical length scale exists where mechanisms of ductile
damage formation transition from individual void growth to
coalescence dominated.

= An understanding of mechanisms dominating damage
regimes is necessary to quantitatively interpret velocimetry
results.
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