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GRC Abstract 

Influence of Grain Boundary Structure and Distribution on Dynamic (Shock) Response of 
Materials 

Juan P. Escobedo-Diaz, Ellen K. Cerreta, Darcie Dennis-Koller, Curt A. Bronkhorst, Saryu 

Fensin, Ricardo A. Lebensohn and Davis Tonks. 

Plate impact experiments were conducted to examine the influence of defect density, in 

this case grain boundary distribution, on the dynamic tensile response of Cu . Grain boundary 

distribution was altered through heat treatment, which altered grain size. The peak compressive 

stress was maintained at ~ 1.5 GPa for all experiments, low enough to cause an early stage of 

incipient spall damage that can be correlated to the surrounding. The quantitative post-impact 

metallographic analyses of recovered samples showed that for the materials with grain sizes 

larger than 30 !-lm the void volume fraction and the average void size increased with increasing 

grain size. In the 30 and 200 !-lm samples, void growth and coalescence was observed to 

dominate the damage behavior, whereas in 60 and 100 !-lm sized grains samples, most of the 

damage was restricted to individual, isolated voids. Electron backscatter diffraction (EBSD) 

observations showed that voids preferentially nucleate and grow at grain boundaries with high 

angle misorientation. However, special boundaries corresponding to n (low angle, <5°) and L3 

(~ 60° <111> misorientation) type were more resistant to void formation. 
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Motivation: why dynamic (shock) response? 

Damage due to dynamic failure (shock phenomena) 

.l1li ................ Lab tested 

Identifying the physical mechanisms responsible for dynamic material failure during shock loading provides a 
capability of designing and predicting material response to extreme conditions. 
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We attempt to address some key questions 

1. Can we partition deterministic processes (controllable) 
vs. stochastic (random) processes? 

2. Can we develop a multi-scale understanding of these 
processes? 

3. Can we capture the essential physics in our 
models? 

4. Can we control these behaviors through -=---.........--... 

To do this, we want to understand the connections between 
loading environment and the characteristics of a material 
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Isolating Kinetic and Spatial Effects - II 
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Experimental configuration 

In the lab: A gas gun platform can be utilized to study shock wave interactions within materials. 

Plate impact 
technique. 

Real-time response: Free surface velocities. 
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Similar loading conditions: peak velocity (Velpk) , pulse duration(PD) and release rate(R,). 
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Material response in a dynamic tensile experiment (spall) 
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Optical analysis 
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Micro x-ray tomography 
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Shot 15-1434 (200 flm) 

Tomography results (3~) 
qualitatively agree with 
optical (20) 

Patterson et ai, Microscopy and Microanalysis, in review (2011). 12 
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Damage quantification 
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Void growth/coalescence vs. grain size 

_ Min .. 
D -Kernel Misorientation 

Higher misorientation (-plastic work) is observed in the 
60 J..lm sample. 

Properties from EBSD data: Taylor Factor and boundary type 

Taylor Factor G. Boundary type 

Grain bound structure as the determini rred void nucleation location. 
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i Shock 
direction 
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Grain boundary t ~3 as the determining factor for preferred void nucleation location. 

Main experimental findings 

[J The special 1:3 (- 60°) grain boundaries resistant to void nucleation, indicating that 
lattice coincidence may be important to damage mitigation. 

[J Grain size determines the spatial distribution and size of the defects (Le. grain 
boundaries), inherently dictating the preferred mechanism for damage evolution: 

~ Individual void growth with accompanying plastic dissipation in intermediate 
grain sized samples (60 11m). 

, Coalescence more dominant in the 200 (and 30) 11m samples due to the 
proximity of interacting growing voids. 
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Modeling Efforts 

Response to Shock Grain Boundary Structure. 

I 
Atomistic scale 

Ordered GB 

Disrdered GB 

Higher generation of defects at disordered grain boundaries. 

-
'. ' ,~ , \ -~ 

" '/ . ,,\.-

.7/21/2011 

·10 



Plastic flow and void interaction 

Mesoscale 

EBSD 
Misorientation 

Plastic flow and void interaction 

Plastic fields between voids determine damage behavior: void growth vs. coalescence. 
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Boundary Response to stress state 

The highest calculated stress, strain and pressure gradients :E3 boundary 
indicating its higher strength . 

Experimental Observations 
+ 

Modeling Efforts 

~ 
Damage mechanism 
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Mechanism for damage evolution 

Potential nucleation sites 
GBs "# l:1 and D 
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Void nucleation 
+ initial growth 
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tl 

Growing void 
interaction 

Distance between nucleated voids determines individual 
growth + plastic dissipation or coalescence. 

Real time response ~ damage characteristics 
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Summary 

• Shock loading and microstructure are intimately connected 
to the dynamic material response. 

• A critical length scale exists where mechanisms of ductile 
damage formation transition from individual void growth to 
coalescence dominated. 

• An understanding of mechanisms dominating damage 
regimes is necessary to quantitatively interpret velocimetry 
results. 
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