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An Apropriate Metric to Switch on a Turbulence Model for Rayleigh-Taylor
Instability Driven Mixing

B. Rollin & M. J. Andrews

Abstract Text

Rayleigh-Taylor (RT) instability occurs at a perturbed interface between fluids of different densities,
when the lighter fluid is accelerated into the heavier fluid. In time, as the two fluids seek to reduce
their combined potential energy, the mixing becomes turbulent. This fundamental instability is
observed, and plays a key role, in numerous natural phenomena, e.g. supernovae explosions, and
in engineering applications, e.g. Inertial Confinement Fusion (ICF). The importance of initial
condition (ICs) effects on the growth and mixing of Rayleigh-Taylor instability open an opportunity
for “design” of RT turbulence for engineering, and question our current predictive capability. Indeed,
commonly used turbulence models used for engineering applications are tuned for fully developed
turbulence, whereas RT instability is a dynamic process that evolves toward turbulence under the
influence of ICs. Therefore, our efforts aim at defining a procedure for properly accounting for
initial conditions in variable density (RT) turbulence models. Our strategy is to have a model for
the “early” evolution of the RT instability that will produce the initial conditions for the turbulence
model. We already dispose of a modal model to evolve the RT mixing layer starting from almost any
initial conditions. The present work is a first look at determining an appropriate metric for switching
from the modal model to a vanable density turbulence model.
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Importance of Initial Conditions for
Turbulence “"Design” and Prediction

Work hypothesis:

» Initial conditions could affect "late-time” turbulent
transport and mixing effectiveness. Hence, a challenge for
prediction, but also an opportunity for turbulence
“design”.

Objective:

= Provide a rational basis for setting up initial conditions in
turbulence models.
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Rayleigh-Taylor Instability

Credit: M.]. Andrews
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Some Dramatic Effects of Initial Conditions

M.]. Andrews, TAMU water channel experiment Richtmyer-Meshkov (RM) Transitions From
Different Initial Conditions

. . (from the LANL Gas Shock Tube - K. Prestridge)
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- An ODE Model for Multi-mode

Goncharov model:
> Velocity potentials (3D bubble)

¢" = a(t)J (kr)e =™
@' =b,(t)J,(kr)e*“™ + b (£)z g

After substituting the potentials in the boundary
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Single Mode

Model Results
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- The Goncharov model performs well for low
to moderate Atwood numbers
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A Weakly Nonlinear Model for Multimode Perturbation

Haan’s model:
hi -~
A" =0 Z(G,0)= Y Z, ()™
k

atZ+6xZ-6x¢|Z+6yZ.6y¢|Z =az¢|z ¢ (x,z,t) Z¢:(t)e kz ik-%

1,
[p[6,¢+5v +gZ)i|=P ¢ (x,z,t) Z¢k(t)ekz ik-%

=y(k)Z, + A4 kZ{Z Z (1 - k)+Z Z G—m k — % n)}

Mode coupling term

=k-m  y(k)=+A.gk

Haan’s model allow mode generation, but
‘s valid only until ealy transition to
. Los Alamos nonlinear behavior
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Modes Post-saturation Behavior

Ofer et al., Phys. Plasmas, 3 (1996)
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A Modal Model for Multimode RT mixing layer Growth

A modal model for multimode RT built from the “fusion” between a
potential flow model for single mode and a weakly nonlinear model:

For all k,
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Modal Model Behavior
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Modal Model Behavior
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Establishment of a nonlinear cascade process and mixing
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It appears that the establishment of a nonlinear cascade process occurs at
about the same time as the mixing layer growth becomes self-similar
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Complex initial spectrum

A Raerigh-TayIdr Multi-Mode Study with Banded Spectra and Their Effect on
Late-Time Mix Growth (Banerjee & Andrews, 2009)

Initial Spectrum

Bubble front growth rate
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What metric can we use to define a reasonable starting point for a
turbulence model based on the initial perturbation spectrum'?
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Summary

We have a model for multimode RT
Model track development of perturbation spectrum

> The center of the mixing layer appears sufficiently
turbulent as the mixing layer growth turns self-similar

= Next steps:
> Fine tuning our model

> Improve the model to a larger range of Atwood number

> Define a metric indicating that using a turbulence model
is appropriate
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