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Models and Implementations

Definition:
A material model implementation is a material
model that has been algorithmized and coded
in a programming language as a subroutine
(typically) that a codeilc(elt er a driver or a_
parent analysis code like ABAQUS/Explicit,
ABAQUS/Standard, Adagio, ALE3D, or
ParaDyn) can call to update the relevant state
variables.

A model implementation depends on the
calling code’s arguments (variables), o
dimensionality, and kinematics (how are finite
deformations and rotations handled?)
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Models Approprjzfe for Codes

w

4
- Lagrangia®v€® Pulerian or ALE

— Eulerian requires advection of state variables, so
the bestmodels may become inaccurate in this
framework (elastic-plastic may turn out to be best .
for ¢iifs case, limit to monotonic loading cases) '

— Lagrangian best fidelity if mesh tangling can k

' .”évoided

— ALE is promising, as our materials are t
rubble by the time we achieve enoug}ﬁ

deformation to require remapping %
. o
ﬁ -
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... Existing Mc/)dels

.
« Elastic-Plastic fits S
o
— May be okay at higher pressures "'
— Available in

— Certainly an oversimplification for most energetics at moderate pressures (below a
few MPa)

—  Will almost c%lnly produce bad unload-reload behavior
e ViscoSCraM
L ]
— Based on statistical treatment of Linear Elastic Fracture Mechanics

— Extend ‘include viscoelasticity N
— Not appropriate for more rubbery materials or materials that show substantial

irrecoverable strains
&  _ New model
— Based on viscoplastic theory with elastic damage---no viscoelastic recovery
— Needs documentation, followed by implementation, verification, and va
— Only model of this list that produces observed dilatation un_de:)f'ﬁlax compression
> .
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PBX9502 Compression to
Six Strain Levels
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Volumetric Strain vs. Axial Compresive Strain
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Relevant Mechanical

' Characterization Tests 0

Dwd)
« Triaxial Compression Teejrat dlfferent temperatures rates, '

_.and.pressures
— Provides pressure dependence of strength and strain at failure
measures as fungpdf\s of strain rate and temperature .

- Givew n of stiffness dependence on strain rate and
temperature -

— Can cjar‘ify plasticity dependence on pressure
— Better if unload/reload phases are included
Jlentify damage and/or plasticity as active mechan

P

ressure may prevent damage from accruing (poréSfClosed as they
; develop), allowing better characterization of plastic

; “ * May help to clarify pressure effects on visco@@stic response

— Issues: Sleeve effects, measurement of lat€ral strains, accessible
temperature range, few facilities (SNL, ARDEC, LLNL-air), rigid

platens! .
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PBX 9502 Deviatoric Compression at 40 C
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Relevant Mechanical
Characterization Tests

 Dynamic Mechanical Analysis (DMA) Tests at
different temperatures, strain ranges, and
frequencies:

/W —

Measure magnitude and phase of modulus as a function of
frequency and temperature (and, when asked for, strain
range)

Usually used to identify glass transition, crystallinity
changes, and phase changes

Can be used to fit viscoelastic properties and time-
temperature shift functions if material behaves linearly over
strain range tested

Can be used to identify damage and plasticity effects if raw
data is accessible

Very limited dataset so far
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Storage Modulus (MPa)

Sample: PBX 8502, 617100942 422399-01
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Relevant Mechanical
. Characterization Tes

- Creep/Recovery Tests at different temperatures and stress
levels: |

— Constant load, measure strain vs. time "\

— Have very sparse set data set for 9501, slightly better id’r 9502
» (Cunningham, LLNL)

— Requires good temperature control and reliable
measurement over very long periods and tying up valuable
, floor spge' Verification of applied load isiimportant.

—~ We need¥to change ourway of domg thistest "W

i

in

indistinct---how much is recoverable? Is t "._'"; re damage?
Plasticity?
* Recovery i portant to identify recoverahle part of creep strain

which has everything to do with measured gontours!
— Suggestion: Creep and recovery by arl'
A » 100 seconds creep, 100 seconds. rec

D . » 1000 seconds ereep, 1000 seconds re overy
- LosAlamosgg ;i » Ete f NYSE
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Strain (microstrain)

LX17 Creep Data
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Issues -\

-

| ¢ There are a wide variety of issues that
need to be addressed in model *

o deveigpment P
—wExtreme differences in material properties f,-”
— Anistropic phase properties + ot

— Complex rate and temperature dependent eonstituent
behaviorsv <

— Damage (cracking) in constituents
— Debonding at the interfaces and associated frictional sliding
— Computational i§sues (numerical schemes/implementation)

— Stochastic microstructures (arrangements, sizes, orientations,
etc) - |

/\ | LEL; g , . ) ¥
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Issues \

+ Nonshock initiation *
w. — Thermal localization i
— Chemical kinetics \
— Uncertainty quantification %
«'Model parameters V&
B Exgle\::'imental data V¢
+ Suitability of the experimental data for gh'aF{Cterization
-»Tomography and the translation into model input
. . Non-éiqueness of unidirectional testing .
— Unified multiscale modeling capable of coupling different modeling
approaches effectively
o Micro'-mocll}ung of phases
 DNS |
« Various homogenization models
/w — Applicable to a variety of dlfferent types of !-IEs .
: |-°5A|am°900 um | - ! : NS
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Differences in thé\
Approaches }

« Micromechanically based models

. '— Directly account for microphysics
) — Mo‘? computationally demanding /
« Continuum level models y
y "/'

— Don’t directly account for microphysics
— Computationally very efficient. More easfdy |mplemented
s into large @analysis codes
« l|deal : Use micromechanical models in larg analySes when
possible and/or use micromechanical modeling to develop
more accurate and predictive continuum level models

5
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Thermomechanical Tests with
Best “Bang for the Buc\(”

Uniaxial compression and tension with enough mstrmmentatlon
to get lateral response, too -

— Relevant rates and temperatures o
— Cy%ic for highest information content )_.;‘_,

- Triaxial compression at relevant pressures /

2

— Relevant rates and temperatures (can we go fas}gr and colder?)
— Cyclic for highest information content

?d"
* DMA for visegelasticity properties ; x
— Relevant temperatures, determine if TTS cariexpand time scale of
response j
« Uniaxial Creep _
" i i
* Others? ¥
« What are the most useful ways to measure" strain?
a ) -
—3 ¢ r f
- Los Alamos () ;1 NYSA
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11" U.S. National Congress on Computational Mechanics
Minisymposium Proposal Submission
Titie Mechanical Constitutive Modeiing of Energetic Materials

Description
Developing realistic mechanical constitutive models for practical energetic materials (solid propellants and explosives) is
a significant challenge. These materials typically are particulate composites. They also include large volume fractions
{usually greater than 80%:) of particulate phases. These materials usually exhibit a very small (or possibly nonexistent)
range of linear mechanical response. These materials may contain meore than one particulate phase. These phases
often have high contrast in their mechanical properties over relevant ranges of pressure, strain rate, and temperature.
This minisymposium will be focused on these materials and computational and theoretical methods for developing
mechanical constitutive models for them. Papers that incorporate mechanisms characierized experimemally either on a
ocomposite system or a particular constituent are of particular interest. Modeling approaches that address the multiple
length scales seen in energetic materials are also desired.

Targeted themes
Compaosites Modeling
Energetic Materals
Mechanical Conslitutive Theories
Integration with Characterization Testing
Multiple Length Scales

A/ nias




Summary

This is a hard problem, which is why it has not yet been
solved. One model will not work for all energetic materials.

Developing good mechanical mocks may allow more to work
on the right set of tests and micromechanical modeling
synthesis to produce better models for these materials.

Ultimately, the “best” tests will need to be conducted on the
actual materials of interest.
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