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A Model for Mixing Layer Growth of the Rayleigh-Taylor
Instability

Bertrand Rollin, Malcolm J. Andrews
Los Alamos National Laboratory

It is now well accepted in the “Rayleigh-Taylor research community” that
relatively late time RT turbulent mixing can still be influenced by the initial
conditions that set off the instability. This property surely opens an
opportunity for design of the initial perturbation in order to fit a given
application’s need (e.g. improve efficiency of ICF by minimizing RT
mixing). However, it also implies that one has little chance of giving a
meaningful prediction for an application where RT plays an important role,
unless one can somehow reasonably predict the effects of initial conditions
on the RT instability development. We are trying to capture the RT mixing
layer evolution and important initial conditions effects from the initial
moment of the RT instability until late time, to be able to provide profiles of
turbulence model variables (turbulence model initial conditions) at any time
a turbulence model user would want to start his model. I will present a
modal model predicting the growth of the RT instability mixing layer. Based
on the model predictions and observed characteristics of the RT mixing
layer, I will show how initial profiles for turbulence model variables could
be extracted.
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Outline

= Motivation
= Modal Model
m Initial profile for turbulence model

= Summary
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Importance of Initial Conditions for
Turbulence “"Design” and Prediction
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Premise:

» Initial conditions could affect “late-time” turbulent
transport and mixing effectiveness. Hence, a challenge for
prediction, but also an opportunity for turbulence
“design”.

Objective:

» Provide a rational basis for setting up initial conditions in
turbulence models.
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Rayleigh-Taylor Instability

Credit: M.]. Andrews
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i Some Dramatic Effects of Initial Conditions

-—

M.J. Andrews, TAMU water channel experiment Richtmyer-Meshkov (RM) Transitions From
Different Initial Conditions

. . (from the LANL Gas Shock Tube - K. Prestridge)
Si.

Long wavelength Short wavelength
initial conditions initial conditions

Understanding Transition to

Turbulehce

Credit: Hjelm
& Ristorcelli
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Why a Modal Model?

A Rayleigh-Taylor Multi-Mode Study with Banded Spectra and Their Effect on
Late-Time Mix Growth (Banerjee & Andrews, 2009)

Initial Spectrum
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Why a Modal Model?

— —

3-D ILES Simulations of Banded Spectra and Late-Time Appearance of
Long Wavelengths (Banerjee & Andrews 2009)
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Why a modal model ?

Livescu, ADTSC Science Highlights 2011
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A Potential Flow Model for Single Mode Perturbation

Goncharov model:

A¢h/l =0

¢" = a(t)J,(kr)e "™ s

@' =b,(t)J,(kr)e" "™ +b,(t)z

h/l

om+v,"0,n=v, [v.-vénl=0  [0]=0"-0'

ooy

The velocity potential are expended to 2nd
order and plugged in the interfacial conditions
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Single Mode Model Results

k. (k ~2k(1-1(0))
=——+| —=+1,(0) |e” N7
=73 (8 7,( ))

. k*—4A4,.kn,-324,n] 3y (54, —4)k* +16(2A4, —3)kn, +64A4.7;

A =0
T s 8k~ 8n,) e
k 24, g
7,( > 00)= -+ U= | =
2 8 \/1+AT k
For spikes
n—-n A, —> —A, 88

The Goncharov model predicts the bubble
growth up to first saturation
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- Single Mode Model Results
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The Goncharov model performs well for low

Atwood numbers
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Single Mode Model Summary

& Nonlinear model
© Valid on a large range of A, (0=A,=<0.4)
© Good prediction for bubble

¥ Spike inaccurate for high A,

TCSER) 1|AT3"1' J

Goncharov, PRL, 88, 2002
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A Weakly Nonlinear Model for Multimode Perturbation

Haan’s model:
A" =0 250 =F 2,

atZ""axZ'ax¢|Z +ayZ.ay¢‘z = az¢|z ¢ (x,z,t) Z¢k (t)e kg ik

[p(a,¢+§v2+g2ﬂ=P 550 S0

= y(k)'Z, + A kZ{Z z,(1—i-k)+ 2,2 G—m y % n]}

Mode coupling term

n=k-m yk)=+A.gk

Haan’s model allow mode generation
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Weakly Nonlinear Model Summary

o Nonlinear model
& Valid for all Atwood number
© Multimode model, i.e., handle mode coupling

¥ Valid until early transition to nonlinear behavior
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A Modal Model for Multimode RT: Linear regime

An modal model for multimode RT built from the “fusion” between

a potential flow model for single mode and a weakly nonlinear
model:

For all k,

4(k—87,) Pore (54, —4)k*> +16(2A4, —3)kn, + 644,13,
2 7| — £k —Argn,
K —4A.kn,-324.7°\ 8(k—87,)"

+ ALKy, {ZmZ (1-

k=

k= kK

Using a two
dimensional initial
perturbation spectrum
for the model allow a
one-to-one match with
ICs for 3D simulations

Initial perturbation
in wave space
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Post-saturation treatment

e — T P

Ofer et al., Phys. Plasmas, 3 (1996)

Evolution of a two mode initial

) Evolution of a two mode initial
perturbation, modes 2 & 3

perturbation, modes 1 & 2
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A saturated mode cease to A saturated mode k can only be affected by two
contribute to mode coupling lower-k modes. Its velocity can never exceed its
saturation velocity.
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A Modal Model for Multimode RT mixing layer Growth:
summary

4

Zk = ATkZ{ZmZn(l_’;l'le)-'_Z.mZ'n 1_,;,./2_1,;‘,.,5 } After k has saturated
g | 2 2 ]| <[]

\.

"+ Los Alamos

NATIONAL LABORATORY UNCLASSIFIED
£5T.1943 Slide 17

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR 11-000XX %AVIA'DV&)




4058

Modal Model Behavior

Mode Coupling
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The mode coupling function wiill
“populate” the entire spectrum
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Modal Model Behavior

T | T | L | =

No Mode Coupling
— Mode Coupling
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Mode coupling is at the origin of self similarity
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Banded Spectrum Case
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Banded Spectrum Case
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The mixing layer expansion experience an “extra
kick” when the long wavelengths of the initial
pertubation become the dominant modes
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~ BHR Turbulence Model for RT Instability

Besnard-Harlow-Rauenzhan (BHR) turbulence model:
= Single-point turbulent transport model
= Designed for variable density turbulence

D. Besnard, F. H. Harlow, R. Rauenzhan, LA-10911-MS (1987)

Model Variables:

1 IO'M.' _ k3/2 B 1/
kzzui'ui' a ="t b=—p'V =—— v,=Ck"°S

1 —_—

0 g
Governing equation for the variable S:
0.8 =(3—c4 azg§+laz PRAICHS —(i—czjk”z
2 k p O 2
BHR initiated with:
« Profilesfor: £ d4a, pH §

__ =Valuesfor: C, C, C, o
» Los Alamos <

NATIONAL LABORATORY UNCLASSIFIED Slide 22

Y
ANNSH

EST.1943
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR 11-0000X



__Two-FIuid Formulation for BHR Variables

== S

P = 1P+ fuPs u=fu + fu,

Isotropy hypothesis

k=Ck§(‘Tb_‘7s fh.flphpl -
(fupu+ fiP))

fhfl T
az=Ca (,0 _p)vs_v
c ot o ’( J

b=C, ff 1o, _pz)2
PP

S =C; (hb +h )(4fhf1)1/2 . S_elf-similarity hypothesis
« Derived for low Atwood humber

+ Los Alamos Cagdes = Co = C"z =1
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Approximation for Density Profile

——

Heavy F|UId Volume Fraction Profile . Density Profile ,
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A . i I., 3. Turbulence, 10 (2009)
Dimonte et al., Phys. of Fluids, 16 (2004) Livescu et al., J. /
For a smooth
mixture fraction
= ] — description
p= 1,0+ [P fi=d U a<h )
Z . b
f,=05"""  if —h <z<0 Zy_ a1 p-1
b . S [i(2)= |(z=h) " (h,—2)" dz
f =M z h
Yop—p, f,=05—+05 if 0<z<h, >
=1- h fh(z)
fh - fl b . fh(Z)= —~ ;<
Si=1 if z>h, fh(hb)

9
h?&ﬁ!g!g%% UNCLASSIFIED Slide 24

EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR 11-5000¢X W D‘él




- Two _f_Iuid model predictions
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Two-fluid formulation produces reasonable profiles
) that need to be adjusted correction coefficients
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Summary

> We have a model for multimode RT
> Model track development of perturbation spectrum

> Two-fluid formulation for BHR variables profiles

= Next steps:

> Fine tuning our model

> Determine coefficients for two fluid formulation
> Introduce 3" order terms in model ?
>

Improve the model to a larger range of Atwood number
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Establishement of a nonlinear cascade process

W

i 1 i L [ [ 1 L L 1
0 1 2 3 4 5 6 ~o 1 2 3 4 5 6
Agt/L Agt’ /L

It appears that the establishment of a nonlinear
cascade process occurs at about the same time as
the mixing layer growth becomes self-similar
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Application to RM instability
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The Goncharov model applied to the gas curtain
experiment produces a very close result
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