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Gameplan

• AMG background

• Energy minimization AMG

– arbitrary coarsening,  

– flexible coarse basis function support,    .

– accurate interpolation of  assorted important modes

– varied choice of norm for minimization & search space

• Krylov methods & energy minimization

• Leveraging flexibility

– extended finite elements, mixed finite elements, anisotropic PDEs



Solve A3u3=f3

What is   Multigrid ?

Solve A1u1=f1 directly.

Smooth A3u3=f3. Set f2 = R2r3.

Smooth A2u2=f2. Set f1=R1r2. Set u2 = u2 + P1u1.  Smooth A2u2=f2. 

Set u3 = u3 + P2u2.  Smooth A3u3=f3. 

P2 R2

P1 R1

Basic idea: 
• Develop coarse approximations

• Accelerate convergence via 
coarse iterations to efficiently 
propagate information



What is   Multigrid ?

• Determine Pi & Ri’s coefs

• Project: Ai = Ri Ai+1 Pi

• Construct Graph & Coarsen

Solve A3u3=f3

Solve A1u1=f1 directly.

Smooth A3u3=f3. Set f2 = R2r3.

Smooth A2u2=f2. Set f1=R1r2. Set u2 = u2 + P1u1.  Smooth A2u2=f2. 

Set u3 = u3 + P2u2.  Smooth A3u3=f3. 

P2 R2

P1 R1

• Determine Pi & Ri sparsity pattern 

Algebraic 
^



AMG limitations …

Best understood theoretically for 
scalar elliptic PDEs with standard discretizations

(e.g. linear nodal FE & finite differences),
but often works on broader range of systems.

Deficiency:  Classical AMG & smoothed aggregation are rigid & not 
easily adapted to advanced situations. 

 coarsening rules:  diameter 3 aggregates or 
(C1) for each i  F, each point  j  Si should either be in C, or

should be strongly connected to at least one point in C  Si

(C2) C should be a maximal subset of all points with the property               
that no two C-points are strongly connected to each other

 coarsening, P sparsity pattern, pij choices are often tied together
 strong/weak decisions influence multiple phases of algorithm
 accurate interpolation of constants automatically addressed, but 

considering other important modes can be problematic



AMG & Energy MinimizationAMG & Energy Minimization

Tradeoffs:

+ flexibility
 any coarsening
 any sparsity pattern
 constraints

important modes
requiring accurate   
interpolation

+ robustness
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Find                                       minimizing            in some space

so that  P Bc= B  (=[b1 b2 …bq ])    or    equivalently subject to
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“Solve” Â »P« = 0

1) with minimization algorithm
2) in space satisfying constraints 

if  e = A

QZ»P0«, QZ2»P0«, QZ3»P0«, …

A (P0 - P)= 0 with X»P0« = »B«

Q = ( I – XT(X XT) -1 X )  

X»P« = 0  

• Expensive & unnecessary to solve exactly (need to bound energy)!

• Can consider improving an initial guess with a few iterations
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Find                                       minimizing            in some space

so that  P Bc= B  (=[b1 b2 …bq ])    or    equivalently subject to

Energy-Minimization
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“Solve” Â »P« = 0

1) with minimization algorithm
2) in space satisfying constraints QZ»P0«, QZ2»P0«, QZ3»P0«, …

A (P0 - P)= 0 with X»P0« = »B«

Q = ( I – XT(X XT) -1 X )  

X»P« = 0  
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minimization space
• q small
• m large
• many nnzs

minimization space
• q large
• m small
• few nnzs



Minimization candidates include

– CG & Chebyshev when A = AT

– GMRES & CGNR when A  AT

Constraints

– X »P0« = g      P0 Bc = B

– X »P« = 0      (P) Bc = 0

via  »P« = Q »Pi«   with     Q = ( I – XT(X XT) -1 X ) as   XQ = 0

Constraint Satisfying Space might be

QAP0 , (QA)2P0 , (QA)3P0 , (QA)4P0 , …

Solve  AP = 0
1) with minimization algorithm
2) in space satisfying constraints 



CG minimization

Lemma:  Let A be SPD and apply CG to 

Q Â Q  »P«  = Q Â Q »P0«

with 0 initial guess, then CG computes

where  Pi = P0 -  Pi

Proof.

Corollary: CG solution is unique
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GMRES minimization

Lemma:  Let A be nonsingular and apply GMRES to 

Q Â   »P«  = Q Â  »P0« (*)

with 0 initial guess, then GMRES computes

where Pi = P0 -  Pi

which is unique. 

Proof.

Define such that 

Use properties of GMRES applied to nonsingular system 

(**)

Pre-multiplication of (**) & associated Kyrlov space by

reveal equivalence with (*).
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aggregates
elasticity &bad 
aspect ratiosextended FE

Exploiting Energy Minimization’s Flexibility 

stretched meshes 
unstructured to structured mixed finite elements



Computational Modeling of Fracture
XFEM mesh

Classical FEM

• Mesh conforms to crack boundaries

XFEM

• mesh independent of crack geometry

• Cracks  “enriched” DOF with special basis 
functions to handle discontinuities/singularities

• use levelsets & 

• coordinates define  

 run standard energy minimization, but 

Use Ârr for aggregation & sparsity pattern

Use Arr for energy definition

Specialized Gauss-Seidel based smoother
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Numerical Results…

mesh complexity

302 1.673

602 1.815

902 1.65

1202 1.699

# dofs iters complexity

33K 20 2.01

218K 25 1.81

723K 29 1.91



Unstructured  Structured

Why? 

computational efficiency … on large parallel systems

• Overlay unstructured grid with structured grid.

• Coarse DOFs on structured mesh, interpolate 
from fine DOFs within rectangles.

• Interpolation weights found with energy 
minimization.



Unstructured  Structured

Au=f

A2e2=r2

A1e1=r1

Structured meshes

Unstructured mesh

domains Emin its

4  4 12

8 8 11

12  12 10

16  16 10

#DOFs

Unstructured 
AMG

Unstruct
/struct
AMG

SA Emin Emin

69185 77 
(1.95)

59 
(1.95)

31
(1.59)

277633 112 
(1.93)

84 
(1.93)

38 
(1.61)

 caveat:  unstr. is 3-level, unstr. to struct. is 2-level



Energy Minimization:
Plane Stress Linear Elasticity

2D: Iterations (Complexity)

3D: Iterations (Complexity)

100:1 stretching in x-direction
SA = smoothed aggregation multigrid
NSA = non-smoothed aggregation
NR = no rotational modes
EMIN = energy minimization

• Complexity  =
∑nnz(Ai) / nnz(A1)

• Measures expense to 
apply preconditioner.

• Smaller = less expensive.



Mixed Finite Elements
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Mesh Iters complexity

9 x 9 20 2.01

17 x 17 25 1.81

65 x 65 Xx Xx

257 x 257 29 1.91



Sparsity Patterns

Strength of Connection

Remove small Aij’s :   A   Â (no small entries)

Leads indirectly to P’s pattern,  

e.g. pattern(P)  pattern(|Â |*|Pconstant |)

AMG Builder
generous pattern, e.g.

pattern( |A |*|Pconstant |)
Pc

modes +  pattern 
based on large PcAMG BuilderP

add c-points based 
on large Pc ?
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Patterns Experiments

Plain Agg.

SA

Emin(1,1.0)

Emin(2,2.0)

Emin(3,3.0)

Emin(4,3.0)

Mesh Iters

9 x 9 20

17 x 17 25

65 x 65 Xx

257 x 257 29

fu  on stretched mesh



MueMat/ MueLu

Solve Galerkin System 
via a couple of 

Richardson iterations

MueLu

• New algorithms

• Variable block friendly

• Tpetra/Kokkos
multicore aware, templated types



Concluding Remarks

• Krylov minimization can generate “energy” minimizing 
prolongators/restrictors for symmetric & non-symmetric systems

– CG, GMRES

• Energy Minimization AMG flexibility

provides leverage 

– any coarsening

– any sparsity pattern

– any definition of energy

• Fracture + XFEM  ruins standard AMG, but  fixed by 

– Schur complement avoiding explicit formation

– Crack-conformal aggregates & sparsity patterns

levelsets   sparsity pattern                             
.  maintain discontinuities on coarse levels

F/C
coarsen

classic
AMG

geometric
MG

smoothed

aggregation


