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Our Exascale Efforts Focus
on Co-design
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 Key Co-Design capabilities
 Architectural Simulation Framework

 Pre-production, First-of-a-kind Testbeds

 Scalable R&D System Software

 Mantevo miniApplications

 Exascale Implications
 Sustained commitment of significant funding

 Requires the Long View >5 years out

—> time to influence Hardware Architectures



Which is Harder to change:
HW or SW?
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 Conventional Wisdom
 Hardware is difficult to change

 Software is easy to change

 For the Long View, Conventional Wisdom is wrong!
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MiniApps: Proxy and Proto



Representative Legacy app: CTH
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num_vars

do i = 1, num_tsteps

end do

do j = 1, num_vars

end do

compute 

Multi-MBytes

 Eulerian multi-material modeling application.

 3D, finite volume stencil computation.

 BSP with message aggregation (BSPMA). 3.2 MBytes

40 vars



CTH and miniGhost performance

6



miniGhost: over-decomposition 
task parallel implementation
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Task parallel: some representative task workloads

Computation Computation + MPI

Computation + BC Computation + BC + MPI

Data parallel
thread

MPI pe 2 MPI pe 3

MPI pe 0 MPI pe 1



miniGhost tp: Adding AMR

 Diffusion over the 3D domain with random initial conditions 
and reflective boundary conditions.
Two options:

 uniform refinement, or 
 refinement based on the boundary or volume of an object being 

moved through the mesh and changing size. So, for example, a shock 
front can be simulated by refining based on a sphere which starts 
small and grows in size as the problem advances.

 Refinement within blocks.
 A block is refined into 8 blocks.
 Neighbors must be within one level of refinement.
 Computation is self-contained within a block.
 Communication aggregated to BSP model.

 Excellent candidate for task parallelism version.
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Implications for Co-design at a 
System Architecture Level
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 Case Study
 Application – Task parallel implementation
 System Software – integrated support for asynchronous, adaptive 

threads
 Node Architecture – integrated support for light-weight threading
 System Architecture – Interconnect Fabric with high Radix routers

 We know that BSPMA Applications create congestion problems 
for high-radix topologies

 Hypothesis–If applications are Asynchronous, Task Parallel 
(ATP), supported through runtime system software and 
multithreaded processors, the congestion issues will dissipate



Concluding Thoughts

 The Multiple Dimensions of Co-Design
 HW: Node and System architecture

 SW: Application and System Software

 We need to rethink COTS and system balance
 Component performance

 Investment

 Platform costs

 R & D investments
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Backup Slides
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Exascale Hardware Challenges

Figure courtesy of Kunle Olukotun, 
Lance Hammond, Herb Sutter, and 

Burton Smith, 2004

 Left to the Invisible Hand
 Industry follows an 

evolutionary path focused on 
Peak Flops

 In the Era of Dennard Scaling 
our ad hoc approach to 
integration of MPPs with 
COTS microprocessors was 
acceptable

 With the end of Dennard
scaling, this is no longer able 
to meet DOE Mission 
Application Requirements
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Define and Develop the
Co-design Methodology for HPC

 Key Co-design Capabilities
 Mini Applications

 Development and evolution to 
represent mission needs

 HPC Architectural Simulators
 Flexible to accommodate

fidelity/speed tradeoffs

 Proxy Architectures
to explore advanced concepts
 Abstract machine models

 Advanced architecture testbeds

 Evolving representation of vendor
state of the art

Applications

Architectures

MiniApps

Proxy
Architectures

Adv. Arch.
Testbeds

HPC Arch.
Simulators
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Paths to Influence COTS Development

 Fund R&D Projects with Industry
 Initiate Fast Forward R&D Projects with Industry

 Patterned after Original ASCI Path Forward Program but improved

 National Laboratory Staff are assigned to collaborate with Industry 
Partners via Co-Design activities, Proxy Applications, Proxy Architectures, 
system software, etc.

 DOE is establishing R&D Projects with Micron Technology

 Explore SoC options for development of HPC COTS processors
 Active discussions with ARM Holdings and several SoC companies, 

including some “traditional” companies such as Nvidia and AMD
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Exascale Hardware Challenges
 We need to Motivate and Influence

Architectural Changes
 Processor Architectures

 System Architectures

 Our Investments are not only in Architectures
 We cannot just develop new Exascale

Architectures and Throw it over the wall to our 
application developers

 We need Hardware/Software Co-design

 Later talks describe DOE application investments

 The transition of the DOE Legacy Code base is 
another important challenge
 Also addressed by Applications talks

 Challenge will influence hardware thru co-design
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