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Summary

= Typically on Z, different wire array setups are used to optimize
specific spectral output for different wire array materials
= Soft x-ray from compact W arrays and dynamic hohlraums
= K-shell emission from mid-Z elements (increase diameter with 27)

= Keeping array mass and diameter fixed can more readily see
affect of wire material

= Pinch size changes considerably for different setups, with lower
Z (Al) having much larger stagnation diameters than high Z (W)

= Width of radiation pulse correlates strongly with pinch size
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Setup

= All shots use
= 65mm diameter
= ~2.5mg total mass
= 20mm height

= Wire number varies with
material due to availability

Matieral -- Diameter | Wire Number Hotter than
Al (2.0mg) [1] 13.51 pm 176 (outer) + 88 (inner) «|__optimal setup
Stainless Steel [2] 26 8.15 um 200 (outer) + 100 (inner) > Colder than
Cu [3] 29 10.35um 112 (outer) + 56 (inner) optimal sefup
W [4] 74 5.22 um 220 (outer) + 110 (inner) = Brightest z-pinch
soft x-ray source

1. D.J. Ampleford et al., presented at Radiation in High Energy Density Physics (2013), in preparation for Physics of Plasmas

2. D.J. Ampleford, presented at International Conference on Plasma Science (2010), submitted to Physics of Plasmas (2013)

3. B. Jones et al, presented at International Conference on Plasma Science (2009, 2010)

4. M.C. Jones et al., presented at International Conference on Dense Z-pinches (2009); in preparation for Review of Scientific Instruments




Low Z show significantly more structure in imploding shell
and larger shell width pre-stagnation

SS AI = 277eV monochromatic
2 By ) L A imaging pre-stagnation
of - ob j
of Lt
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g o 7 maintains clear
M 5 5 8 imploding shell
-10 Wt N . . .
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4 2 0 2 4 stagnation
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= Al wire array implosion
S 2 oe. is much more
£ o) disrupted, creating
much less defined shell
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Variation in pinch size and uniformity with material
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= All monochromatic images at 277eV
= Stagnation for Al is severely disrupted

=SS, Cuand W all show quasi-uniform plasma column with
small scale structures
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Pinch size directly correlates with x-ray pulse shape
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= X-ray pulse shapes vary s 20
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SS and W have very similar pulse shape

= For tightest pinches its
interesting to see how the 1.0 ﬂ
material affects the actual
pulse shape

—W
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= Power pulses are 0.4

normalized to peak power

0.2 1

Power (normalized)

0.0

= SSand W have identical 90 100 110 120
pulse shapes despite large Time (ns)
difference in Z




Higher Z materials are much more effective at
radiating soft x-rays

300 -

= Peak powers and yields are
much higher for higher Z
materials

= Al radiates just ~865kJ compared
to >2.0MJ for other materials
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Time (ns) = Stainless Steel is very effective
at radiating despite moderate Z

= Number of materials present
significantly reduces the effective
opacity
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Electron temperatures depend on convergence

= K-shell spectra provide _
—_ 4'5_ SS = | W Electron Temperature |

measures of electron > 4.0-

2 491

temperatures®s for Al, SS, Cu 3 35

] . S 307

=SS, with smallest pinch, S 25

achieves much higher = 2.0-

£ 291

temperature than other — =

. 1.04
materials 2] Cu Y

8 0.5-.

= Unfortunately temperatures W 0.0

10 15 20 25 30 35
can be dependent on Pinch Diameter (mm)

spectral range analyzed

o
o

1. D.J. Ampleford et al., presented at Radiation in High Energy Density Physics (2013), in preparation for Physics of Plasmas
2. D.J. Ampleford, presented at International Conference on Plasma Science (2010), submitted to Physics of Plasmas (2013)
3. B. Jones et al, presented at International Conference on Plasma Science (2009, 2010)
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kd/eV

kd/eV

Different plasma conditions can be inferred from analysis of
different spectral regions, indicating significant gradients
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K-shell power drops with atomic number
Non-thermal emission is ~fixed

= K-shell yield drops

considerably with increasing 1000+
) 1 Al = K-shell yield
atomic number ] o 'Best K-shell yield
1 A K-alpha (summed)

= Trend is very similar to trend in
the best performing setups

100 5

= Plasma temperature becomes 10+

insufficient for bright emission
= (Can also see trend in hot-
electron driven Ka-lines

= Drop with photon energy not as 0.1
pronounces as thermal lines

Radiated energy (kJ)

0 10 20 30
Photon Energy (keV)
= Consistent with CRE simulations

with hot-electron fraction

= Experiments underway to study
controlling Kot emission
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Summary

= Typically on Z, different wire array setups are used to optimize
specific spectral output for different wire array materials
= Soft x-ray from compact W arrays and dynamic hohlraums
= K-shell emission from mid-Z elements (increase diameter with 27)

= Keeping array mass and diameter fixed can more readily see
affect of wire material

= Pinch size changes considerably for different setups, with lower
Z (Al) having much larger than high Z (W)

= Width of radiation pulse correlates strongly with pinch size
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BACK UP




Calculations indicate Ka line emission scales well to
higher photon energies

1000 3
] Te = 3.5 keV (scaling)
i ® large-diameter array
100 = Te = 2 keV (scaling)
: ® small-diameter array
i o— Ebeam = 70 keV (scaling)
10 = cold K-alpha
= 3
X ]
N—r’ i <><>
o -
Q 9
01 7
00l +————+——"—"+" "ttt T—F
0 10 20 30 40 50 60

photon energy (keV)

Calculations by S.B. Hansen




Previous compact wire array data is consistent with
trends in powers and pulse shape observed here

= 20mm diameter arrays of W, Pt, SS, Gu, Cu
= ~6.0mg total mass, 10mm tall,

Wire [ 10-90% | 10 TWto | tom | Torr =
120 Material T Peak (ns) E/P
: (Z) (ns) | 7, (ns) (ns)
100 Al (13) 9.5 8.5 12.8 14.1
g 80 Cu (29) 4.8 6.9 12.2 16.6
g 60 AuAgCu | 65 9.0 14.8 16.9
= (47)
&
40 Stainless 7.2 8.7 9.9 14.6
- (26)
20 Pt (78) 5.2 6.7 6.8 12.4
0 Sl vt N 1 N 1 N
W (74) 57 6.4 7.8 12.5
80 90 100 110 120
Time (ns)
Comparison courtesy of M.E. Cuneo
Shot data from C. Deeney, T.J. Nash, R.B. Spielman, W.A. Stygar, D.B,. Sinars
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Higher Z arrays have faster risetime and smaller
pulse shape width

10 | 16 |
- @
9— 14_ _
E 8_ — @
é- = E 12_ N
s 7 £
% el E 10F 1
[ ®
8_ _
5 . ® |
B O
4 | | | | | L 6 | | I | | |
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Z Z

Data assembled by M.E. Cuneo
Shot data from C. Deeney, T.J. Nash, R.B. Spielman, W.A. Stygar, D.B,. Sinars
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Shots are extensively diagnosed with PCDs,
calorimeters, imagers, and spectrometers

= We routinely field up to 6 spectrometers on every shot,
covering a spectral range from 0.8 to 20 keV with ~ absolute
calibration, spatial & temporal resolution, and E/AE ~1000
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