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Summary 

 Typically on Z, different wire array setups are used to optimize 
specific spectral output for different wire array materials 
 Soft x-ray from compact W arrays and dynamic hohlraums  

 K-shell emission from mid-Z elements (increase diameter with Z) 

 

 Keeping array mass and diameter fixed can more readily see 
affect of wire material 

 

 Pinch size changes considerably for different setups, with lower 
Z (Al) having much larger stagnation diameters than high Z (W) 

 

 Width of radiation pulse correlates strongly with pinch size 
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Setup 

 All shots use 
 65mm diameter 

 ~2.5mg total mass 

 20mm height 

 Wire number varies with 
material due to availability 
 

Matieral Z Diameter Wire Number 

Al (2.0mg) [1] 13 13.51 µm 176 (outer) + 88 (inner) 

Stainless Steel [2] 26   8.15 µm 200 (outer) + 100 (inner) 

Cu [3] 29 10.35 µm 112 (outer) + 56 (inner) 

W [4] 74   5.22 µm 220 (outer) + 110 (inner) 

1. D.J. Ampleford et al., presented at Radiation in High Energy Density Physics (2013), in preparation for Physics of Plasmas 

2. D.J. Ampleford, presented at International Conference on Plasma Science (2010), submitted to Physics of Plasmas (2013) 

3. B. Jones et al, presented at International Conference on Plasma Science (2009, 2010) 

4. M.C. Jones et al., presented at International Conference on Dense Z-pinches (2009);  in preparation for Review of Scientific Instruments 
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Low Z show significantly more structure in imploding shell 
and larger shell width pre-stagnation 

 277eV monochromatic 
imaging pre-stagnation 

 

 Stainless steel 
maintains clear 
imploding shell 
immediately prior to 
stagnation 

 

 Al wire array implosion 
is much more 
disrupted, creating 
much less defined shell 
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Variation in pinch size and uniformity with material 

 All monochromatic images at 277eV 

 Stagnation for Al is severely disrupted 

 SS, Cu and W all show quasi-uniform plasma column with 
small scale structures 
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Pinch size directly correlates with x-ray pulse shape 

 X-ray pulse shapes vary 
significantly between the 
different experiments 
 FWHM varies from <4ns to >10ns 

 

 Very strong correlation 
between stagnated pinch size 
and radiation FWHM 

 

 Peak power also varies 
significantly 
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SS and W have very similar pulse shape 

 For tightest pinches its 
interesting to see how the 
material affects the actual 
pulse shape 

 

 Power pulses are 
normalized to peak power 

 

 SS and W have identical 
pulse shapes despite large 
difference in Z 
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Higher Z materials are much more effective at 
radiating soft x-rays 

 Peak powers and yields are 
much higher for higher Z 
materials 
 Al radiates just ~865kJ compared 

to >2.0MJ for other materials 

 

 Stainless Steel is very effective 
at radiating despite moderate Z 
 Number of materials present 

significantly reduces the effective 
opacity 
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Electron temperatures depend on convergence 

 K-shell spectra provide 
measures of electron 
temperatures1-3 for Al, SS, Cu 

 SS, with smallest pinch, 
achieves much higher 
temperature than other 
materials 

 Unfortunately temperatures 
can be dependent on 
spectral range analyzed 
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1. D.J. Ampleford et al., presented at Radiation in High Energy Density Physics (2013), in preparation for Physics of Plasmas 

2. D.J. Ampleford, presented at International Conference on Plasma Science (2010), submitted to Physics of Plasmas (2013) 

3. B. Jones et al, presented at International Conference on Plasma Science (2009, 2010) 
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Different plasma conditions can be inferred from analysis of 
different spectral regions, indicating significant gradients 
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K-shell power drops with atomic number 
Non-thermal emission is ~fixed 

 K-shell yield drops 
considerably with increasing 
atomic number 
 Trend is very similar to trend in 

the best performing setups  

 Plasma temperature becomes 
insufficient for bright emission  

 Can also see trend in hot-
electron driven Kα-lines 
 Drop with photon energy not as 

pronounces as thermal lines 

 Consistent with CRE simulations 
with hot-electron fraction 

 Experiments underway to study 
controlling Kα emission 
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Summary 

 Typically on Z, different wire array setups are used to optimize 
specific spectral output for different wire array materials 
 Soft x-ray from compact W arrays and dynamic hohlraums  

 K-shell emission from mid-Z elements (increase diameter with Z) 

 

 Keeping array mass and diameter fixed can more readily see 
affect of wire material 

 

 Pinch size changes considerably for different setups, with lower 
Z (Al) having much larger than high Z (W) 

 

 Width of radiation pulse correlates strongly with pinch size 
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BACK UP 
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Calculations indicate Kα line emission scales well to 
higher photon energies 
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Previous compact wire array data is consistent with 
trends in powers and pulse shape observed here 

 20mm diameter arrays of W, Pt, SS, Gu, Cu 

 ~6.0mg total mass, 10mm tall,  

Comparison courtesy of M.E. Cuneo 

Shot data from C. Deeney, T.J. Nash, R.B. Spielman, W.A. Stygar, D.B,. Sinars 
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Higher Z arrays have faster risetime and smaller 
pulse shape width 

 

Data assembled by M.E. Cuneo 

Shot data from C. Deeney, T.J. Nash, R.B. Spielman, W.A. Stygar, D.B,. Sinars 
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 We routinely field up to 6 spectrometers on every shot, 
covering a spectral range from 0.8 to 20 keV with ~ absolute 
calibration, spatial & temporal resolution, and E/DE ~1000  
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