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Stimulated Brillouin Scattering in silicon
nano-photonics
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What is stimulated Brillouin scattering? B i e L




Milestones in stimulated Brillouin scattering %
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Stimulated Brillouin scattering (SBS)

* Slow-/fast-light, long distance sensing applications, generation of
GHz phonons, lasing and amplification, isolator, etc.
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Why is SBS in silicon waveguide is important?



Why SBS in silicon waveguide?

Low cost and compatibility with CMOS technologies.

Nonlinear Effects in silicon waveguides

* Re{y®)}: Self-Phase Modulation, Cross-Phase Modulation,
Four-Wave Mixing

* Im{y®}: Two-Photon Absorption, Stimulated Raman
Scattering

* Two-photon absorption induced Free Carrier effect ()
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Silicon Waveguide
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Lin, et al., Opt. Express 15, 16604 (2007), Leuthold, et al., Nature Photon. 4, 535 (2010)

Why did we have hard time to observe SBS in silicon photonics?

« Strong confinement of both photons and phonons
 Good overlap between photon and phonon modes

« Strong optical forces

Tailorable stimulated Brillouin scattering at nanoscale silicon waveguides,
Shin, Qiu, Jarecki, Cox, Olsson lll, Starbuck, Wang, Rakich
Nature Comm. 4, 1944 (2013).
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Phonon Dissipation
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How did we demonstrate SBS in silicon wa\\/eguide?
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How did we demonstrate SBS in silicon? E
Yo

guided

Brillouin Active Membrane
(BAM) waveguide

Si;N, membrane
acts as conduit
for phonons.

Ir SIOLS

Phonons Phanons

Phaotons
Each slot acts as a

wideband phonon mirror.
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Strong photon-phonon interaction

« Structure dependent resonant

Excellent phononic
frequency

resonances over wide
range of frequency.

Free control of phonon structure 4

while optimizing photon waveguide .

A Light

What does our fabricated structure look like in real?
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Brillouin active section
Here 1s our device. Then how can we measure SBS nonlinearity?




How do we measure Brillouin nonlinearity?

A1 (wq)

Az (w3) . Asz(w3)
AToD waveguide > .
SRS As(w3z — Q) g
wy; —wq = () Ay(wz + Q) .
TE-like waveguide mode o
» Two-color pump-probe technique S
A % - Two pump fields and a probe field 8

S

) W1 W3 . Beating between two pump fields Al
2 Y v excites phonons in silicon waveguide. -
0 . €

Phonons impart a phase shift on the
probe field.

Nonlinear phase shift is detected
) , through heterodyne intgrferemetry.
How does this show up in our nonlinear measurément?

« SBS coherently interfere with Kerr
Shin, et al., Nature Comm. 4, 1944 (2013) effect and free-carrier effect.




What does SBS signal look like?

Heterodyne interfermetry| [a > Stokes | [b > Anti-Stokes
8 — Fitting
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Can Brillouin susceptibility be engineeredm

Heterodyne two-color pump-probe measurement
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How about SBS gain or depletion?

y transferpump

signal

: .. ' Stokes

Coupling efficiency: ~ 8 dB / facet ! —
I (o] ata

Propagation loss: ~ 7 dB/cm 8 100 g '
1 © B
1 = =
| g 06 E 0.97
N g

Pump power: ~ 20 mW I T © 0.94
1 & 1.03 N

Effective length: ~ 2.1 mm £ £ oo
| o o

_ o 2 1.00 z

Gain coefficient; ~ 2800 W-'m-" :
: 56 565 5.7 5.75 56 565 5.7 575
I RF frequency (GHz) RF frequency (GHz)
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Shin, et al., Nature Comm. 4, 1944 (2013)



Signal RF power (dBm)

Can we enhance the gain?
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Conclusion

\_

First-ever demonstration chip-scale Forward
Stimulated Brillouin Scattering (SBS) in
silicon waveguides.

1,000 times stronger SBS than any known
forward SBS system.

Tailorable nonlinear effects from 1 GHz — 24
GHz.

Analysis of the coherent interference of Kerr,
free-carrier, and SBS nonlinearities.

Unprecedented tailorability of phononic
resonances.

Tailorable stimulated Brillouin scattering at nanoscale silicon waveguides,
H. Shin, etc. Nature Comm. 4, 1944 (2013).
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- Device Fabrication - Multi-Physics Modeling

- Experimental Studies - Nonlinear Dynamics
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Thank you
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Dr. Heedeuk Shin
- heedeuk.shin@gmail.com

Prof. Peter T. Rakich
- peter.rakich@yale.edu
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Stimulated Brillouin scattering (SBS)

* Scattering of light from acoustic waves.

é )
O)p k B K ........... >
Stokes SBS  Anti-Stokes SBS \ < /
Q: Phonon angular frequency  n: Refractive index
— 9
Q= 27“”4 v: Sound velocity o: Optical angular frequency
How does backward-SBS work?
Pump Stokes
Wave IDP }z Wave 1 Electrostrictive forces
> compress medium
o, k, o, k, N
Electrostriction:
Y
Q= ((Dp —(Ds)
» Strong coupling requires large optical forces. From dynanie
response.

 Tight phonon confinement. p




SBS gain coefficient

|
) |
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4 )

 Extracted forward SBS gain: G = 2750 [1/m/W]
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- Effective propagation length: L 4 = 2.1 mm
*Geometry enhanced FSBS coefficient: gg ~ 2.4x10-10 [m/W]

*Phonon resonance Q-factor: Q ~ 300 (FWHM Av = 19 MHz) 16
\_ y




Gain spectrum measurement

RF frequency (GHz) RF frequency (GHz)
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Stokes SBS

Anti-Stokes SBS

SBS gain spectrum
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Heterodyne two-color pump-probe apparatus.

4 )
____________ |
|
Wp-LY2, wp+¥2 ﬁ: 0p-£22, Wp+L2
w 4 | pr, wpr+ O 7
ar I __ = _____ = ____ _! pr: “pr i
—— Wy, Wpr+) =
X — | = =
= \O
PC
1536 nm ———= (a0
—
&U)pr o
wpr+A RF-PM / SA @\
PC
RFD 8
- g C
RFG : radio frequency generator AOM : acousto-optic modulator
IM : intensity modulator RFD : radio frequency driver
BC : DC bias controller IF: interference filter
1
PC: polarization controller RF-PM : RF power meter ?
WDM : wavelength division multiplexer SA: spectrum analyzer




« SBS signal
N
Zsps = Lspsiker (L)/Po
2
G Q /20
= 2B Q —Q-iQ /20 sps T (27(3) +7/1(3i3)P0)Ltotal
- " " J

3 o ..
ylgvz/M Contribution from four-wave mixing

5 o Y :
4 1gc) F, Contribution from free-carrier dispersion

Brillouin nonlinearities are quantified with relative Kerr nonlinearities.

Analysis of Brillouin signal

a o Stokes
. — Fitting

Power (a.u.)

6.18
Frequency (GHz

6.165 6.18 6.195
Frequency (GHz)

6.165

f Kerr Nonlinearity Free-carrier dispersion )
Intrinsic Si Nonlinearity: Stokes
n,=45x10" [m*/w] yQP /278, =0.03
NL Waveguide Coefficient: Anti-Stokes
v =188[m W] yOP [2y8) =028

\_ J

R. Dekker, et al., J. Phys. D: Appl. Phys. 40, R249 (2007).
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Line-Shape Analysis:

G, /7. =10.43

» G, =1960[m W]

0 =1561




Analysis of Brillouin responses

N

Normalized
output signal
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d 16
- — — Radiation Pressure (RP) =
— == ES and RP combined | 4 fﬁ_
-— - ..:I____
T - .
12 =
1 1 1 T T T y
€ __ == Theory 19
O Measurement %
o - 6 =
39 i
o —_ —_— T 3 :
o ¢ o
1 f 1 f 1 1 f O
f | 1
1.28 3.72 6.18 870 1131 1383 16.30

Resonant frequency (GHz)

o Anti-Stole:
g - Fitting

a o Stokes b
— Fitting

Power (a.u.)

FE -
Frequency (GHz)

618
Frequency (GHz}

6.165 61895 6.165
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= ‘ySBS,d‘/IOOOX 0

f‘)/SBS,e

 Efficient transduction 1-18 GHz
frequencies.

* Resonances expected > 20 GHz.
(limited by equipment)

* High f*Q product

* Excellent agreement between theory
and experiment.
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Fabrication process

./ Resist CMP + wet etch
B ' Si -
Deep UV lithography

Deep UV lithography
+ DPS etch + Resist strip

+ Plasma etch Resist |

: —
Waveguide I

LPCVD deposit SiN 49% HF etch with Tergitol

./ﬁ Air slot /
N SisN,

£ N )




