
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Photos placed in horizontal position
with even amount of white space

between photos and header

Preconditioners for Large Scale-free Graphs

Preconditioning’13, Oxford, June 19-21 2013

Erik Boman, Kevin Deweese, Richard Lehoucq

SAND2013-4800C

Background

 Large graphs are
pervasive

 WWW, social networks

 Often scale-free

 Power-law degree distr.

 Small diameter

 Very different from PDE
discretizations

 Need to adapt scientific
computing methods and
tools?

BGP graph (credit: Ross Richardson, Fan Chung)
http://math.ucsd.edu/~fan/graphs/gallery

Our Focus: Graph Laplacians

 The combinatorial Laplacian of a graph G is the sparse matrix
L(G) = D-A, where
 A is the adjacency matrix of G

 D= diag(d) contains the degrees of the vertices in G

 We wish to:
 Solve linear systems: Lx=b

 Compute the extreme eigenpairs: Lx = λx

 Applications:
 Network analysis, community detection

 Also used in spectral partitioning and ordering

3

More Laplacians

Several variations are of interest:

 Combinatorial Laplacian: LC = D-A

 Normalized Laplacian: LN = D-1/2 (D-A) D-1/2

 Signless Laplacian: LS = D+A

 We only consider the unweighted case (all edges equal)
 But some applications have edge weights.

 Laplacian definition and algorithms generalize naturally.

4

Preconditioners

 Graph Laplacians are SPSD. Typically singular but with small,
known null-space.

 Little work specifically for scale-free graphs.

 Baseline is “black-box” algebraic preconditioners:
 Jacobi (diagonal)

 Symmetric Gauss-Seidel (SGS)

 Incomplete Cholesky (IC)

 Traditional multigrid does not work well
 Recent progress: LAMG (Livne & Brandt, 2012)

5

Support-Graph Preconditioners

Core Idea: Construct a sparser subgraph that is a good spectral
approximation, use this as preconditioner.

 Typically, use spanning tree + “a bit more”

 First proposed by Vaidya (‘90) but not published

 Described and analyzed in [Bern et al. ‘06] and implemented
by [Chen and Toledo, ‘03]

 Support theory extensions [B., Hendrickson, ‘03]

 Much recent work in theoretical CS community
 Near optimal solvers by Spielman et al. and also by Koutis, Miller et al.

 However: mostly theory, very few experiments

 No software (except one Matlab code by Koutis)

6

Max-weight Spanning Tree (MST)

 Example:

 Efficient algorithms (Kruskal, Prim) run in O(n log m) time

 Factor with no fill

 Other trees may be better, but more expensive to find
 Low-stretch spanning trees

 For small-world graphs, any tree has low stretch

b

a

c d

ei

h g f

9
5 6

4

3

1
9

1012

11
7

2

5

2

MSF(k): A New Simple Preconditioner

 Problem: MST is often not a good preconditioner, need to add
more edges.

 Two main strategies:
 A) Carefully add edges such that fill in Cholesky factor is minimal

 B) Add most “important” edges without regard to fill

 Both result in very complicated algorithms!

 Simple idea: MSF(k) – Union of k spanning trees (forests)
 M=0

 For i=1:k

 Find T= MST(G); G=G\T; M=M+T;

 End

Knob: Better (more expensive) preconditioner as k increases

8

Test Graphs

 Real-world graphs/mat rices from public sources:
 UF and SNAP collections

 Symmetrized (if needed), largest component

9

Matrix/graph Rows #nonzeros

USpowergrid 5 K 18 K

Enron 68 K 507 K

Dblp-2010 226 K 1433 K

Flickr 820 K 9830 K

 Test graph: USpowergrid (5K rows)

 PCG in Trilinos/Belos

 Tol = 1e-8 (rel. residual)

Precond. Iter. Memory
(rel.)

Time(s
etup)

Time(sol
ve)

Time(to
tal)

None 883 1.0 0 .15 .15

Jacobi 431 1.0 0 .11 .11

MSF(1) 218 1.2 .02 .08 .10

IC(0) 186 1.5 .01 .07 .08

MSF(2) 59 1.9 .03 .03 .06

MSF(4) 8 2.8 .04 .01 .05

t

Results: Combinatorial Laplacian

 Test graph: enron (68K rows)

 PCG in Trilinos/Belos

 Tol = 1e-8 (rel. residual)

Precond. Iter. Memory
(rel.)

Time(se
tup)

Time(sol
ve)

Time(to
tal)

None 2263 1.0 0 11.3 11.3

MSF(3) 46 2.8 3.5 0.8 4.3

MSF(2) 51 1.9 1.3 0.8 2.1

Jacobi 194 1.0 0 1.9 1.9

IC(0) 171 1.5 0.0 1.0 1.0

MSF(1) 93 1.2 0.1 0.8 0.9

t

Results: Combinatorial Laplacian

 Test graph: enron (68K rows)

 PCG in Trilinos/Belos

 Tol = 1e-8 (rel. residual)

Precon
d.

Iter. Memo
ry
(rel.)

Time(s
etup)

Time(
solve)

Time(t
otal)

none 189 1.0 0 0.4 0.4

IC(0) 166 1.5 0.1 0.5 0.6

MSF(1) 93 1.2 0.0 0.3 0.3

MSF(2) 54 1.9 1.7 0.5 2.2

MSF(3) 47 2.8 4.3 0.6 4.9

t

Results: Normalized Laplacian

Eigensolvers

 We use the Anasazi package in Trilinos
 Baker, Hetmaniuk, Lehoucq, Thornquist

 Compare 4 algorithms:
 Block Davidson (BD)

 Davidson 1975

 Block Krylov Schur (BKS)

 Stewart 2000

 LOBPCG

 Knyazev 2001

 Implicit Riemannian Trust-Region (IRTR)

 Baker & Gallivan 2006

 We use block size = nev (#eigenvalues)
 Except for BKS where 1 works better

 Preconditioning not supported in Krylov-Schur 13

 Test graph: enron

 Nev = blocksize = 10 (BKS: blocksize=1)

 Tol = 1e-5 (absolute)

 64 cores

Method Lapl. Prec. Matvec. Total time

BKS Comb. >50000 --

BD Comb. Jacobi >50000 --

IRTR Comb. Jacobi 18630 33.7

LOBPCG Comb. Jacobi 5210 18.1

BD Norm. 122500 238.3

IRTR Norm. 6430 7.7

LOBPCG Norm. 2710 7.3

BKS Norm. 694 2.8

t

Comparison of Eigensolvers

 Test graph: Dblp-2010

 Nev = blocksize = 10 (BKS: blocksize=1)

 Tol = 1e-5 (absolute)

 64 cores

Method Lapl. Prec. Matvec. Total time

BD Comb. Jac. >50000 --

LOBPCG Comb. Jac. * *

BKS Comb. 11390 114.3

IRTR Comb. Jac. 18490 82.8

BD Norm. >50000 --

IRTR Norm. 11460 36.2

LOBPCG Norm. 4040 27.8

BKS Norm. 1491 8.8

t

Comparison of Eigensolvers

 Test graph: enron_bsl (67K rows, 507K nonzeros, 1 connected component)

 Solver=LOBPCG

 Nev = blocksize = 5

 Tol = 1e-5 (absolute)

Precon
dition

Lapl. Iter. Matvec. Setup
time

Iterate
time

Total
time

None Comb. 6896 34505 - 564.8 564.8

Jacobi Comb. 375 1890 0.0 54.3 54.3

IC(0) Comb. 217 1100 0.1 32.0 32.1

SGS Comb. 155 780 0.0 21.4 21.4

MSF(1) Comb. 125 630 1.9 13.2 15.1

MSF(3) Comb. 44 245 8.2 6.5 14.7

MSF(2) Comb. 53 270 3.3 6.2 9.5

t

Preconditioning Results: Combinatorial Laplacian

 Test graph: enron_bsl (67K rows, 507K nonzeros, 1 connected component)

 Solver=LOBPCG

 Nev = blocksize = 5

 Tol = 1e-5 (absolute)

Precond. Lapla
cian

Iter. Matvec. Setup
time

Iterate
time

Total
time

IC(0) Norm. 270 1020 0.1 37.4 37.5

None Norm. 194 1005 0 25.8 25.8

MSF(3) Norm. 34 195 18.9 6.5 25.4

MSF(2) Norm. 42 215 7.9 6.2 14.1

MSF(1) Norm. 102 515 2.0 10.7 12.7

SGS Norm. 87 440 0.0 11.8 11.8

t

Preconditioning Results: Normalized Laplacian

Conclusions

 Computations on scale-free graphs are different than PDE
discretizations
 Graph-based preconditioners make sense on such graphs

 MSF(k) is a simple but effective preconditioner
 K=2 may work better than k=1, at least on small problems

 Normalized Laplacians are computationally easier

 Preconditioning is essential for combinatorial Laplacian
 Also helps a bit for normalized Laplacian

 Eigensolver: BKS best for normalized Laplacian
 No preconditioning needed for normalized problems?

 No clear winner among {BKS, LOBPCG, IRTR} for combinatorial

 Work in progress: Larger problems on parallel computers
 Need to revisit preconditioners (domain decomposition) 18

Extra Slides

19

 100 x 100 regular grid (toy problem)

 PCG

 Tol = 1e-6 (residual)

Precond. Iter. Memory
(rel.)

Flops(setu
p)

Flops(sol
ve)

Flops(tot
al)

Jacobi 345 1.0 0 19.9M 19.9M

IC(0) 146 1.6 0.1M 16.2M 16.3M

MSF(1) 186 1.4 0.05M 16.6M 16.6M

MSF(2) 13 4.5 23.2M 5.2M 28.4M

MSF(3) 4 5.1 29.5M 1.4M 30.8M

Cholesky 1 5.1 29.9M 0.4M 30.3M

t

Results: 2D Grid

