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Progress report on Z gas puff source development

 We have commissioned a Sandia‐operated gas puff capability on Z

 Numerical simulations are being used to design Z experiments

 Initial gas puff shots produced 250‐400 kJ of Ar K‐shell emission

 The plasma conditions produced on Z are studied using time‐gated 
spectroscopy and self‐emission imaging

 We are starting to use the experimental data to test and improve 
the numerical simulations
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Z produces the brightest laboratory soft x‐ray sources
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Wire arrays and gas puffs are used to access different 
regions of the spectrum
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* D.J. Ampleford,
PPPS 2013, 1A-5
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Supersonic nozzle provides a column of gas which is 
magnetically imploded by the Z pulsed power generator

 Azimuthal symmetry is desired for best comparison of experiment and 
numerical modeling:  no cathode grid is fielded, nozzle is not recessed

 Center jet capability is demonstrated, will be studied on Z in future work
 M. Krishnan et al., RSI 84, 063504 (2013) discusses the Z system development
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We have established gas puff capability on refurbished Z
 2012‐2013:  5 Ar and 1 Kr shots, first gas puffs on Z since 2006
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Numerical models are being used to design experiments 
and benchmarked post‐shot to gain physics insight

 Cold gas flow models may be 
validated using experimental 
interferometer data

 Benchmarked simulated 
profiles can be used to 
initiate MHD simulations

 Tabulated atomic data
are used to estimate
K‐shell x‐ray outputs

C.A. Jennings, SNL, GORGON

 Pre‐shot NRL modeling [Thornhill et al., HEDP 8, 197 (2012)] 
was consistent with SNL Gorgon simulations (Jennings)
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and benchmarked post‐shot to gain physics insight
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 Pre‐shot NRL modeling [Thornhill et al., HEDP 8, 197 (2012)] 
was consistent with SNL Gorgon simulations (Jennings)
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3D Gorgon (SNL) and 2D Mach2 RMHD (NRL) models 
predicted similar yields, but with different trends

 Unknown current loss behavior is a concern
 Trend to increasing yield with mass seen in 1D and 2D models 

could result from neglecting 3D plasma motion at stagnation

Gorgon, C.A. Jennings
• 3D resistive MHD
• Eulerian grid
• Tabulated emissivity/ 
opacity (S.B. Hansen)

• Single-group radiation 
diffusion

Mach2
[J.W. Thornhill et al., 
HEDP 8, 197 (2012)]
• 2D r-z resistive MHD
• Quasi-Lagrangian
• Tabulated CRE 
• Probability of escape/ 
on-the-spot



10

Modeling separate measurements of the same nominal gas 
profile indicated ~10% variability in K‐shell yield

 Detailed instability growth varies for each run
 Including a current/feed loss model based on initial gas puff shots, 

obtaining 300‐500 kJ Ar K‐shell yields is plausible

Gorgon, C.A. Jennings
• 3D resistive MHD
• Eulerian grid
• Tabulated emissivity/ 
opacity (S.B. Hansen)

• Single-group radiation 
diffusion

Mach2
[J.W. Thornhill et al., 
HEDP 8, 197 (2012)]
• 2D r-z resistive MHD
• Quasi-Lagrangian
• Tabulated CRE 
• Probability of escape/ 
on-the-spot

85 kV
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Modeling suggests that higher relative middle shell mass 
will help to stabilize magnetic Rayleigh‐Taylor

 Density map resolution affects modeled yield
 1 mg/cm total mass, 1:1.6 outer:inner shell mass ratio chosen for 

initial Z experiments at 80‐85 kV Marx charge

Gorgon, C.A. Jennings
• 3D resistive MHD
• Eulerian grid
• Tabulated emissivity/ 
opacity (S.B. Hansen)

• Single-group radiation 
diffusion

Mach2
[J.W. Thornhill et al., 
HEDP 8, 197 (2012)]
• 2D r-z resistive MHD
• Quasi-Lagrangian
• Tabulated CRE 
• Probability of escape/ 
on-the-spot

85 kV
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We have reestablished Ar K‐shell sources on Z

 Additional source optimization and reproducibility studies are 
needed on Z

2000 2005 2010

275 kJ of Ar K-shell radiation was 
demonstrated on Z with L3 1234 8 cm nozzle
[H. Sze et al., PoP 8, 3135 (2001)]

Z refurbishment

350 kJ Ar K-shell measured on Z 
using L3 nozzle [C. A. Coverdale]

>3 keV yield Marx charge
250 kJ ± 15% 70 kV
400 kJ ± 25%* 80 kV
~200 kJ 85 kV**
* Poor power/yield data return
**MITL arc

SNL/AASC system 
development
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Ar on Z is a very efficient K‐shell radiation source

 >30% of the total radiation is emitted in the K shell
 Current losses are significant in the convolute and perhaps feed

70 kV Marx charge
1:1.6 outer:middle shell mass
0.8 mg/cm

650 kJ total 
radiated yield

250 kJ 
>3 keV
yield

MITL current

Load 
current
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Broadband time‐integrated x‐ray spectrum is measured

 Same Ar K‐line spectrum measured with KAP and Quartz crystals
 400 kJ ± 25% at >3 keV is constrained by only one bolo this shot

Quartz (CRITR)

KAP

Quartz
Photon 
energy 
range (keV)

Spectral
uncertainty 
(%)

1-2 70
2-3 35
3-5 25
5-8 35

8-10 45
10-20 90

80 kV Marx charge
1:1.6 outer:middle

mass ratio
1 mg/cm total mass

Bolometer

PCD
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High achieved Te allows efficient Ar K‐shell emission on Z

 Time‐gated, radially‐resolved 
spectra are measured on Z

 60 cm/s (=2) inferred from
Ar He‐ Doppler splitting

 Te~2‐3 keV from Ar Ly‐/
He‐+IC ratio near peak power
 Similar Te from time‐integrated 

free‐bound continuum slope

60 cm/s
Doppler 
velocity

Te~2-3 keV
from line 
ratio
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Uniform plasma model cannot explain observed line ratios
 Line ratios are measured as a 

function of time

 Ratios are calculated assuming 
a uniform plasma column
 Apruzese et al., JQSRT 57, 41 (1997)
 Added finite Ti affecting opacity
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Uniform plasma model cannot explain observed line ratios
 Compare the measured ratios 

with calculations just before 
peak x‐ray power
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Uniform plasma model cannot explain observed line ratios
 Compare the measured ratios 

with calculations just before 
peak x‐ray power

 There is no solution for plasma 
conditions that match both
 and  line ratios
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Data Model

Ly/He+IC 1.70 ± 10% 1.57

Ly/He+IC 0.95 ± 10% 1.03

PK (TW/cm) 18 ± 50% 22

Mass 
(mg/cm) 1.0 ± 0.1 1.09

Cold, dense outer layer can attenuate He‐, affecting ratios

 This model [J. P. Apruzese] 
includes collisional‐radiative
equilibrium in each zone

 Radiation transport 
calculation determines the 
emerging spectrum

 Higher He‐ opacity modifies 
the  line ratio, allowing for a 
consistent fit

 Measured line ratios 
constrain the plasma 
properties in the core and 
blanket
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Data Model

Ly/He+IC 1.70 ± 10% 1.57

Ly/He+IC 0.95 ± 10% 1.03

PK (TW/cm) 18 ± 50% 22

Mass 
(mg/cm) 1.0 ± 0.1 1.09

Solution is not unique, can admit a ‘hollow’ emission profile

Data Model

Ly/He+IC 1.70 ± 10% 1.59

Ly/He+IC 0.95 ± 10% 1.01

PK (TW/cm) 18 ± 50% 33

Mass 
(mg/cm) 1.0 ± 0.1 1.09
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Model: core only Model: core and blanket

He- Ly-

He- Ly-

Opacity in the blanket has a strong effect on He‐ emission
 Only ~10% effect on net K yield for Ar, which has strong Ly‐
 Opacity may be more harmful to yield for predominantly He‐

radiators (e.g. Kr gas puffs)
 In both models, 60‐70% of the mass is in the outer blanket
 More mass in the hot core could improve Ar K‐shell yield

He-

Ly-

He- Ly-
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Stagnating plasma exhibits hollow structure and zippering

 Limb brightening observed in pinhole imaging at 277 eV, 528 eV, 
and >3 keV suggesting a hot, dense annulus in the plasma column

 Pinch zippers from cathode to anode
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Z experimental data may now be used to validate the 
numerical models and improve simulation capability

 Simulated zippering in 
the wrong direction, 
from anode to 
cathode:  initial 
(unknown) current 
path may be incorrect

 Simulation does not 
show hollow plasma 
structure at 
stagnation:  plasma 
parameters in 
imploding shell may 
be inaccurate

Mach2
2D RMHD
log density
contours

R (cm)

Z 
(c

m
)

-12.5 ns

-5 ns

-2.5 ns

0 ns

+5 ns

+2.5 ns
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Electron temperature is too high in Mach2 2D RMHD model

 Ar Ly‐ turns on early 
in model, and exceeds 
Ar He‐ well before 
stagnation (e.g. ‐5 ns)

 Could be the result of 
the on‐the‐spot 
radiation opacity 
model, which may 
tend to trap radiation 
locally and retain too 
much internal energy

Experiment Simulation
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Summary
 Z gas puffs have been designed with the aid of RMHD modeling
 Bright Ar K‐shell emission is produced on Z with 250‐400 kJ yields
 An initial study of the stagnating plasma structure suggests that 

a cold, dense blanket surrounds the hot core
 Future work will seek to understand and to optimize gas puffs

 Continue to study the structure in the stagnating plasma and the role of 
opacity in affecting line ratios and yield

 Vary the radial mass distribution, including assessment of a center jet, to 
stabilize magnetic Rayleigh‐Taylor and control final plasma conditions

 Understand the energy coupling to the plasma and current losses
 Measure the initial current path and early time implosion dynamics in 

order to validate simulations early in the pinch evolution
 Compare numerical models to understand differences in trends
 Kr 12 cm diameter implosions (D. J. Ampleford/C. A. Jennings)

Ar 12 cm diameter long pulse and central jet (A. J. Harvey‐Thompson)
Deuterium gas puffs (P. F. Knapp)


