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Progress report on Z gas puff source development

= We have commissioned a Sandia-operated gas puff capability on Z
= Numerical simulations are being used to design Z experiments
= |nitial gas puff shots produced 250-400 kJ of Ar K-shell emission

= The plasma conditions produced on Z are studied using time-gated
spectroscopy and self-emission imaging

= We are starting to use the experimental data to test and improve
the numerical simulations




Z produces the brightest laboratory soft x-ray sources
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Wire arrays and gas puffs are used to access different
regions of the spectrum
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Supersonic nozzle provides a column of gas which is
magnetically imploded by the Z pulsed power generator

Gas flow

Anode wire mesh

Concentric supersonic
gas nozzles

Power feed gap -

Gas plena
and flying
coil valves

Azimuthal symmetry is desired for best comparison of experiment and
numerical modeling: no cathode grid is fielded, nozzle is not recessed

Center jet capability is demonstrated, will be studied on Z in future work
M. Krishnan et al., RSI 84, 063504 (2013) discusses the Z system development




We have established gas puff capability on refurbished Z
= 2012-2013: 5 Ar and 1 Kr shots, first gas puffs on Z since 2006

Nozzle fabrication and assembly

Mass profile characterization
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Numerical models are being used to design experiments
and benchmarked post-shot to gain physics insight

Cold gas flow models may be
validated using experimental
interferometer data

Benchmarked simulated
profiles can be used to
initiate MHD simulations

Tabulated atomic data
are used to estimate
K-shell x-ray outputs

C.A. Jennings, SNL, GORGON

Pre-shot NRL modeling [Thornhill et al., HEDP 8, 197 (2012)]
was consistent with SNL Gorgon simulations (Jennings)




Numerical models are being used to design experiments
and benchmarked post-shot to gain physics insight

= Cold gas flow models may be Simulation
validated using experimental
interferometer data

= Benchmarked simulated
profiles can be used to
initiate MHD simulations

_________

= Tabulated atomic data
are used to estimate
K-shell x-ray outputs

Interferometer

C.A. Jennings, SNL, GORGON

= Pre-shot NRL modeling [Thornhill et al., HEDP 8, 197 (2012)]
was consistent with SNL Gorgon simulations (Jennings)




3D Gorgon (SNL) and 2D Mach2 RMHD (NRL) models
predicted similar yields, but with different trends
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= Unknown current loss behavior is a concern

Gorgon, C.A. Jennings

3D resistive MHD

 Eulerian grid

» Tabulated emissivity/
opacity (S.B. Hansen)

* Single-group radiation
diffusion

Mach?2

[J.W. Thornhill et al.,

HEDP 8, 197 (2012)]

2D r-z resistive MHD

» Quasi-Lagrangian

» Tabulated CRE

* Probability of escape/
on-the-spot

" Trend to increasing yield with mass seen in 1D and 2D models
could result from neglecting 3D plasma motion at stagnation




Modeling separate measurements of the same nominal gas
profile indicated ~10% varlablllty in K-shell y|eId
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= Detailed instability growth varies for each run
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3D resistive MHD
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» Tabulated emissivity/
opacity (S.B. Hansen)

* Single-group radiation
diffusion

Mach?2

[J.W. Thornhill et al.,

HEDP 8, 197 (2012)]

2D r-z resistive MHD

» Quasi-Lagrangian

» Tabulated CRE

* Probability of escape/
on-the-spot

* Including a current/feed loss model based on initial gas puff shots,
obtaining 300-500 kJ Ar K-shell yields is plausible




Modeling suggests that higher relative middle shell mass
will help to stabilize magnetic Rayleigh-Taylor
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= Density map resolution affects modeled yield P

= 1 mg/cm total mass, 1:1.6 outer:inner shell mass ratio chosen for
initial Z experiments at 80-85 kV Marx charge




We have reestablished Ar K-shell sources on Z

o 3 keV yield \Y/ h
275 kJ of Ar K-shell radiation was

demonstrated on Z with L3 1234 8 cm nozzle 250 kJ £15% 70 kV
[H. Sze et al., PoP 8, 3135 (2001)] 400 kJ + 25%* 80 kV
~200 kJ 85 kV**
350 kJ Ar K-shell measured on Z * Poor powerlyield data return
using L3 nozzle [C. A. Coverdale] **MITL arc
Z refurbishment /

SNL/AASC system
development

. .

2000 2005 2010

= Additional source optimization and reproducibility studies are
needed on Z




Ar on Z is a very efficient K-shell radiation source
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= >30% of the total radiation is emitted in the K shell
= Current losses are significant in the convolute and perhaps feed




Broadband time-integrated x-ray spectrum is measured
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= Same Ar K-line spectrum measured with KAP and Quartz crystals
= 400 kJ = 25% at >3 keV is constrained by only one bolo this shot
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High achieved T, allows efficient Ar K-shell emission on Z
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microchannel X-ray
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Elliptically
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source

4m
source-
to-crystal

Time-gated, radially-resolved
spectra are measured on Z

60 cm/us (n=2) inferred from
Ar He-o. Doppler splitting

T,~2-3 keV from Ar Ly-a/
He-o+IC ratio near peak power

= Similar T, from time-integrated
free-bound continuum slope




High achieved T, allows efficient Ar K-shell emission on Z
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Uniform plasma model cannot explain observed line ratios
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O35 "0 5  =Apruzeseetal, JQSRT 57, 41 (1997)

Time (ns) = Added finite T, affecting opacity
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Uniform plasma model cannot explain observed line ratios
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Uniform plasma model cannot explain observed line ratios
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Cold, dense outer layer can attenuate He-a, affecting ratios

0O 05 10 15
R (mm)

Data Model
Lyo/Heo+IC|1.70 £ 10%| 1.57
LyB/Hep+IC |0.95 + 10%| 1.03
P (TW/cm) | 18 +50%| 22
Mass 1.0+0.1 | 1.09
(mg/cm)

This model [J. P. Apruzese]
includes collisional-radiative
equilibrium in each zone

Radiation transport
calculation determines the
emerging spectrum

Higher He-o opacity modifies
the a line ratio, allowing for a
consistent fit

Measured line ratios
constrain the plasma
properties in the core and
blanket




Solution is not unique, can admit a ‘hollow’ emission profile
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Opacity in the blanket has a strong effect on He-a emission

= Only ~10% effect on net K yield for Ar, which has strong Ly-a

= QOpacity may be more harmful to yield for predominantly He-a
radiators (e.g. Kr gas puffs)

= |n both models, 60-70% of the mass is in the outer blanket
= More mass in the hot core could improve Ar K-shell yield

Model: core only Model: core and blanket
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Stagnating plasma exhibits hollow structure and zippering
-4 .4 ns -1.2ns +1.6 ns +4.5 ns
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= Limb brightening observed in pinhole imaging at 277 eV, 528 eV,
and >3 keV suggesting a hot, dense annulus in the plasma column

= Pinch zippers from cathode to anode




/ experimental data may now be used to validate the
numerical models and improve simulation capability
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Simulated zippering in
the wrong direction,
from anode to
cathode: initial
(unknown) current
path may be incorrect

Simulation does not
show hollow plasma
structure at
stagnation: plasma
parametersin
imploding shell may
be inaccurate




Electron temperature is too high in Mach2 2D RMHD model
Experiment Simulation
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Summary

Z gas puffs have been designed with the aid of RMHD modeling
Bright Ar K-shell emission is produced on Z with 250-400 kJ yields

An initial study of the stagnating plasma structure suggests that
a cold, dense blanket surrounds the hot core

Future work will seek to understand and to optimize gas puffs

= Continue to study the structure in the stagnating plasma and the role of
opacity in affecting line ratios and yield

= Vary the radial mass distribution, including assessment of a center jet, to
stabilize magnetic Rayleigh-Taylor and control final plasma conditions

= Understand the energy coupling to the plasma and current losses

= Measure the initial current path and early time implosion dynamics in
order to validate simulations early in the pinch evolution

= Compare numerical models to understand differences in trends

= Kr 12 cm diameter implosions (D. J. Ampleford/C. A. Jennings)
Ar 12 cm diameter long pulse and central jet (A. J. Harvey-Thompson)
Deuterium gas puffs (P. F. Knapp)




