SAND2013-4788C

Sandia
Exceptional service in the national interest @ National
Laboratories

Scalable Matrix Computations on

Large Scale-Free Graphs using
2D Graph Partitioning

Erik Boman, Karen Devine, Sivasankaran Rajamanickam
Sandia National Laboratories

Sparse Days, CERFACS, June 17, 2013

. YA}

“:*% U.S. DEPARTMENT OF
ENERGY /IVA

tonal Nug

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

curity Administration

Sandia

Overview ki

= We are interested in matrix computations to analyze large
graphs on distributed-memory supercomputers
= |n particular, eigensolvers

= Qur focusis on SpMV, a kernel in iterative methods

We present results of various data distribution strategies for
distributed-memory computing on scale-free graphs.

= 1D vs 2D matrix layout

= Use of graph and hypergraph partitioners

We present a new method combining (hyper)graph partitions
with 2D distributions, and show its benefit for scale-free
graphs.

Sandia
National

Background

" Large graphs are
pervasive
= WWW, social networks

= Often scale-free
= Power-law degree distr.
= Small diameter

= Very different from PDE
discretizations

= Need to adapt scientific

computlng methods and BGP graph (credit: Ross Richardson, Fan Chung)
tools? http://math.ucsd.edu/~fan/graphs/gallery

Sandia

Matrix Computations: SpMV is key W&

= Linear algebra is a useful analysis tool for graphs
= Eigen-analysis using extreme eigenpairs
= SpMV is core kernel in iterative methods
= Sparse matvec (SpMV) is bottleneck for scale-free graphs on
large distributed-memory computers
= High-degree vertices cause lots of communication

= Some processors need to communicate with almost all other!

Sandia

Partitioning

Graph partitioning generally reduces communication for
SpMV
= Hypergraph model exactly models communication volume (Catalyurek
& Aykanat, 2000)
Graph partitioners are widely regarded as ineffective on
scale-free graphs

= Software tools (e.g., Metis, Scotch, Zoltan) were designed for meshes
and PDE discretizations

= Not optimized for scale-free graphs

= Focus on communication volume
= We wish to reduce both #messages and communication volume

Partitioning strategy depends on type of distribution

= 1D (row-based) distribution is most common

Sandia

1D and 2D Matrix Distributions

= Entire rows (or columns) of matrix assigned to a
processor

= 1D matrix distribution: I
1

= Same mapping used for vectors -

= Default distribution in Trilinos 1D row-wise matrix

. . . . distribution; 6
= 2D matrix distribution: stribution; & processes

Block-based Cartesian layout
Long used in parallel dense solvers (Scalapack)

Also works for sparse matrices (Hendrickson et al.
‘95, Bisseling ‘04)

Yoo et al. (SC'11) demonstrated benefit over 1D
layouts for eigensolves on scale-free graphs

2D matrix
distribution; 6 processes

Sandia

Benefit of 2D Matrix Distribution

= During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
= Expand (vertical):
Vector entries x; sent to

column processors to compute
local product y? = AP x

= Fold (horizontal):
Local products y? summed along

FOW Processors; y = 2.yP

= |n 1D, fold is not needed, but
expand may be all-to-all.

Sandia

Benefit of 2D Matrix Distribution

= During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
= Expand (vertical):
Vector entries Xj sent to

column processors to compute
local product y? = AP x

= Fold (horizontal):
Local products y?» summed along

FOW pProcessors; y = 2.yP

= |n 1D, fold is not needed, but
expand may be all-to-all.

Trilinos Computational
Science Toolkit

= Heroux et al., Sandia

Trilinos Capabilities:
= Scalable Linear & Eigen Solvers
= Discretizations, Meshes & Load Balancing
= Nonlinear, Transient & Optimization Solvers
= Software Engineering Technologies & Integration

Trilinos features:
= Block-based data structures and algorithms
= Block-based linear and eigen solvers use “multivector” data structures.
= Toolkit/package-based design
= Packages can be combined, but not all of Trilinos is needed to get work done.

In this project, we use Trilinos’...
Distributed Matrix/Vector classes Epetra and Epetra64
Eigensolver package Anasazi
Linear solver package Belos
Preconditioning package Ifpack
Utilities package Teuchos (e.g., communicators, parameters, ref-counted pointers)

Trilinos Maps

= Maps describe the
distribution of global IDs for
rows/columns/vector entries
to processors.

Four maps needed in most
general case:
Row map for matrix
Column map for matrix
Range map for vector

Domain map for vector

= Part of Epetra package

Sandia
National _
Laboratories

Rank 3 (Blue)

Row Map = {4, 5, 8}
Column Map = {4, 5, 6, 7}
Range/Domain Map = {4, 5}

1D vs 2D Strong Scaling Experiments

Compare times for matrix-vector multiplication with 1D and 2D distributions
Hera cluster at LLNL (AMD quad-core, quad-socket Opteron processors

operating at 2.2/2.3 GHz)

Matrices from the University of Florida matrix collection
Symmetrized and largest connected component extracted

Name Description

Hollywood-2009 Hollywood movie actor network
(Boldi, Rosa, Santini, Vigna)

Wikipedia-20070206 Links between wikipedia pages
(Gleich)

Ljournal-2008 Livedournal social network
(Boldi, Rosa, Santini, Vigna)

Whb-edu Links between *.edu webpages
(Gleich)

Cit-Patents Citation network among US
patents (Hall, Jaffe, Trajtenberg)

Number of

Rows

1.1M

3.5M

5.6M

8.9M

3.8M

Sandia
m National
Laboratories

Number of

Nonzeros

113M

85M

99M

88M

33M

1D vs 2D Strong Scaling experiments

For each matrix:
Blue = Trilinos 1D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)
Red = Trilinos 2D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)

Times are normalized to the 1D 16-processor runtime for each matrix.

()
£
—

—

(@)

n

n

()

(&

(@]

—

<
©
<
o
<

]
-
©

()
N
©

=

—

(@)

c

()
£

-

(&}

()
=

©
=

1.8@

1.60

1.4R

1.2R

1R

h

hollywood?

wikipedial

ljournal

whb-edul

cit-Patentsl

Sandia
National
Laboratories

Randomization

= Oninput, randomly permute matrix rows/columns
= Eliminates any inherent structure in input file (e.g., high degree nodes first)

Sandia
m National
Laboratories

= Gives better balance in number of nonzeros per processor for 1D and 2D

= But can drastically increase communication volume

liveJournal matrix (4M rows; 73M nonzeros) on 1024 processes

Method

Imbalance in nonzeros
(Max/Avg per proc)

Max #
Messages
per SpMV

Comm. Vol.
per SpMV
(doubles)

100 SpMV
time (secs)

1D-Block

12.8

1023

34.5M

2.14

1D-Random

1.3

1023

55.3M

1.52

2D-Block

62

43.4M

0.95

2D-Random

64.2M

Advanced 2D Partitioning Methods @

The Cartesian 2D block distributions are simple to compute but
ignore the structure of the graph. Can we do better?

= Coarse-grain hypergraph (Catalyurek & Aykanat ‘01)
= Cartesian product, but expensive to compute
= Requires multiconstraint hypergraph partitioning

= Fine-grain hypergraph (Catalurek & Aykanat ‘01)
= Assign each nonzero separately, not Cartesian
= Much larger hypergraph, impractical for big problems
= Mondriaan (Vastenhouw & Bisseling ‘05)
= Recursive hypergraph partitioning
= Only serial software available

Sandia

New idea: Graph Partitioning + 2D ®&=.

Cartesian 2D block distributions limit #messages but ignore
structure of the graph.

(Hyper)Graph partitioning (e.g., Zoltan, ParMETIS, Scotch) balances
work (nonzeros per process) while attempting to minimize total
communication volume.

= Thought to be ineffective on scale-free graphs
Our idea: Apply (hyper)graph partitioning and 2D distribution
together

= Compute vertex-based partition of graph using ParMETIS or Zoltan

= Apply 2D distribution to a logical permutation based on the (hyper)graph
partition 01 2 3 4 5

Advantages:
= Balance the number of nonzeros per process
= Exploit structure in the graph
to reduce communication volume

= Reduce the number of messages via 2D distribution 3
4

0

1

2

5

2D-GP: Graph partitioning with 2D
Distribution

National _
Laboratories

1D-Block

1D-Random

2D-Block

2D-Random

Strong scaling

Sandia
National
Laboratories

com-orkut

H
o
o
S

i

Time (seconds)

—
NO.IW

N

256 1024 4096

#Cores

1D -]D-Random —*1D-GP
2D “=2D-Random ~*2D-GP

Time (seconds)

cit-Patents

/

/
=

P
\«0.15

*0.10
64 256 1024 4096
#Cores
1D “*1D-Random ~* 1D-GP
2D —“-2D-Random ~*2D-GP

Orkut social network
3.1M rows; 237M nonzeros
Max nonzeros/row = 33K

Patent citations network
3.8M rows; 37M nonzeros
Max nonzeros/row = 1K

Sandia

Performance comparisons

= 10 matrices: 1.1M-67.5M rows; 36 M-1.6B nonzeros
= 2D-GP/HP best in all but one experiment

= Benefit even greater for large numbers of processes

1

All experiments: 64-4096 procs

o

Fraction of problems
o o

o
w

1D-Block
—6— 1D-Random
—— 1D-GP/HP
—v— 2D-Block
—&— 2D-Random
—%*— 2D-GP/HP

8
Relative Time to the best method

<
>

o

o
»

Fraction of problems
© © o o o
—_ N w (@)

(=)

Large runs only: 1024-4096 procs

1D-Block
—— 1D-Random
—*—1D-GP/HP
—v— 2D-Block
—8—2D-Random
—#*— 2D-GP/HP

7,

6 8
Relative Time to the best method

Weak Scaling

= R-MAT matrices (Chakrabarti et al., 2004) with Graph-500

parameters (a=0.57; b=c=0.19; d=0.05)

= rmat_22 on 256 procs
= 4.2M vertices
= 38M edges

= rmat_24 on 1024 procs
= 16.8M vertices
= 151M edges

= rmat_26 on 4096 procs
= 67.1M vertices
" 604M edges

= 2D-HP maintains best
weak scaling.

Sandia
m National
Laboratories

100 1
90 -
80 -
70
60 -
50 -
40 -
30 -
20 -
10

Time (Seconds)

S
x

256 1024

Number of Processes

4096

== 1D-Block
~*1D-HP
=<2D-Block
—2D-HP

Eigensolver Experiments LUl

rmat 26

= Anasazi Toolkit in Trilinos 100

= Baker, Hetmaniuk,
Lehoucq, Thornquist; ACM
TOMS 2009

= Block-based eigensolvers:
Solve AX = XA\ or AX = BXA
= Experiment:

= Find 10 largest eigenvalues
of Laplacian using Block
Krylov-Schur (BKS) solver

Solve Time(secs)
=

" rmat_26 matrix: 67.1M 1
rows; 604M nonzeros 64 256 1024 4096

= HP = Hype rgra ph Number of Processes

partitioning in Zoltan —-1D-Block -#-]D-Random —*-1D-HP
—<2D-Block ~@-2D-Random ——2D-HP

Sandia

Conclusions

2D distribution has clear benefit for scale-free graphs,
especially at high process counts.

» Reduces max number of messages per process

Randomization can be effective to restore load balance.

= But can increase communication volume
(Hyper)graph partitioning can maintain load balance while
keeping communication volume low.

= More effective for scale-free graphs than thought
Combining 2D distribution with (hyper)graph partitioning
gives best results.

= Low number of messages, low communication volume, low imbalance
= Allows reuse of existing partitioning software

Extra Slides

Sandia
National

Distributions for Anasazi

= Matrix-vector multiplication an important kernel

= 55-87% of solve time for hollywood-2009 matrix with block 2D
distribution on 64-4096 processes

= QOther operations contribute to solve time
= Remaining time primarily in orthogonalization
= Balance with respect to vector entries, not matrix entries

= Benefitin balancing BOTH matrix nonzeros and vector entries

= Randomization can achieve this balance, but increases communication
volume drastically.
Multiconstraint graph partitioning can be used to achieve balance
while keeping communication volume low.
= Two weights per vertex: [1, number of nonzeros per row]
" Find one partition that balances both weights.

Example: Eigensolve with =
multiconstraint graph partitioning

Laboratories

Find 10 largest eigenvalues of hollywood-2009 matrix (1.1M rows;
114M nz) using Anasazi’s BKS (0.001 tolerance) on 1024 processes

Method Nonzero Vector Total Comm | SpMV | Total
Imbalance imbalance Volume for | time Solve
(max/avg) (max/avg) one SpMV (secs) |[time
(doubles) (secs)

2D-Block 26.0 1.0 15.7M 0.93 1.15

2D-Random 1.1 1.0 35.6M 0.44 0.62

2D-GP 1.6 : 17.2M 0.33 0.96

2D-GP-MC . . 17.5M
Multiconstraint

Scaling in Anasazi

Sandia
m National
Laboratories

= Use Anasazi’s Block Krylov Schur method to find ten largest
eigenvalues of the normalized Laplacian matrix (tol=0.001)

Solve Time(secs)

hollywood-2009

~

—_
S
(=]

—_
(=]

64 256 1024 4096

Number of Processes
—*1D-Block ™ 1D-Random * 1D-GP -<1D-GP-MC

—~-2D-Block “*"2D-Random —2D-GP —2D-GP-MC

com-orkut

Solve Time(secs)

—*1D-Block

—=2D-Block

64 256 1024

Number of Processes
-#]1D-Random —* 1D-GP

—*-2D-Random ——2D-GP

4096

“<1D-GP-MC

—2D-GP-MC

