
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Photos placed in horizontal position
with even amount of white space

between photos and header

Scalable Matrix Computations on
Large Scale-Free Graphs using

2D Graph Partitioning
Erik Boman, Karen Devine, Sivasankaran Rajamanickam

Sandia National Laboratories

Sparse Days, CERFACS, June 17, 2013

SAND2013-4788C

Overview

 We are interested in matrix computations to analyze large
graphs on distributed-memory supercomputers
 In particular, eigensolvers

 Our focus is on SpMV, a kernel in iterative methods

 We present results of various data distribution strategies for
distributed-memory computing on scale-free graphs.
 1D vs 2D matrix layout

 Use of graph and hypergraph partitioners

 We present a new method combining (hyper)graph partitions
with 2D distributions, and show its benefit for scale-free
graphs.

Background

 Large graphs are
pervasive

 WWW, social networks

 Often scale-free

 Power-law degree distr.

 Small diameter

 Very different from PDE
discretizations

 Need to adapt scientific
computing methods and
tools?

BGP graph (credit: Ross Richardson, Fan Chung)
http://math.ucsd.edu/~fan/graphs/gallery

Matrix Computations: SpMV is key

 Linear algebra is a useful analysis tool for graphs
 Eigen-analysis using extreme eigenpairs

 SpMV is core kernel in iterative methods

 Sparse matvec (SpMV) is bottleneck for scale-free graphs on
large distributed-memory computers
 High-degree vertices cause lots of communication

 Some processors need to communicate with almost all other!

4

Partitioning

 Graph partitioning generally reduces communication for
SpMV
 Hypergraph model exactly models communication volume (Catalyurek

& Aykanat, 2000)

 Graph partitioners are widely regarded as ineffective on
scale-free graphs
 Software tools (e.g., Metis, Scotch, Zoltan) were designed for meshes

and PDE discretizations

 Not optimized for scale-free graphs

 Focus on communication volume

 We wish to reduce both #messages and communication volume

 Partitioning strategy depends on type of distribution
 1D (row-based) distribution is most common

5

1D and 2D Matrix Distributions

 1D matrix distribution:
 Entire rows (or columns) of matrix assigned to a

processor

 Same mapping used for vectors

 Default distribution in Trilinos

 2D matrix distribution:
 Block-based Cartesian layout

 Long used in parallel dense solvers (ScaLapack)

 Also works for sparse matrices (Hendrickson et al.
‘95, Bisseling ‘04)

 Yoo et al. (SC’11) demonstrated benefit over 1D
layouts for eigensolves on scale-free graphs

6

1D row-wise matrix
distribution; 6 processes

2D matrix
distribution; 6 processes

Benefit of 2D Matrix Distribution

 During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
 Expand (vertical):

Vector entries xj sent to
column processors to compute
local product yp = Ap x

 Fold (horizontal):
Local products yp summed along

row processors; y = Σyp

 In 1D, fold is not needed, but
expand may be all-to-all.

7

Benefit of 2D Matrix Distribution

 During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
 Expand (vertical):

Vector entries xj sent to
column processors to compute
local product yp = Ap x

 Fold (horizontal):
Local products yp summed along

row processors; y = Σyp

 In 1D, fold is not needed, but
expand may be all-to-all.

8

Trilinos Computational
Science Toolkit
 Heroux et al., Sandia

 Trilinos Capabilities:
 Scalable Linear & Eigen Solvers
 Discretizations, Meshes & Load Balancing
 Nonlinear, Transient & Optimization Solvers
 Software Engineering Technologies & Integration

 Trilinos features:
 Block-based data structures and algorithms

 Block-based linear and eigen solvers use “multivector” data structures.

 Toolkit/package-based design
 Packages can be combined, but not all of Trilinos is needed to get work done.

 In this project, we use Trilinos’…
 Distributed Matrix/Vector classes Epetra and Epetra64
 Eigensolver package Anasazi
 Linear solver package Belos
 Preconditioning package Ifpack
 Utilities package Teuchos (e.g., communicators, parameters, ref-counted pointers)

9

Trilinos Maps

 Maps describe the
distribution of global IDs for
rows/columns/vector entries
to processors.

 Four maps needed in most
general case:
 Row map for matrix

 Column map for matrix

 Range map for vector

 Domain map for vector

 Part of Epetra package

10

X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X

Rank 3 (Blue)
Row Map = {4, 5, 8}
Column Map = {4, 5, 6, 7}
Range/Domain Map = {4, 5}

1D vs 2D Strong Scaling Experiments
 Compare times for matrix-vector multiplication with 1D and 2D distributions
 Hera cluster at LLNL (AMD quad-core, quad-socket Opteron processors

operating at 2.2/2.3 GHz)
 Matrices from the University of Florida matrix collection
 Symmetrized and largest connected component extracted

11

Name Description Number of
Rows

Number of
Nonzeros

Hollywood-2009 Hollywood movie actor network
(Boldi, Rosa, Santini, Vigna)

1.1M 113M

Wikipedia-20070206 Links between wikipedia pages
(Gleich)

3.5M 85M

Ljournal-2008 LiveJournal social network
(Boldi, Rosa, Santini, Vigna)

5.6M 99M

Wb-edu Links between *.edu webpages
(Gleich)

8.9M 88M

Cit-Patents Citation network among US
patents (Hall, Jaffe, Trajtenberg)

3.8M 33M

1D vs 2D Strong Scaling experiments

0�

0.2�

0.4�

0.6�

0.8�

1�

1.2�

1.4�

1.6�

1.8�

hollywood� wikipedia� ljournal� wb-edu� cit-Patents�

12

For each matrix:
Blue = Trilinos 1D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)
Red = Trilinos 2D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)

Times are normalized to the 1D 16-processor runtime for each matrix.

M
a
tV

e
c

ti
m

e
 n

o
rm

a
liz

e
d
 t
o
 1

D
 1

6
-p

ro
ce

ss
o
r

tim
e

Randomization
 On input, randomly permute matrix rows/columns

 Eliminates any inherent structure in input file (e.g., high degree nodes first)

 Gives better balance in number of nonzeros per processor for 1D and 2D

 But can drastically increase communication volume

13

liveJournal matrix (4M rows; 73M nonzeros) on 1024 processes

Method Imbalance in nonzeros
(Max/Avg per proc)

Max #
Messages
per SpMV

Comm. Vol.
per SpMV
(doubles)

100 SpMV
time (secs)

1D-Block 12.8 1023 34.5M 2.14

1D-Random 1.3 1023 55.3M 1.52

2D-Block 11.4 62 43.4M 0.95

2D-Random 1.0 62 64.2M 0.43

Advanced 2D Partitioning Methods

The Cartesian 2D block distributions are simple to compute but
ignore the structure of the graph. Can we do better?

 Coarse-grain hypergraph (Catalyurek & Aykanat ‘01)
 Cartesian product, but expensive to compute

 Requires multiconstraint hypergraph partitioning

 Fine-grain hypergraph (Catalurek & Aykanat ‘01)
 Assign each nonzero separately, not Cartesian

 Much larger hypergraph, impractical for big problems

 Mondriaan (Vastenhouw & Bisseling ‘05)
 Recursive hypergraph partitioning

 Only serial software available

14

New idea: Graph Partitioning + 2D

 Cartesian 2D block distributions limit #messages but ignore
structure of the graph.

 (Hyper)Graph partitioning (e.g., Zoltan, ParMETIS, Scotch) balances
work (nonzeros per process) while attempting to minimize total
communication volume.
 Thought to be ineffective on scale-free graphs

 Our idea: Apply (hyper)graph partitioning and 2D distribution
together
 Compute vertex-based partition of graph using ParMETIS or Zoltan
 Apply 2D distribution to a logical permutation based on the (hyper)graph

partition

 Advantages:
 Balance the number of nonzeros per process
 Exploit structure in the graph

to reduce communication volume
 Reduce the number of messages via 2D distribution

15

2D-GP: Graph partitioning with 2D
Distribution

16

liveJournal matrix (4M rows; 73M nonzeros) on 1024 processes

Method Imbalance in nonzeros
(Max/Avg per proc)

Max #
Messages
per SpMV

Comm. Vol.
per SpMV
(doubles)

100 SpMV
time (secs)

1D-Block 12.8 1023 34.5M 2.14

1D-Random 1.3 1023 55.3M 1.52

1D-GP 1.2 1011 18.9M 0.53

2D-Block 11.4 62 43.4M 0.95

2D-Random 1.0 62 64.2M 0.43

2D-GP 1.4 62 22.4M 0.22

Strong scaling

17

Orkut social network
3.1M rows; 237M nonzeros
Max nonzeros/row = 33K

Patent citations network
3.8M rows; 37M nonzeros
Max nonzeros/row = 1K

Performance comparisons
 10 matrices: 1.1M - 67.5M rows; 36M-1.6B nonzeros

 2D-GP/HP best in all but one experiment

 Benefit even greater for large numbers of processes

18

All experiments: 64-4096 procs Large runs only: 1024-4096 procs

Weak Scaling

 R-MAT matrices (Chakrabarti et al., 2004) with Graph-500
parameters (a=0.57; b=c=0.19; d=0.05)
 rmat_22 on 256 procs

 4.2M vertices

 38M edges

 rmat_24 on 1024 procs

 16.8M vertices

 151M edges

 rmat_26 on 4096 procs

 67.1M vertices

 604M edges

 2D-HP maintains best
weak scaling.

19

0

10

20

30

40

50

60

70

80

90

100

256 1024 4096

T
im

e
(S

ec
on

d
s)

Number of Processes

1D-Block

1D-HP

2D-Block

2D-HP

Eigensolver Experiments

 Anasazi Toolkit in Trilinos
 Baker, Hetmaniuk,

Lehoucq, Thornquist; ACM
TOMS 2009

 Block-based eigensolvers:
Solve AX = XΛ or AX = BXΛ

 Experiment:
 Find 10 largest eigenvalues

of Laplacian using Block
Krylov-Schur (BKS) solver

 rmat_26 matrix: 67.1M
rows; 604M nonzeros

 HP = Hypergraph
partitioning in Zoltan

1

10

100

64 256 1024 4096

S
o

lv
e

T
im

e(
se

cs
)

Number of Processes

rmat_26

1D-Block 1D-Random 1D-HP

2D-Block 2D-Random 2D-HP

Conclusions

 2D distribution has clear benefit for scale-free graphs,
especially at high process counts.
 Reduces max number of messages per process

 Randomization can be effective to restore load balance.
 But can increase communication volume

 (Hyper)graph partitioning can maintain load balance while
keeping communication volume low.
 More effective for scale-free graphs than thought

 Combining 2D distribution with (hyper)graph partitioning
gives best results.
 Low number of messages, low communication volume, low imbalance

 Allows reuse of existing partitioning software

21

Extra Slides

22

Distributions for Anasazi

 Matrix-vector multiplication an important kernel
 55-87% of solve time for hollywood-2009 matrix with block 2D

distribution on 64-4096 processes

 Other operations contribute to solve time
 Remaining time primarily in orthogonalization

 Balance with respect to vector entries, not matrix entries

 Benefit in balancing BOTH matrix nonzeros and vector entries
 Randomization can achieve this balance, but increases communication

volume drastically.

 Multiconstraint graph partitioning can be used to achieve balance
while keeping communication volume low.

 Two weights per vertex: [1, number of nonzeros per row]

 Find one partition that balances both weights.

23

Example: Eigensolve with
multiconstraint graph partitioning

24

Find 10 largest eigenvalues of hollywood-2009 matrix (1.1M rows;
114M nz) using Anasazi’s BKS (0.001 tolerance) on 1024 processes

Method Nonzero
Imbalance
(max/avg)

Vector
imbalance
(max/avg)

Total Comm
Volume for
one SpMV
(doubles)

SpMV
time
(secs)

Total
Solve
time
(secs)

2D-Block 26.0 1.0 15.7M 0.93 1.15

2D-Random 1.1 1.0 35.6M 0.44 0.62

2D-GP 1.6 30.3 17.2M 0.33 0.96

2D-GP-MC
Multiconstraint

1.6 1.1 17.5M 0.27 0.44

Scaling in Anasazi

 Use Anasazi’s Block Krylov Schur method to find ten largest
eigenvalues of the normalized Laplacian matrix (tol=0.001)

25

1

10

100

1000

64 256 1024 4096

S
o

lv
e

T
im

e(
se

cs
)

Number of Processes

hollywood-2009

1D-Block 1D-Random 1D-GP 1D-GP-MC

2D-Block 2D-Random 2D-GP 2D-GP-MC

1

10

100

1000

64 256 1024 4096

S
o

lv
e

T
im

e(
se

cs
)

Number of Processes

com-orkut

1D-Block 1D-Random 1D-GP 1D-GP-MC

2D-Block 2D-Random 2D-GP 2D-GP-MC

