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Mcudes g |ndex All-Dielectric Nanoparticles

- Low non-radiative losses at 'S A. Evlyukin ot
: . e al., Nano Lett.
optical frequencies i 12, 3749, 2012.
- Strong resonances 8
« Both electric and magnetic 2 1o
modes in high-symmetry high-
refractive index all-dielectric TR W e W w

nanoparticles

A. Kuznetsov et al.,Sci. Rep. 2, 492, 2012.
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P Potential Fields of Application

« Solar energy applications b
 All-dielectric metamaterials
 All-dielectric nanoantennas

* Novel manifestation of Fano
resonances (sensing)

P. Spinelli et al. Nat. Commun. 3,

692, 2012.
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C. M. Soukoulis et al., Nature A. E. Krasnok et al., Opt. Exp. A. M. Miroshnichenko et al.

Photon. 5, 523, 2011. 20, 20599, 2012. Nano Lett. 12, 6459, 2012.
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- Resonance Interplay

« Strong effects on scattering '
- | [ |
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+ Kerker-conditions for hypothetic = \[/
magneto-electric spheres Yt ot
(M. Kerker et al., J. Opt. Soc.
Am. 73, 765.) S(.)i:rson et al., Nano Lett. 13, 1806,

» Larger scattering cross-sections

for resonant scattering ! )*
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Y.-H. Fu et al., Nat. Commun. 4, 1527, W. Liu et al., ACS Nano 6, 5489, 2012.

2013.
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- Resonance Interplay

- Strong effects on scattering | PR MR
pattern L o Al fm
 Kerker-conditions for hypothetic ~ - iF

magneto-electric spheres -

(M. Kerker et al., J. Opt. Soc.
Am. 73, 765.)

S. Person et al., Nano Leftt. 13, 1806,
2013.

Can we design all-dielectric
subwavelength particles with overlapping
electric and magnetic resonances?
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Y.-H. Fu et al., Nat. Commun. 4, 1527, W. Liu et al., ACS Nano 6, 5489, 2012.

2013.



N cudes

e Discrete Dipole Model

* Multipole light scattering by nonspherical nanoparticles in the
discrete dipole approximation
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A. Evlyukhin et al., Phys. Rev. B 84, 235429, 2011.



}cudos

e Discrete Dipole Model

* Multipole light scattering by silicon nanodisks embedded into n = 1.5
medium for systematic variation of the disk aspect ratio (h =220 nm)
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|. Staude et al., submitted (2013).
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% cudes Numerical Calculation

?- An ARC Cenfre of Excellence
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« Complete crossing of electric and magnetic resonances can be achieved
« Transmittance approaches unity for resonance overlap

|. Staude et al., submitted (2013).
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T Fabrication

Sketch of the experimental Electron-micrograph of fabricated
geometry silicon nanodisk array
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|. Staude et al., submitted (2013).
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W cudos Optical Measurement

e Embedded disks

Transmittance Reflectance

1.65

Experiment
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|. Staude et al., submitted (2013).



N cudes

i Comparison with Theory

e Embedded disks

Transmittance Reflectance
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|. Staude et al., submitted (2013).
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P Comparison with Theory

e Embedded disks

Transmittance Reflectance
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Calculation
1.6 1.6
__1.55 1.55
E
= 15 1.5
£
2 1.45 1.45
o
% 1.4 1.4
= 1.35 1.35
1.3E 1.2k
1'254:]:1 450 500 550 600 Lo 400 450 500 550 600

Si disk diameter (nm) Si disk diameter (nm)

|. Staude et al., submitted (2013).
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* Free standing (not embedded) disks

Transmittance

Wavelength (pm)
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|. Staude et al., submitted (2013).
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* Free standing (not embedded) disks

Transmittance Reflectance
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|. Staude et al., submitted (2013).
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B e Discussion

Beer-Lambert law
I = exp(_o'ext/az)

For a single resonance:

— T min, o,,, max

— Destructive interference of the incident wave and the scattered

wave in forward direction
Resonance overlap:
— T =1 despite a maximum in o,

— Destructive interference of the incident wave and the scattered
waves in backward direction

— Strong resonance in phase

Alternative point of view: Impedance matching (¢ = u)
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e Tailoring Mode Interference

« How about other cases?
— Non-overlap
— Off-resonance

« Is it possible to tailor mode interplay to achieve highly directional
emission from a dipole source?

A. G. Curto et al., Science 329, 930 (2010).
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S Aad as Silicon Disk Nanoantennas

« Silicon nanodisk with d = 620 nm
* Dipole emitter located 45 nm away from the disk surface
« Embedded into n = 1.5 medium

Front-to-back ratio
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|. Staude et al., submitted (2013).
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Discrete dipole model
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Sy e Conclusions

Discrete dipole model Fabrication in SOI technology
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Tailoring mode interference in silicon [E
{ nanodisks is a powerful tool to engineer
the flow of light!
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Outline

High-index all-dielectric subwavelength particles

Overlapping electric and magnetic resonances for
embedded silicon nanodisks:

— Discrete dipole model
— Numerical analysis
— Experiment
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