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PROJECT OBJECTIVES

To determine the effects of off-road air quality, shock, and vibration, on an
advanced Proton Exchange Membrane (PEM) fuel cell and reformer subsystems
and its integration with a Toro Workman™ Lawn Tractor.

BACKGROUND
The program originally consisted of the following four tasks
1. System Study of Lawn Tractor Load Profiles
2. Impulse and Vibration Study
a. Source Ildentification of Vibration and Shock on-Off Road Vehicles
b. Fuel Cell System Vibration and Shock Spectrum Testing
3. Air Quality Study
a. Fuel Cell Air Contaminants
b. Air Filter Development
4. Fuel Cell Specification

The program began in September 2004, was suspended in 2005 and was
restarted in November 2007. During the suspension, Donaldson and Toro
independently completed some of the tasks that were proposed under this
program:
e A database of airborne fuel cell contaminants was generated (Task 3a)
e Air filter development was completed (Task 3b)
e Load profiles and power requirements for a Toro Workman™ were
generated (Task 4)
e |daTech under a US Navy program (Subcontract to HoKu, Program ID
06UJ9A00008B) developed a portable liquid fueled fuel cell system
(FCS3000) of the size required for this program

After work resumed on this program in 2007 and as a result of the work
independently completed during the suspension, Task 4 was modified to the
following:
4. Design, Assemble, and Test Two Toro Workman™ Mid Duty Utility
Vehicle with an IdaTech FCS 3000 Liquid Fueled Fuel Cell System

Additionally, due to the fact that there was leftover money as a result of some of
the tasks being completed during the suspension and that Donaldson decided
not to produce the fuel cell air filter designed in Task 3b, Task 3c - Air Filter
Testing, was added in 2010 in order to evaluate available filters.

From the original task list, two items will not be included in the final report since
they were paid for by their respective companies during the suspension. Those
items are Task 3b — Air Filter Development and Task 4 — Fuel Cell Specification.

OVERVIEW
This program has addressed the load profiles for off-road PEM fuel cell
utilization, including typical load profiles and drive train and power take off

vVi|Page



Final Report DE-FG36-04G0O14303

devices. The program has also gathered information on the air contaminants
that may have an effect on fuel cell operation and performance degradation.
Toro has developed the Workman Model e2065 mid-duty truck equipped to
operate on DC voltages, and had accelerometers installed and evaluated shock
and vibration under this grant.
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TASK 1: SYSTEM STUDY OF LAWN TRACTOR
LOAD PROFILES

Investigation of Load Profiles for Agricultural Tractors
and Fuel Cell Power Train Recommendations

University of California, Davis

Michael Beerman, Graduate Student
Uriel A. Rosa, Assistant Professor
Bryan Jenkins, Professor
Paul Erickson, Assistant Professor

INTRODUCTION

The modern Agricultural tractor has many uses. Each of those uses has a
different power demand. The purpose of this investigation is to determine load
profiles for different classes of off-road equipment using predominantly existing
information from agricultural, military and other equipment testing programs (e.g.
Nebraska Tractor Testing Laboratory, Aberdeen Test Center, OECD and OEM
data). This effort focuses on agricultural applications where such information is
available. Agricultural equipment to be considered includes lighter-duty general-
purpose 2-wheel and 4-wheel drive tractors, which are considered to be primary
targets for adapting fuel cell power units in the near term.

An investigation has been conducted on tractor requirements for traction, power
train, prime mover torque, speed and acceleration, power profiles, typical power
take-off (PTO) and hydraulic actuators. Operating requirements and changes in
the power train required to facilitate a fuel cell power unit to accommodate
functional differences, and differences in the transient response of the fuel cell
compared with internal combustion engines are discussed. Finally
recommendations are made regarding the power train design of three power
classes of tractors <20 kW, 20 to 200 kW, and >200 kW, as well as for the
prototype vehicle to be field-tested.

This review indicates that electric motors provide favorable characteristics for
agricultural applications and that uncoupling the mechanical power from the
load may increase efficiency allowing the power supply to operate at peak
efficiency while the electric motor provides the time varying torque.

The data collected are representative of North American agricultural tractors, in
that there are different economic and social demands for farm equipment in
different countries. Gasoline or diesel internal combustion engines power current
tractors on the market in North America. Although there have been electric
tractor (Alcock, 1983; Vik et al., 1984; Thoreson et al., 1986) and Fuel cell tractor
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(Ihrig, 1960) prototypes made, none of these has made it into widespread use.

LOAD PROFILES

There are different profiles expected for different vehicles. For small vehicles it is
expected that the power demand will be much more transient. Whereas for large
vehicles used to work large fields it is expected that the load profile will be fairly
steady with oscillations occurring only when abnormalities are encountered (such
as rocks in plowing or equipment malfunction).

Testings

Tractor testing is performed internationally at several OECD approved testing
centers where market ready tractors are tested to find their operational limits and
fuel efficiencies at different loads (OECD ; SAE, 1999). First the tractor is
allowed a run-in period where a representative from the manufacturer is allowed
to run the tractor and make any tuning modifications. During the tractor test the
engine power and torque are measured by a dynamometer bench attached to the
PTO at several different speeds (the rated engine speed, the standard PTO
speed 540 or 1000 rpm, and at various different engine speeds). Torque, engine
speed and hourly fuel consumption are recorded on the bench tests, and the
tractor is field driven to determine drawbar performance.

Drawbar power is defined as the power actually required to pull, or move, an
implement at a uniform speed. Drawbar power is not only a function of engine
power, but also of tractive efficiency, which is dependent on weight distribution,
field conditions, and the tires.

The Power Take Off (PTO) is a shaft that can be accessible usually either at the
front or rear of the tractor (or at both) in which a mounted or pulled implement
can receive mechanical power to perform an operation. For example a pick up
baler is an implement, which is hitched to the tractor and connected to the PTO
drive. As the tractor pass through the field of cut-dry hay the baler uses the
power supplied by the PTO to pick up the hay, compress it, bind it with twine and
then push the bound bale out of the machine to start a new bale.

If we evaluate the power demand on the engine during an operation such as
baling we have the following to consider. The tractive power demand on the
engine should be fairly constant (assuming a dry field, and slow speeds), and the
PTO power used to bale the hay fluctuates due to the changing operation of the
implement as can be seen in Figure 1.
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Figure 1: Torque meter charts with a slip clutch (Hansen, M., 1952)

Case Studies

While searching for load profiles a search was performed to find traces similar to
those used to evaluate automotive performance (velocity and grade vs. time).
Since the use of tractors is fundamentally different from automobiles as a result
they are not evaluated in the same manner. In order to determine what kind of
loads the engine of a tractor will experience, torque and power traces were then
sought after. It is possible to obtain maximum power and torque measurements
recorded by the Nebraska Tractor Test facility at their web site
TUhttp://tractortestlab.unl.edu/testreports.htmUT. For tractors sold outside the
US one can see the test reports posted by the OECD at
TUhttp://www2.0ecd.org/agr-coddb/index_en.aspUT. One significant addition to
the OECD reports are the engine maps of torque and power vs speed. However,
neither of these tells us how the load that a tractor might experience varies over
time. To obtain these data, research papers have been evaluated and several
illustrative studies are mentioned as follows.

In a study of torsional loads on nine separate tractors the loads imposed on the
PTO shafts were analyzed during different operations. Table 1 shows the
torsional properties of eight of the nine tractors evaluated. Table 2 displays the
findings of the variation in the torque during different operations. In this analysis it
is found that there are three factors that play a large roll in the magnitude of peak
PTO torsional loads. The first is the amount of kinetic energy stored in the
rotating parts of the tractor, the second the moment of inertia of the rotating parts
in the implement, and third the amount of resilience in the drive between the
heavy rotating parts of the tractor and the rotating parts of the driven implement.
Figure 2 shows the oscillatory nature of the implement loads on the PTO shaft
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due to the misalignment of the universal joint connecting the implement to the
PTO shaft.

Table 1: Kinetic energy of rotating parts and torsional properties of PTO drives of
current tractor models (Hansen, 1952)

| of E or Torsional Torsional Energy |Ratio E
Tractor | Approx Rotatin Rotating |Deflection Yield PTO in
Make [Max. hp 9 Partsat | of PTO Drive Will|Rotating
Parts , Strength of
and of (Ib- Rated Train at PTO Train Absorb at| Parts to
Model | Tractor ft/sec2) Speed Y.P. (Ib-in) Y.P. PTO
(ft-Ib)  |[(Degrees) (ft-Ib) Drive
1 35 2.33 12,120 20 17,600 256 47.3
2 25 1.32 11,300
3 35 3.23 16,820 37 28,000 753 22.2
4 45 6.17 33,700
5 35 1.034 11,900 20 28,000 407 29.2
6 25 14.5 20,200 213
7 30 12.5 17,670 161
8 30 17.5 25,000 318

STRAIGHT DRV LEpAL KWGLES [2a%) FO" ANGLE OW OME SOINT
OW TWO FOIRTE

AYEMAGE TOROQUE - 30 L=k AVERAGE TORGUE < 34TT LR-iM SYERAGE TORALIE: SE3T LE-ik

NAND LE-IM May inag Lx-m fmn

My w”wW

|-I:l!-55-|: |-u|.s:r = 163 LB a--ﬂllfl:-ln’ﬁm I
[ — ——— —_— e
ELe T
*f?h«&_ T,

Figure 2: Torque meter charts showing the effect of univérsal joint misalignment
while transmitting an average load of approximately 30 (Hansen, 1952)
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Max Starting Max Startin Max. Max. Ave
Approx. . Torque w/ 9 Operational | Operational )
Implement | Coupling Torque w/ Torque .
Test|Tractor| Max. : Normal . Torque |Torque Near Work Being
Make and | in PTO Rapid Clutch Norm. Op.
No. | Model | Tractor . Clutch Average Plugged o Performed
Model Drive Engagement o > Conditions
bhp Engagement (Ib-in) Conditions | Conditions (Ib-in)
(Ib-in) (Ib-in) (Ib-in)
4900-6400 | 10890~ 4680 - 6390|5450 - 7140
15370
. Chopping
2 1 35 | Ensilage | Spec. 8660  |5112-5723|6025-6865| 3200 Heavy
Harvester A| Slip .
Drilled Corn
. Chopping
Ensilage
3 9 40 Standard 11600 4700 - 4925|6200 - 8025 3261 Heavy
Harvester A .
Drilled Corn
Ensilage Chopping
4 1 35 Standard | 2600 - 4000* 3520 - 3820|3960 - 7630*| 2390 Heavy
Harvester B :
Drilled Corn
Forage Chopping
5 1 35 Standard 14600 3730 -7200|6370 - 7200 2870 Green
Harvester C
Alfalfa
Forage Chopping
6 1 35 9800 - 7530% | 5230 - 6700|6100 - 8700 3270 Green
Harvester C
Alfalfa
Chopping
71 1 35 | FOrage Isiandard 12500 -\ 6060 - 7460| 9500 3600 Green
Harvester C 10900
Alfalfa
Attempting
Forage to Start a
8 1 35 Harvester C Standard 21400 Plugged
Machine
9 | 1 35 |90 DO standard| 1570-1740 | 3990 | 622- 1031 727 |Picking Corn
18300 - Baling
10 1 35 Baler E |Standard 20600 5860 - 7470 12100 1140 Alfalfa
11 1 35 Baler E |Standard 13100 6550 - 8140| 11600 - 1545 Recheck of
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Max Starting Max Startin Max. Max. Ave
Approx. . Torque w/ 9 Operational | Operational )
Implement | Coupling Torque w/ Torque .
Test|Tractor| Max. X Normal . Torque |Torque Near Work Being
Make and | in PTO Rapid Clutch Norm. Op.
No. | Model | Tractor . Clutch Average Plugged o Performed
Model Drive Engagement o iy Conditions
bhp Engagement (Ib-in) Conditions | Conditions (Ib-in)
(Ib-in) (Ib-in) (Ib-in)
15000 Test 10
Spec. 10700 - 10700 - 11500 - Baling
121 35 | BalerE | g, 12100* 12100* | 729089201 4335« 2250 Alfalfa
Spec. N 5600 - 10350 - .
13 1 35 Baler E Slip 10100 11100 12600 1580 |Baling Straw
7749 - 10960 - Baling
14 9 40 Baler E |Standard 12250 10945 12095 1938 Alfalfa
15| 1 35 | BalerE |Standard And Universal Joints Aligned |4501 - 5867 1383 iﬁ,g'l}g
Baling
16 1 35 Baler F |Standard 16500 8600 22700
Alfalfa
17| 1 35 |Combine G| PS¢ | 5000* 5000* 5000* 5000* Baling
Slip Alfalfa
. 10100 - Combining
18 1 35 | Combine G |Standard 16600* 3760 9380 1890 Windrows
19| 1 35 | Combine G| SPSC 7150  |7760-9130| 1700 | ComPining
Slip Windrows
20| 1 35 | Combine G| SPSC 7350 - 8650 | 4160 - 4200| 7470 1600 | Straight
Slip Combining
Hammer 17500 - Grinding Ear
21 2 25 Mill H Standard 9030 20150 4145 7270 2700 Comn
22| 1 35 | Hammer \gindard| 6130 3740 14900 2140 |Crinding Ear
Mill H Corn
Hammer Spec. . . Grinding Ear
23 1 35 Mill H Slip 8230 8230 6920 4210 Comn
24| 4 | 45 | HamMMer \qindard| 10150 25800 7800 13000 5450 |Grinding Ear
Mill J Corn
* Safety Clutch in PTO Line Slipped Limiting Torsional Load to This Value
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In a study on engine loading, an AC D-17 tractor was instrumented and used for
several different tasks (Ricketts and Weber, 1961). The test tractor was used on
twelve different farms and the recorded data (figures 3 through 6) show the range
of engine power and speed in which each task was performed. Figure 7 shows a
breakdown of the number of hours that a typical farm tractor is used over a
varying number of tasks. The data were compiled from the yearly log of 25
different farmers near the University of lllinois, Urbana.

S0

&

-

HORSEPOWER

o
400 SO0 800 0D P00 MO0 SO0 BO0 2000

ENGINE SPEED -HFP MW
Figure 3: Range of engine horsepower and speed requirements for corn picking,
subsoiling, field cultivating and soil packing (Ricketts, 1961)

40—t - ek
. = - —

Eﬁ E -""f:f:'.h. -
o 3
K ""'1_ v
% 20— 1 —
z :—!—E—--'r-' 1 - |

lu.“'E' i - - 1-.

| ARR
oLl : =

400 B0 HMF KD BOO KO0 GO0 800 000
ENGINE SPEED -~ RFM

Figure 4: Range of engine horsepower and speed requirements for planting,
mowing, chopping, rotary hoeing and plowing (Ricketts, 1961)
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¥

HORSEPOWER

400 &0 B0 OO0  BEOD MO0 ISD0 800 2000
ENGINE SPEED - RPM
Figure 5: Range of engine horsepower and speed requirements for cultivating,
combining, applying anhydrous ammonia, and spike- and springtooth harrowing
(Ricketts, 1961)
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Figure 6: Range of engine horsepower and speed requirements for raking,
crushing, crushing and mowing, and disking (Ricketts, 1961)
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Figure 7: Distribution of hours of tractor use by operation — average of 340 hours
for 25 tractors (Ricketts, 1961)

A paper presenting the functionality of a portable instrumentation package that
was designed for tractors can give us an idea of load variation. Figure 8 shows
both the vehicle speed and the draft power required for chisel plowing with a
John Deere 3020 tractor.

o T Fl
20+ ! - l:::: :HJ:M‘LE&:?- 32 tractar L
nl 'I\ll Im secord gess 5
18 + Hw"Hl'I. r ._a—-';"r'llr I".l' g ||'"'I. a f \a : ! :
& | x J' arafy 1% '”. ;
= i i &
w 24 ! : +z W
= | | E
St LT [ ¢
i A, A ha R 8
by . v | T &
P AL
0 Tt—i [ i . + F ! : ; 0

L - - -

Time in sec.

Figure 8: Data from chisel plowing in dewey oats stubble (Strange et al., 1984)
In a different case a Cockshutt 30 hp (22kW) tractor was fitted with a torque

meter on the shaft connecting the clutch to the transmission. Figure 9 shows the
variable load of an implement (Gerlach, 1966).
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Figure 9: PTO torque characteristics when operating a grain binder (Gerlach,
1966)
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Figure 10: Engine speed and torque when plowing heavy ground (Gerlach,
1966)

In the interest of directly mapping the power demand on a tractor a study was
performed to observe which regions of the engine map were most commonly
used during various operations. A turbo-charged Ford 6610 AC (50 hp, 37kW)
was fitted with data acquisition equipment, and was used by different operators
and different tasks to show the change in engine usage. The change in engine
usage then translates into a change in fuel consumption (Hansen et al., 1986).
The Z-axis in figures 11 through 16 shows a percent time spent at that point. A
number is specified at the origin to represent the amount of time at idle. The idle
time was not plotted because it would have made the rest of the data difficult to
be visualized.
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Figures 17 and 18 show plotted torque vs. time for a tilling operation. The only
differences between these two conditions were the tiller blade shapes and
rotation direction. The operation was performed in Bangkok clay soil. The PTO
speed was 540 rpm (Salokhe and Ramalingam, 2002).

350 1

Torque (N-m)

| .
; [l' L]
10 12 -145 16

Time (sec)

Figure 17: Torque signals measured for the scoop blades on reverse-rotary tiller
(Salokhe and Ramalingam, 2002)

0 2 4 & B

Torgue (N-m)

Tima (sac)

Figure 18: Torque signals recorded for C-blade rotary tiller with forward rotation
(conventional)(Salokhe and Ramalingam, 2002)

Implement Power Draw

Because agricultural tractors are designed to perform a myriad of tasks, the
American Society of Agricultural Engineers has developed equations for
calculating the draft and rotary power for agricultural implements (ASAE, 2003).
These equations and tables of coefficients yield an average value of the power
required for each operation taking into account the dimensions of the implement
and the conditions of the soil. As has been shown these power draws do vary
significantly with time depending on the operation. However, the variations are
periodic and can be predicted.
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VEHICLE REQUIREMENTS

For fuel cell powered tractors to be considered viable competitors to diesel
powered tractors they need to show similar performance. The information that
follows discusses performance ranges for three groups of agricultural tractors in
order to obtain performance set points for a fuel cell tractor. In each case three
groups of tractors were evaluated based on their PTO power. The first group
consisted of tractors with PTO power of up to 20 kW, the next group with PTO
power between 20 and 200 kW, and finally tractors with a PTO power greater
than 200 kW.

Traction Requirements

Tractors were originally designed around the basis of creating greater traction for
vehicles used in off road work. Thus this topic has been studied in great depth.
Presented below is only a slight mention of the overall subject. Traction has
been defined as “the force derived from the interaction between a device and a
medium that can be used to facilitate a desired motion over the medium” (Gill,
1986). The net traction for a tractor drive wheel is determined by Equations 1
and 2 below (ASAE, 2003).P

~0.1B, -7.5s 1 0.5s
NT W[O.SS(] e % f1—e ) 3 \/B_J EQ. 1
o
1+5—
3 =(Clbdj h EQ. 2
L
d
Where:
S = Slip

W = Dynamic wheel load in force units normal to the soil surface
Cl = Cone index for the soil

b = Unloaded tire section width

d = Unloaded tire diameter

h = Tire section height

d = Tire deflection

As can be seen by the equations above, traction is directly related to weight.
Larger tractors can develop greater traction resulting in larger drawbar power. It
is also important to realize in agricultural applications that traction improvements
should not be accomplished at the detriment of the soil structure. Larger tractors
might develop greater traction, but may also compact the soil, reducing aeration
and causing erosion. Even before the engine power is available to the wheels,
limited transmission efficiencies, which range between 82% and 87%, cut into the
available power (ASAE, 2003). Wheel slip also plays a large roll in the overall
efficiency of the tractor accounting for an additional 7% to 12% (Ryu et al., 2003).
The design for maximum efficiency requires sizing the available drawbar power
to meet the net traction of the tractor.
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Power Train Configurations

There are several variations of tractor drive train configurations especially when
evaluating the differences between wheeled, tracked and articulated tractors.
Figure 19 shows a block diagram of a standard tractor drive train.

Hydraulic
Pump

To Drive Wheels

To PTO

Figure 19: Block diagram of tractor power train

Depending upon the vehicle a tractor transmission can transmit power to the rear
drive wheels, the front drive wheels, as well as the front and rear PTOs. The
transmission is vital to the effectiveness of the tractor since torque requirements
can demand large variations during operation, and most often the maximum
amount of engine power is required as has been shown. The transmissions are
generally very costly due to the number of gears, and the high stress present
under low RPM and high torque work.

Prime Mover Torque

The measure of prime mover torque is the moment that a vehicle can
continuously exert trough the drive wheels. The torque at the wheels is
increased by the use of gear reduction, but the amount of torque available to the
transmission is dependent on the engine characteristics. If the maximum torque
the vehicle can supply is insufficient to meet the load the engine will stall. Thus
with current tractor design it is important to have a sufficient torque reserve (or
torque back-up) (Culpin, 1992). When an engine has a higher torque at an
engine speed slower than that corresponding to the maximum power it is said to
have a torque reserve. When operating at maximum power if a higher torque is
required the engine speed drops and the torque increases to meet the demand

From the data collected from the Nebraska tractor tests and OEM data it is seen
that there is a large range of vehicles with different available torques. For
tractors in between 20 to 200 kW the maximum torque output varied from 96 to
953 Ft Lb. For tractors with PTO power greater than 200 kW the maximum
torque ranged from 901 to 1757 Ft Lb. In every case the tractors evaluated had
a torque reserve. (There was no torque available for the tractors with less than
20 kW of PTO power).

Vehicle Speed and Acceleration

Generally speaking tractors are not evaluated on the time it takes to accelerate
from 0 to 60 mph. That is because most tractors are not designed to work at 60
mph. Although acceleration is not a key factor in agricultural vehicles for a
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comparison of a fuel cell tractor to a traditional tractor acceleration should be
similar. It would be useful to have a simulation to predict the acceleration of a
tractor with changes made to the drive train. However, for an evaluation we can
look at the laws of physics starting with Equation 3.

F=ma EQ. 3

If the mass of the tractor stays the same and the forces on the tractor are
equivalent in the case of the fuel cell tractor and the internal combustion engine
tractor than the acceleration should be the same. By making the torque
equivalent the acceleration should also be equivalent.

The vehicle speed V is equal to the angular velocity of the wheels times the
effective rolling radius of the wheels running on a particular soil. The angular
velocity of the wheels depends on the torque supplied to the wheel and the
tractive efficiency of the wheel (Zoz et al., 2002).

Power Profiles

A more detailed analysis of power profiles is given in the beginning of this report
with data focusing mostly on field operations. It is believed that the power
requirements, although transient in nature and dependent on the operation, are
less variable for medium to large-scale tractors. For smaller tractors it is
expected that the average use of the tractor will be chore work implying vast
transient operations.

Typical PTO by Class

Max PTO power recorded at 540 RPM and 1000RPM was collected from the
Nebraska tractor test reports, and when not available from the manufacturers.
The data collected were divided into three tables: one for tractors with up to 20
kW of PTO power, next for tractors with PTO power between 20 kW and 200 kW
and finally for tractors with PTO power greater than 200 kW, all of which can be
seen in Appendix A. For each of the three groups examined there is a broad
range of PTO powers available enabling a tractor choice for almost any power
level, which is very different from the automobile market where distinct classes
exist. Itis the authors recommendation that if the goal is to build a prototype to
compare with the 20 kW group of compact tractors that the highest power rating
of 20 kW be chosen. However, with the broad ranges of available tractors it is
dificult to give a general PTO requirement for each of these three groups.

Typical Hydraulic Actuator Requirements by Class

For the 20 kW tractor group the hydraulic power ranged from 4.1 to 9.4 kW. For
the 20 to 200 kW group the hydraulic power ranged from 7.8 to 50.6 kW, and for
the 200 kW and up group the hydraulic power varied from 26 to 51 kW (can be
seen in Appendix A). It is also worthy to note that several tractors came with the
option of an upgraded hydraulic pump yielding higher hydraulic power. In general
it is difficult to choose a general hydraulic power requirement for each of these
groups since the spread of possibilities is so vast just as in the case of PTO
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power. For the traditional tractors it was found that the hydraulic pump was
powered by a mechanical connection to the engine. Although hydraulic power
was recorded, the performance of the hydraulic systems can be very different in
nature despite similar power. This is due to different uses, flow rates and
pressures. Once again if a comparison was to be made it would be advisable to
use a hydraulic system with similar specifications to the control tractor.

Combine Harvesters

Limited amount of information was available on the power profiles of combine
harvesters. Table 3 shows power specifications for several combines collected
from OEM data sheets. The combines are high power, and during the harvest
are generally run continuously until the harvest is complete. Due to the number
of functions taking place on the harvesters, and the current method of
mechanical power transmission, it has been shown that the use of electric motors
could prove advantageous in increasing overall efficiency and optimizing the use
of space (Bernhard, 2003).

Table 3: Power specifications of combine harvesters
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Power
Make Model ho KW
Massey Ferguson 8680 260.0 193.9
John Deere 9560 STS 265.0 197.6
Massey Ferguson 9690 285.0 212.5
Challenger CH660 285.0 212.5
New Holland CR940 295.0 220.0
New Holland CX840 295.0 220.0
John Deere 9660 STS 305.0 227.4
Massey Ferguson 9790 330.0 246.1
New Holland CR960 330.0 2461
New Holland CX860 330.0 246.1
John Deere 9760 STS 340.0 253.5
Challenger CH670 350.0 261.0
New Holland CR970 370.0 275.9
New Holland CX880 370.0 275.9
John Deere 9860 STS 375.0 279.6
Case |H AFX8010 375.0 279.6
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OPERATING REQUIREMENTS FOR A FUEL CELL POWER UNIT

Fuel cells have their highest efficiency at high voltages corresponding to lower
loads through the cell polarization curve (Larminie, 2003). An equation for
efficiency based on cell voltage can be seen in Equation 4.

Efficiency = u*(Vc/1.48)*100 EQ. 4

The typical power demand in agricultural vehicles is constant and high.
Compared to current engine ratings, they are operated close to max RPM. To
maintain a high efficiency the fuel cell stack would need to be oversized so that it
would be able to run at an optimum power level. Since medium to large scale
tractors are not subject to the constant unexpected variable loads seen by urban
automobiles, and do not require heavy breaking, large scale hybridization would
not be of much benefit (Schuller, 2002).

Power Train Differences Required to Accommodate the Fuel Cell
It is expected that due to the current series plate construction of fuel cell stacks
that the vibration seen in off-road applications could be detrimental.

Temperature will also play a role for fuel cell tractors to be used in Midwest
farming during the winter. Stack heaters and insulation will be required to protect
the electrolyte and shorten start up times in severe cold. Depending on the
operational temperature of the type of stack used cooling can also become an
issue. PEM stacks currently used in automotive application have an operation
range of 30-80P°"C. Unless cooling is to come from a source other than a water
circulated radiator a very large surface area is going to be required especially on
hot summer days.

Air purity is yet another concern for fuel cell systems since the poisoning of cell
catalyst is the greatest current threat to operating stacks. A series of advanced
air clean up devices should be required to ensure that the stack is not polluted by
particulate matter.

Aside from the effects of vibration, temperature and air purity, the concept of a
fuel cell powered tractor offers greater flexibility in power train layout since the
components are not mechanically linked. This would enable the designers to
place the components such that the overall vehicle has the weight distributed for
optimum traction. A block diagram of a fuel cell powered tractor power train can
be seen in Figure 20.
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Hydraulic |JHydraulic
| Pump Motor | | Pump

Drive t——p To Drive Wheels
Motor

PTO |3  ToPTO

Motor

Figure 20: Block diagram of fuel cell tractor power train

The electric transmission of power affords the elimination of costly transmissions
and uncouples the power generation from the usage.

Dealing with Transients

The transient response of the fuel cell stack itself is not a limiting factor. It has
been shown that a PEM fuel cell can reach 90% production within 1 second (Yan
et al., 2005). Turbocharged Diesel response times have been shown to be on
the order of 1.7 sec (Katrasnik et al., 2003). When dealing with fuel cell systems
the fuel processor has proven to be the limiting mechanism. It has been shown
that the limiting process in the indirect liquid-fueled fuel cell power train is the
slow response of the fuel reformer, which can take up to 20 seconds to ramp up
to 99% of the flow demand (Emonts et al., 2000; Betts, 2002; Beckhaus et al.,
2004).

The strategy behind a hybrid power train is to allow for the downsizing of the
power plant by compensating with some other form of stored energy. This is a
great strategy for vehicles that rarely run at full power such as cars, or an
example found of a hybrid electric forest vehicle(Carlini et al., 1997). However,
as can be seen by Figures 11 through 16 agricultural tractors are often run at full
power for extended periods of time. Even in the case of the medium to large
scale tractors some degree of hybridization is recommended. By designing a
hybrid fuel cell system the advantage would be that you would be able to quickly
provide power for any oscillatory demands, as well as be able to exceed the
rated power for a short duration to overcome any abnormal obstacles.

VEHICLE ARCHITECTURE RECOMMENDATIONS

It is important to note that the basis of this study is on an analysis of power
demand and load profiles only. Presented below is a comparison showing that
the use of electric motors is well suited to the torque demands of agricultural
work. Also discussed is recommendations by the author for fuel cell tractor
prototypes in each of the three pre-designated groups.

Properties Of Diesel Engines Vs. Fuel Cell / Electric Motors

As previously mentioned several electric tractors have been developed. Their
greatest shortcoming has been battery life, limiting the tractors to chore usage. If
a fuel cell was used to power the electric tractor the strength of an electric tractor
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could be fully realized, which is the electric motor. One of the important factors in
tractor engine design is having a torque reserve so that, for example, when a
plow hits a tree root, or a large stone, the engine output increases in torque as
the speed drops, otherwise in the case of an IC engine it will stall. As can be
seen Figure 21 electric motors are great in this regard (the electric motor in
Figure 21 is a series wound DC traction motor). If we also compare the
efficiency plot in Figure 21 back to the usage plots in Figures 11 through 16 we
can see that if an electric motor was being used that the motor efficiency would
almost always be at maximum.

Electric

Electric
(Series Wound)

Diesel

e ——

Efficiency
Torque

D T I i ——

!
I
|
I

Speed Rated Speed Rated
Speed Speed
Figure 21: Comparison between electric and diesel motor characteristics, which
have identical power ratings (Christianson, 1984)

During the literature review it was found that several computer models have been
created to evaluate tractive efficiency of tractors as well as the draft of pulled
implements (Sonnen, 1969; Clark, 1981; Dwyer, 1987). As mentioned previously
implement draft can be found using the ASAE standards if soil composition is
known (ASAE, 2003). There have also been several models developed to
evaluate tractive efficiency and vehicle performance on an economic scale (Al-
Janobi, 2002). It is recommended that a more comprehensive model be
developed to evaluate possible drive train design taking into account the often
variable nature of the load profile with outputs such as vehicle performance,
efficiency and fuel consumption. ADVISOR is one example of a simulation
program developed to evaluate different automobile power train configurations
including fuel cells (Markel et al., 2002; Maxoulis et al., 2004).

Vehicle Recommendations

Without a detailed computational analysis it is difficult to determine what
architecture would yield the best performance. However, from the data collected
on the uses of different sized tractors and the response times of fuel processors.

The following is recommended.

For small tractors to be used for personal or chore usage which would currently
fall into the category of less than 20 kW it is recommended that a slightly larger
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fuel cell stack of 25 kW be used with a direct drive electric motor. Compressed
hydrogen would yield the fast transient response times required, and a moderate
level of hybridization should be used to recoup the energy that would otherwise
be lost by frequent stops and starts. Aside from the main drive motor, an
additional hydraulic pump motor should be used to provide hydraulic power. An
additional motor designed to operate at 540 rpm could be used to supply PTO
power and enable the motor to be optimized for operation at that speed.

For medium scale tractors that currently utilize 20 to 200 kW of power the load
profiles have shown to be relatively constant with predictable transients. For this
class of vehicles it is also recommended that the fuel cell stack be slightly larger
than the current compression engine counterpart. Studies have shown that the
vehicles are most often operated at maximum power, and to obtain the highest
possible efficiency out of the fuel cell stack it would be ideal to operate the stack
at partial power. For ease of operation and longer hours of operation it is
recommended that vehicles of this class use on board liquid fuel reformers, with
a small degree of hybridization to handle unexpected transients. Since the load
profiles of the operations performed by these vehicles is fairly predictable and
generally continues for many hours at a time the liquid fuel option is well suited.

For ease of implementation a single electric motor could directly replace the
internal combustion engine on a current tractor chassis retaining the use of the
transmission. If implementation costs are not an issue there could be separate
motors used for prime motive force, the hydraulic pump and each PTO
connection.

The largest class of agricultural tractor evaluated is those that are over 200 kW.
These vehicles would be best suited to a similar architecture as the medium
scale tractors.

It is anticipated that for fuel cell vehicles to be used in agricultural applications,
eventually, drawn implements that currently use PTO power could be fitted with
their own electric motor(s), and a cable could be run to the implement to supply
power. This would yield overall increases in efficiency since the fuel conversion
of the fuel cell is greater than that of the internal combustion engine, and the
efficiency of the electric motor is generally higher than that of the transmission of
power through the mechanical transmission, universal joint(s) of the PTO and
mechanical transmission of the implement. The elimination of the universal joints
connecting the PTO outlet to the implement would also afford a greater degree of
flexibility in operation.

If fuel cells were to be tested for use in large scale tractors it is recommended
that combine harvesters be a starting point. The elimination of the numerous
mechanical transmissions of power from the engine to the individual processes
could result in much greater efficiencies. Also the size of combines would easily
comply with the requirements of an indirect liquid fueled fuel cell.
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CONCLUSION AND RECOMMENDATIONS

As has been shown the electric motors are a good match to the power
characteristics required by agricultural work. On the basis of load profiles alone
the authors would highly recommend the use of a hybrid fuel cell power train for
medium to large agricultural tractors (Carlini et al., 1997).

It is recommended that further studies be performed to research the effect of
energy density in tractor systems to determine if the size and weight of
acceptable fuel cell systems are compatible with off road use. A vehicle
simulation should be made to facilitate a parametric evaluation of possible power
trains and their economical impacts.
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APPENDIX
Table Al: Tractor data for small tractors with up to 20 kW of PTO power
. Power at 540 .
Make Drive Model Weight PTO RPM Hydraulic power g::;l;
(kg) | (LB) | (kW) | (hp) | (kW) | (hp)
Massey Ferguson| Std. | MF 1417-4 645 1422 9.9 13.3 4.1 5.4 1
Case-IH Std. DX18E 596 1314 10.2 13.7 1
New Holland | Std. TZ18DA 595 1311 10.2 13.7 1
John Deere  |4WD 4010 644 1420 10.4 14.0 49 6.6 1
Case-IH Std. DX22E 596 1314 12.7 17.0 1
New Holland Std. TZ22DA 599 1320 12.7 17.0 1
Case-IH Std. DX23 722 1592 13.0 17.5 1
John Deere  |4WD 2210 635 1400 13.2 17.7 4.7 6.3 1
New Holland | Std. TC23DA 722 1592 13.8 18.5 1
Massey Ferguson |4WD 1523 695 1532 13.9 18.7 1
AGCO 4WD ST24A 710 1565 14.2 19.0 1
Case-IH Std. DX25E 600 1323 14.2 19.0 1
New Holland | Std. TZ25DA 599 1320 14.2 19.0 1
AGCO Std. ST25 720 1588 14.5 19.5 5.1 6.9 1
Massey Ferguson| Std. | MF 1423-4 679 1498 14.5 19.5 5.1 6.9 1
AGCO 4WD ST22A 620 1367 14.7 19.7 1
Case-IH Std. DX26 726 1600 14.7 19.7 1
New Holland | Std. TC26DA 726 1600 15.3 20.5 1
Massey Ferguson| Std. | MF 1429-4 | 1240 | 2734 17.2 23.0 8.1 10.9 1
Case-IH Std. DX29 1122 | 2474 17.6 23.6 1
John Deere  |FWA 790 975 2150 17.9 24.0 5.0 6.7 1
AGCO Std. ST30x 1147 | 2528 18.3 24.5 6.9 9.3 1
AGCO 4WD ST28A 1000 | 2205 18.3 24.5 1
Massey Ferguson|4WD |MF 1428V-2/4| 1064 2345 18.3 24.5 6.9 9.3 1
Massey Ferguson |4WD 1528 1099 2423 18.3 24.5 1
Massey Ferguson |4WD 1531 1099 2423 18.3 24.5 1
New Holland | Std. TC29DA 1122 | 2474 18.6 25.0 1
AGCO Std. ST32 1198 | 2642 19.3 259 7.2 9.7 1
AGCO 4WD ST33A 1000 | 2205 19.3 25.9 1
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Power at 540

Make Drive Model Weight PTO RPM Hydraulic power g::;r;
ka) | (LB) | («w) [ (hp) | (kW) [ (hp)
Massey Ferguson| Std. | MF 1431-4 1069 2356 19.3 25.9 7.2 9.7 1
AGCO 4WD ST34A 1290 2844 19.4 26.0 1
Massey Ferguson |[4WD 1533 1290 2844 19.4 26.0 1
Challenger 4WD| MT265B 1422 3136 19.4 26.0 9.4 12.6 1
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Note: All of the data presented is from the manufacturers, since the Nebraska tests do
not give results for compact tractors. Hence, max drawbar pull and max torque
were unavailable.
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Table A2: Tractor data for medium scale tractors with PTO power ratings between 20 kW and 200 kW
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. Power at 540 Power at . . Max draw bar

Make Drive Model Weight PTO RPM 1O(|)?OP||?/ITO Hydraulic power ggc;r; - aplLIJa”Sted Max torque

(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) | (hp) (Ib) | (kN) | (Ibft) | (Nm)
Case-IH Std. DX33 1122 | 2474 | 20.1 | 26.9 1
AGCO Std. ST35 1437 | 3168 | 20.1 | 27.0 8.4 11.3 1
AGCO Std. ST35x 1399 | 3085 | 20.1 | 27.0 8.4 11.3 1
Massey Ferguson Std. MF 1433-4 | 1275 | 2810 | 20.1 | 27.0 8.4 11.3 1
Massey Ferguson Std. MF 1433V-4| 1265 | 2788 | 20.1 | 27.0 8.4 11.3 1
New Holland Std. TC33DA | 1122 | 2474 | 21.3 | 28.6 1
John Deere 4WD 4410 1284 | 2830 | 21.6 | 29.0 15.0 20.1 1
Case-IH Std. D/DX35 | 1497 | 3300 | 21.7 | 29.1 1
New Holland Std. TC35DA | 1523 | 3357 | 21.7 | 29.1 1
New Holland Std. TC35A 1466 | 3231 | 22.1 | 29.6 1
AGCO 4WD ST41A 1310 | 2888 | 23.1 | 31.0 1
Massey Ferguson| 4WD 1540 1310 | 2888 | 23.1 | 31.0 1
Challenger 4WD MT275B | 1437 | 3169 | 23.1 | 31.0 9.4 12.6 1
AGCO Std. ST40 1507 | 3323 | 24.2 | 324 8.4 11.3 1
AGCO Std. ST40x 1442 | 3180 | 24.2 | 324 8.4 11.3 1
Massey Ferguson Std. MF 1440-4 | 1361 | 3001 | 24.2 | 32.4 8.4 11.3 1
Massey Ferguson Std. MF 1440V-4| 1331 | 2935 | 24.2 | 32.4 8.4 11.3 1
Case-IH Std. D/DX40 | 1531 | 3375 | 24.8 | 33.2 1
New Holland Std. TC40DA | 1557 | 3433 | 24.8 | 33.2 1
New Holland Std. TC40A 1544 | 3405 | 26.1 | 35.0 1
AGCO Std. ST45 2018 | 4448 | 27.6 | 37.0 9.6 12.9 1
Massey Ferguson Std. MF1445-4 | 1753 | 3864 | 27.6 | 37.0 9.3 12.5 1
Case-IH Std. D/DX45 | 1648 | 3633 | 28.2 | 37.8 1
New Holland Std. TC45DA | 1696 | 3738 | 28.2 | 37.8 1
AGCO 4WD ST47A 1585 | 3494 | 28.3 | 38.0 1
Massey Ferguson| 4WD 1547 1585 | 3494 | 28.3 | 38.0 1
Challenger 4WD MT285B | 1660 | 3660 | 28.3 | 38.0 11.0 14.8 1

Case-IH FWA DX48 1957 | 4315 | 28.8 | 38.6 8.6 11.5 1 96 130
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Power at 540 Power at Max draw bar
. Weight 1000 PTO | Hydraulic power | Hitch pull Max torque
Make Drive Model PTO RPM RPM Class| unballasted
(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) (hp) (Ib) | (kN) | (Ibft) | (Nm)
New Holland FWA TCSSV[JA‘ 1957 | 4315 | 28.8 | 38.6 86 | 115 | 1 96 | 130
New Holland Std, TC45A | 1567 | 3454 | 29.5 | 39.6 1
Case-IH FWA | CX 50/C50 | 3445 | 7595 | 305 | 40.9 120 | 161 | 2 | 7990|3554 | 121 | 164
AGCO AWD ST52A | 1625 | 3582 | 30.6 | 41.0 1
Massey Ferguson| 4WD 1552 1585 | 3494 | 30.6 | 41.0 1
Challenger AWD | MT295B | 1690 | 3726 | 30.6 | 41.0 120 | 161 | 1
Case-H FWA JX55 | 2756 | 6075 | 316 | 42.4 95 | 128 | 2 |3680]16.37 | 1153 | 156
Massey Ferguson| FWA 243 | 2327 | 5130 | 317 | 425 122 | 163 | 2 | 4310|1917 | 133 | 180
New Holland FWA | TN55D |2901 | 6395 | 31.8 | 42.6 125 | 16.7 | 2 |5030|22.37 | 136.3 | 185
White FWA 6045 | 2216 | 4885 | 32.9 | 44.1 105 | 141 | 2 |5115|22.75| 1321 179
Case-IH FwA M POSeNeS| o756 | 6075 | 33.7 | 45.2 122 | 164 | 2 |5180|23.04|133.7 | 181
AGCO Std. ST55 | 2004 | 4417 | 340 | 45.6 128 | 172 | 1
Massey Ferguson Std. MF 1455-4 | 1720 | 3791 | 34.0 | 45.6 12.8 17.2 1
Massey Ferguson| std. | MF 1;‘?5\/' 1615 | 3560 | 34.0 | 45.6 128 | 172 | 1
John Deere FWA | 5210/5220 | 2300 | 5070 | 34.4 | 46.2 119 | 159 | 2 130 | 176
Massey Ferguson FWA 2210 2506 | 5525 | 345 | 46.3 13.0 17.5 2 123 | 167
John Deere Std. | 5105 (late) | 2041 | 4500 | 352 | 47.2 104 | 139 | 2 133 | 180
Case-IH FWA UX65 | 2781|6130 | 35.6 | 47.7 95 | 128 | 2 |368016.37|129.7 | 176
Case-IH FWA DX55 | 2125 | 4685 | 356 | 47.8 92 | 123 | 1 122 | 165
New Holland FWA TcggvsA' 2125 | 4685 | 35.6 | 47.8 92 | 123 | 1 122 | 165
Massey Ferguson| FWA 263 | 2318 5110 | 36.7 | 49.2 116 | 155 | 2 |4520|2011|161.8| 219
John Deere FWA | 5205 (late) | 2161 | 4765 | 37.8 | 50.7 10 | 147 | 2 0.00 | 142 | 193
New Holland FWA TN-65 | 2549 | 5620 | 38.6 | 51.8 125 | 167 | 2 |7155|31.83 | 146.6 | 199
New Holland FWA | TN65D |2930| 6460 | 391 | 52.4 125 | 167 | 2 |6785|30.18 | 151.9 | 206
Massey Ferguson| FWA 4225 | 3461|7630 | 39.8 | 534 | 417 | 559 | 115 | 154 | 2 |7680|34.16 | 1747 | 237
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Power at 540 Power at Max draw bar
. Weight 1000 PTO | Hydraulic power | Hitch pull Max torque

Make Drive Model PTO RPM RPM Class| unballasted
(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) (hp) (Ib) | (kN) | (Ibft) | (Nm)
Massey Ferguson| FWA 43‘%22(2)'50 3461|7630 | 39.8 | 53.4 | 41.7 | 559 | 115 | 154 | 2 |7680|34.16 | 174.7 | 237
Challenger FWA | MT425 |3461| 7630 | 398 | 534 | 417 | 559 | 115 | 154 | 2 | 76803416 | 174.7 | 237
Case-IH FWA | CX 60/C60 | 3450 | 7605 | 41.0 | 55.0 118 | 158 | 2 |9160|40.75| 161 | 218
John Deere FWA | 5310/5320 | 2336 | 5150 | 41.7 | 55.9 121 | 162 | 2 0.00 | 168 | 228
Case-IH FWA JX75 | 3073 | 6775 | 42.0 | 56.3 95 | 128 | 2 |3930|17.48 | 1533 | 208
New Holland | FWA | TL70D | 3740 | 8245 | 421 | 56.5 116 | 156 | 2 | 9065 40.32 | 1704 | 231
Massey Ferguson FWA 2220 2245 | 4950 | 42.8 | 57.3 9.7 13.0 2 169 | 229
Case-H FwA | WX POSeNeS| o781 | 6130 | 446 | 59.8 106 | 142 | 2 |4625|2057 | 1725 | 234
New Holland | FWA | TN70D | 2570 | 5665 | 44.6 | 59.8 125 | 16.7 | 2 |7375|32.81|179.2 | 243
Case-H FWA |1 [0Se1eS| 3307 | 7290 | 47.3 | 63.4 110 | 147 | 2 |6190|27.53 | 1533 | 208
New Holland | FWA | TN75D | 2930 | 6460 | 47.5 | 63.7 152 | 204 | 2 |2438|10.84 | 202.2 | 274
Massey Ferguson| FWA 4233 | 3146 | 6935 | 483 | 64.8 | 50.7 | 68.0 | 122 | 163 | 2 |6970|31.00 | 197.5 | 268
Massey Ferguson| FWA 43223(3?)'80 3146 | 6935 | 48.3 | 64.8 | 507 | 68.0 | 122 | 163 | 2 |6970|31.00 | 197.5| 268
Challenger FWA | MT445 |3146| 6935 | 483 | 64.8 | 507 | 68.0 | 122 | 163 | 2 |6970|31.00|197.5| 268
Case-IH FWA | JX80U |3699| 8155 | 485 | 65.0 147 | 197 | 2 | 9105]40.50 | 186.4 | 253
Massey Ferguson| FWA 4235 | 3713 | 8185 | 486 | 652 | 49.7 | 66.6 | 111 | 149 | 2 |8545|38.01|2115] 287
John Deere FWA | 5410/5420 | 2624 | 5785 | 48.8 | 65.4 163 | 219 | 2 204 | 277
Case-IH FWA JX85 | 3173|6995 | 491 | 65.8 95 | 128 | 2 |446019.84 | 169.7 | 230
New Holland | FWA | TL8OD | 3740 | 8245 | 49.2 | 66.0 116 | 156 | 2 |9195]40.90 | 1884 | 255
John Deere FWA | 6110 PQ | 4300 | 9480 | 51.8 | 69.4 252 | 338 | 2 |10145|4513| 231 | 313
Challenger FWA | MT455 |3731| 8225 | 55.6 | 745 | 57.8 | 775 | 115 | 154 | 2 |8950]39.81 | 2413 | 327
Massey Ferguson| FWA | %23 | 3731 | 8225 | 55.8 | 74.8 | 57.8 | 77.5 | 11.5 | 154 | 2 |8950|39.81|2413 | 327
John Deere FWA | 5510/5520 | 2885 | 6360 | 56.9 | 76.2 166 | 223 | 2 236 | 320
Case-IH FWA "xusf’,\fsxes 3484 | 7680 | 57.0 | 76.4 135 | 181 | 2 |6520|29.00]239.8 | 325
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. Power at 540 Power at _ . Max draw bar
Make Drive Model Weight PTO RPM 10(|)20P|;ATO Hydraulic power g;;c;r; unbglllja”sted Max torque
(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) (hp) (Ib) | (kN) | (Ibft) | (Nm)
Case-IH FWA | JX90U |3951]| 8710 | 60.3 | 80.9 147 | 197 | 2 | 9285|4130 2135 289
Case-IH Fwa  [MXP05eNeS| 3454 | 7615 | 60.6 | 81.3 11.9 | 160 | 2 |6500|28.91|219.7 | 298
Case-IH FWA JX95 | 3454|7615 | 60.9 | 81.7 95 | 128 | 2 |4115]18.30 | 206.4 | 280
Case-IH FWA | JX100U |3951| 8710 | 62.0 | 83.1 147 | 197 | 2 | 9510 |42.30 | 243.8 | 331
Massey Ferguson| FWA 4255’535”" 3824 | 8430 | 621 | 833 | 64.7 | 867 | 111 | 149 | 2 |9170|40.79 | 269.4 | 365
Challenger FWA | MT465 |3824| 8430 | 621 | 833 | 647 | 867 | 111 | 149 | 2 | 9170 |40.79 | 269.4 | 365
AGCO Allis FWA 5650 | 2141 | 4720 348 | 46.7 | 7.8 | 104 | 1 |4385|19.51|1236| 168
AGCO Allis FWA 5660 | 2350 | 5180 420 | 563 | 87 | 117 | 2 |4795|2133| 136 | 184
Case-IH FWA | CX70/C70 | 3749 | 8265 463 | 621 | 144 | 193 | 2 |9485|42.19| 195 | 264
McCormick FWA CX-70 | 3749 | 8265 463 | 621 | 144 | 193 | 2 |9485|42.19| 195 | 264
McCormick FWA CX-75 | 3749 | 8265 463 | 621 | 144 | 193 | 2 |9485|42.19| 195 | 264
Case-IH FWA | MX80C |4799 10580 500 | 671 | 226 | 30.3 | 2 |11080|49.29| 218 | 296
John Deere FWA | 6120SP | 4241 | 9350 517 | 69.3 | 262 | 351 | 2 |7395|32.89| 231 | 313
Case-IH FWA | CX 80/C80 | 3690 | 8135 544 | 730 | 139 | 186 | 2 |9530|42.39| 225 | 305
McCormick FWA CX-80 | 3690 | 8135 544 | 730 | 139 | 186 | 2 |9530|42.39| 225 | 305
McCormick FWA CX-85 | 3690 8135 544 | 730 | 139 | 186 | 2 |9530|42.39| 225 | 305
AGCO Std. LT70 | 3617 | 7975 558 | 749 | 95 | 127 | 2 235 | 319
8745
AGCO Allis Std. | (Cummins | 3617 | 7975 558 | 749 | 95 | 127 | 2 235 | 319
engine)
White Std. 6410 | 3617 | 7975 558 | 749 | 95 | 127 | 2 235 | 319
AGCO Allis Std. 8745 | 3536 | 7795 562 | 753 | 91 | 122 | 2 240 | 325
Case-IH FWA | MX90C |5080 11200 562 | 754 | 19.8 | 265 | 3 |11935]53.09| 236 | 320
New Holland FWA Tgp%%g“ 4314 | 9510 566 | 75.9 | 16.7 | 224 | 2 |10330|45.95 | 2395 | 325
John Deere FWA | 6210 PQ | 4359 | 9610 56.7 | 76.0 | 248 | 333 | 2 |10695|47.57 | 249 | 338
John Deere FWA | 6220 PQ | 4345 | 9580 569 | 76.3 | 320 | 429 | 2 |8115|36.10| 252 | 342
AGCO FWA | LT75 New | 4354 | 9600 589 | 790 | 159 | 213 | 2 240 | 325
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Power at 540 Power at Max draw bar
. Weight 1000 PTO | Hydraulic power | Hitch pull Max torque
Make Drive Model PTO RPM RPM Class| unballasted
(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) (hp) (Ib) | (kN) | (Ibft) | (Nm)
Massey Ferguson| FWA 6245 | 4230 | 9325 593 | 795 | 162 | 217 | 2 |7890]35.10 | 230.1 | 312

Case-H FWA | CX 90/C90 | 3706 | 8170 605 | 811 | 142 | 191 | 2 |9220|41.01| 235 | 319
McCormick FWA C’é‘i‘_’ga;d 3706 | 8170 605 | 81.1 | 142 | 191 | 2 |9220|41.01| 235 | 319
New Holland FWA TLOOD | 3819 | 8420 606 | 812 | 116 | 156 | 2 |9285|41.30|2156 | 292
New Holland FWA | TL100D |3989 | 8795 611 | 81.9 | 101 | 135 | 2 |9525]42.37 | 244.7 | 332

Massey Ferguson| FWA 6255 4454 | 9820 62.1 | 83.3 16.2 21.7 2 |8970|39.90 | 252.8 | 343
John Deere FWA | 6310PQ |4416 | 9735 621 | 833 | 217 | 291 | 2 |9415|41.88| 267 | 362
John Deere FWA | 6310SP | 4354 | 9600 624 | 837 | 255 | 342 | 2 |10090| 44.88 | 273 | 370
John Deere FWA | 6320 PQ | 4550 | 10030 630 | 85.7 | 317 | 425 | 2 |9450]|42.04| 265 | 359
AGCO Allis FWA 8765 | 3921 | 8645 650 | 872 | 82 | 110 | 2 280 | 380

CX

Case-IH FWA | 4007100 | 3756 | 8280 650 | 87.2 | 139 | 187 | 2 |9160|40.75| 268 | 363
McCormick | FwA | “S199 0] 3756 | 8280 650 | 872 | 139 | 18.7 9160 | 40.75 | 268 | 363

AGCO FWA LTO0 | 4454 | 9820 654 | 87.7 | 166 | 222 | 2 322 | 437

AGCO Std. LT85 | 3833 | 8450 655 | 87.9 | 104 | 140 | 2 275 | 373

8765
AGCO Allis Std. | (Cummins | 3833 | 8450 655 | 87.9 | 104 | 140 | 2 275 | 373
engine)

White Std. 6510 | 3833 | 8450 655 | 87.9 | 104 | 140 | 2 275 | 373
John Deere FWA 6403 | 3969 | 8750 657 | 881 | 139 | 186 | 2 |7636]|33.97 | 266 | 361
New Holland FWA TS 100 | 4300 | 9480 660 | 885 | 189 | 254 | 2 |9780]43.50 | 276.4 | 375
John Deere FWA 6415 | 4300 | 9480 676 | 907 | 183 | 245 | 2 | 9065|4032 265 | 359
John Deere FWA | 6410PQ | 4391 9680 690 | 925 | 233 | 312 | 2 | 94804217 | 293 | 397

4360 (also

Massey Ferguson|  FWA | 2001950 | 4119 | 9080 691 | 927 | 119 | 159 | 2 |9420|41.90|270.2 | 366

Massey Ferguson| FWA 6265 | 4781 | 10540 705 | 945 | 162 | 217 | 2 |10515] 46.77 | 290.9 | 394

FENDT FWA 410 | 5525 | 12180 706 | 947 | 227 | 304 | 3 |12730| 56.63 | 333 | 451
New Holland FWA | TM115 | 5334 |11760 707 | 948 | 303 | 407 | 2 |11690] 52.00 | 310.9 | 422
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. Power at 540 Power at _ . Max draw bar
Make Drive Model Weight PTO RPM 10(|)20P|;ATO Hydraulic power g;;c;r; unbglllja”sted Max torque
(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) (hp) (Ib) | (kN) | (Ibft) | (Nm)
John Deere FWA | 6420AQ | 5039 |11110 716 | 96.0 | 316 | 424 | 2 | 9915|4410 326 | 442
New Holland FWA Ti;;gdz“ 4443 | 9795 729 | 978 | 174 | 233 | 2 [1037546.15|323.4 | 438
AGCO Allis FWA 8775 | 4976 | 10970 732 | 981 | 300 | 402 | 2 298 | 404
John Deere FWA 6603 | 4266 | 9405 734 | 984 | 17.0 | 228 | 2 |8807|39.18| 333 | 451
AGCO FWA RT95 | 5042 [11115 747 [1002] 306 | 410 | 2 324 | 439
8775
AGCO Allis FWA | (Cummins | 5042 [11115 747 |1002| 306 | 410 | 2 324 | 439
engine)
White FWA 6710 | 5042 |11115 747 [1002| 306 | 410 | 2 324 | 439
Massey Ferguson| FWA 43157(8)'30 4130 | 9105 752 |1008| 11.0 | 147 | 2 |9330|41.50|316.6 | 429
John Deere FWA 7220 | 5366 | 11830 752 |100.9| 294 | 39.4 | 2 |11834]52.64 | 330 | 447
Massey Ferguson| FWA 6270 | 4781 | 10540 772 [1035| 162 | 21.7 | 2 |9690 |43.10 | 3161 | 429
Challenger FWA | MT535 |4781 10540 772 |1035| 306 | 41.0 | 2 |9690|43.10 ] 316.1 | 429
John Deere FWA 6615 | 4840 | 10670 772 |1035| 189 | 253 | 2 |9875|43.93| 311 | 422
Case-IH FWA | MXM 120 | 5366 | 11830 776 |104.1| 306 | 410 | 2 |12320]54.80 | 372.2 | 505
New Holland FWA | TM120 |5366|11830 776 |104.1| 306 | 410 | 2 |12320]54.80 | 372.2 | 505
FENDT FWA 411 | 5525 12180 792 |1062| 227 | 304 | 3 |13375|59.49 | 367 | 498
New Holland | , ﬂ‘i‘éﬁ’gie ] TVT:/“&%”C’ 6675 | 14715 813 [100.0| 2904 | 39.4 | 2 |11010/48.97 | 395 | 536
New Holland FWA | TM125 |5337|11765 818 [109.7| 293 | 39.3 | 2 |11870| 52.80 | 371.4 | 504
Case-IH FWA | MXM 130 | 5405 | 11915 841 |1128| 312 | 41.9 | 2 |12550| 55.83 | 348 | 472
New Holland FWA | TM130 |5405]|11915 841 |112.8| 312 | 419 | 2 |12550|55.83 | 348 | 472
FENDT FWA 412 | 5525 12180 855 |114.7| 227 | 304 | 3 |12370|55.02| 408 | 553
John Deere FWA | 7510 PQ | 6024 |13280 85.8 |1151| 274 | 36.7 | 2 |13818]61.47 | 395 | 536
John Deere FWA 7320 | 5899 | 13005 86.0 |1153| 294 | 394 | 2 [13130]58.41| 353 | 479
John Deere FWA 7420 | 5847 | 12890 869 |1166| 292 | 392 | 2 |12802|56.95| 414 | 561
Massey Ferguson| FWA 6280 | 5185 | 11430 872 | 1169| 162 | 217 | 2 |11535]51.31 | 362.9 | 492
AGCO Allis FWA 8785 | 5647 | 12450 873 | 1171 282 | 378 | 2 388 | 526
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. Power at 540 Power at _ . Max draw bar
Make Drive Model Weight PTO RPM 10%0PIIT/|TO Hydraulic power g;;c;r; unbglllja”sted Max torque
(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) | (hp) (Ib) | (kN) | (Ibft) | (Nm)
White FWA 6810 5772 | 12725 879 |117.8| 29.5 39.5 2 |11925| 53.05| 367 | 498
New Holland FWA TM 135 | 6130 |13515 88.0 |118.0| 295 39.6 2 |13375|59.49 | 392.8 | 533
FENDT FWA 712 - New | 6720 | 14815 88.1 | 118.1| 24.5 32.8 3 [15025| 66.83 | 388 | 526
AGCO FWA RT115 5851 | 12900 89.8 |120.4| 24.2 32.4 2 |10630| 47.28 | 386.2 | 524
John Deere FWA 7610 PQ | 6595 | 14540 90.0 | 120.7| 26.3 35.3 3 |14933|66.43 | 420 | 569
Case-IH FWA MXM 140 | 5867 | 12935 90.1 | 120.8 | 30.5 40.9 2 |13895|61.81 | 419.4 | 569
New Holland FWA TM 140 | 5867 | 12935 90.1 | 120.8| 30.5 40.9 2 |13895|61.81 | 419.4 | 569
John Deere FWA 7520 IVT | 6024 | 13280 93.8 |125.8| 32.0 42.9 2 |13634| 60.65| 454 | 616
Massey Ferguson FWA 6290 5169 | 11395 941 |126.2| 16.2 21.7 2 |10925| 48.60 | 370 | 502
Challenger FWA MT 545 | 5169 | 11395 941 |1126.2| 29.5 39.5 2 [10925|48.60 | 370 | 502
New Holland FWA TM 150 | 6332 | 13960 94.5 |126.7| 29.6 39.7 2 |14430| 64.19 | 438.6 | 595
FENDT FWA 714 - New | 6720 | 14815 99.1 |132.9| 245 32.8 3 |15215|67.68 | 451 | 611
Case-IH FWA MXM 155 | 5860 | 12920 99.6 |133.6| 30.8 41.3 2 [13915|61.90 | 462.5 | 627
New Holland FWA TM 155 | 5860 | 12920 99.6 |133.6| 30.8 41.3 2 [13915|61.90 | 462.5 | 627
John Deere FWA 7710 PQ | 6836 | 15070 102.8 (137.9| 28.3 37.9 3 [15820| 70.37 | 522 | 708
AGCO FWA RT130 7271 {16030 105.1| 1409 | 27.4 36.7 2 |12950| 57.60 | 454.6 | 616
Massey Ferguson| FWA 8220 7210 | 15895 105.3|141.2| 26.7 35.8 3 |14705| 65.41 | 440.2 | 597
AGCO CVT /FWA|RT135 New | 7042 | 15525 105.9 1421 34.9 46.8 3 [13536| 60.21 | 531 | 720
New Holland FWA TM 165 | 6557 | 14455 110.2 (147.8| 31.2 41.9 2 |14615| 65.01 | 487.1 | 660
John Deere FWA 7720 7473 | 16475 112.3(150.6| 29.0 38.9 3 [16440| 73.13 | 558 | 757
Case-IH FWA MX 180 | 8718 | 19220 112.6|151.0| 354 47.5 3 |19501| 86.74 | 558 | 757
John Deere FWA 7810 IVT | 7344 | 16190 112.7 (151.1| 28.6 38.3 3 |16698| 74.28 | 568 | 770
Massey Ferguson| FWA 8240 7396 | 16305 113.8|152.6 | 26.7 35.8 3 [13945| 62.03 | 493.6 | 669
Challenger FWA MT 565 | 7396 | 16305 113.8|152.6 | 30.1 40.4 3 [13945| 62.03 | 498.6 | 676
FENDT FWA 716 - New | 6720 | 14815 114.1|153.0| 24.5 32.8 3 [15635| 69.55 | 509 | 690
AGCO FWA RT 145 | 7582 | 16715 114.3(153.3| 30.1 40.4 3 [15069| 67.03 | 478 | 648
White FWA 8410 7582 | 16715 114.31153.3| 30.1 40.4 3 |15069| 67.03 | 478 | 648
Case-IH FWA MXM 175 | 7164 | 15795 115.0 (154.2| 29.7 39.8 2 |16455|73.20 | 512.1 | 694
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. Power at 540 Power at _ . Max draw bar
Make Drive Model Weight PTO RPM 10(|)20P|;ATO Hydraulic power g;;c;r; unbglllja”sted Max torque
(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) (hp) (Ib) | (kN) | (Ibft) | (Nm)
New Holland FWA T'\f\lgf " | 7164 | 15795 1150 |1542| 297 | 398 | 2 |16455|73.20|512.1 | 694
AGCO FWA |RT150 New | 7446 | 16415 1157|1552 | 350 | 47.0 | 3 |14253|63.40| 551 | 747
Massey Ferguson| FWA 8250 | 8194 | 18065 1217]1632| 29.8 | 400 | 3 |16235|72.22 | 5186 | 703
John Deere FWA 8110 | 8775 | 19345 1233|1654 | 29.8 | 399 | 3 |19272|85.73| 586 | 794
Case-IH FWA | MXM 190 | 7924 | 17470 1248|1674 275 | 369 | 2 |17465|77.69|5563.7 | 751
New Holland FWA T'\f\l;\?vo' 7924 | 17470 1248|167.4| 275 | 369 | 2 |17465|77.69|5563.7 | 751
AGCO FWA | DT 160 |8623]19010 1255|1683| 295 | 396 | 3 |19010| 84.56 | 538 | 729
9755
AGCO Allis FWA | (Cummins | 8623 |19010 1255|168.3| 295 | 396 | 3 |17894|79.60| 538 | 729
engine)
White FWA 8510 | 8623 | 19010 1255]168.3| 295 | 396 | 3 |17894| 79.60 | 538 | 729
AGCO Allis FWA 9755 | 8700 | 19180 126.0|168.9| 265 | 356 | 3 567 | 769
Case-IH FWA | MX200 |8918 19660 127.4170.8| 335 | 449 | 3 |19863|88.35| 660 | 895
John Deere FWA 7820 | 7815 | 17230 1275]171.0| 292 | 391 | 3 |17061|75.89 | 616 | 835
Challenger FWA | MT635 |8528]18800 1278|1714| 265 | 356 | 3 561 | 761
Massey Ferguson| FWA 8245 | 8528 | 18800 1278|1714| 265 | 356 | 3 561 | 761
John Deere FWA 8120 | 9099 | 20060 1284 |1721| 299 | 401 | 3 |18768|83.48 | 632 | 857
Case-IH FWA | MX210 |9160|20195 1287 1725| 462 | 620 | 3 |19579)87.09| 692 | 938
FENDT FWA 918 | 8555 | 18860 1318]176.8| 317 | 425 | 3 |19535/86.90 | 533 | 723
Massey Ferguson| FWA 8260 | 8548 | 18845 137.1]183.9| 298 | 399 | 3 589 | 799
Challenger FWA | MTG645 |8548 18845 1371]183.9| 298 | 399 | 3 589 | 799
John Deere FWA 7920 | 8149 | 17965 1384 |1856| 30.8 | 413 | 3 |17373|77.28 | 654 | 887
John Deere FWA 8210 | 8777 |19350 139.7187.3| 29.8 | 399 | 3 |19515|86.81 | 667 | 904
John Deere | Tracked | 8210T |11517| 25390 1403]1881| 286 | 384 | 3 |24479]108.89| 663 | 899
FENDT FWA 920 | 8555 | 18860 1416[189.9| 317 | 425 | 3 |19210|85.45| 592 | 803
Case-IH FWA | MX220 |9076 20010 1419[1903| 344 | 461 | 3 |20650/91.86| 712 | 965
John Deere FWA 8220 | 9092 |20045 1426|1912| 299 | 401 | 3 |18291|81.36| 706 | 957
AGCO Allis FWA 9765 | 8700 | 19180 143.0]191.8| 265 | 356 | 3 641 | 869
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. Power at 540 Power at _ . Max draw bar
Make Drive Model Weight PTO RPM 10(|)20P|;ATO Hydraulic power g;;c;r; unbglllja”sted Max torque
(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) (hp) (Ib) | (kN) | (Ibft) | (Nm)

Case-IH FWA | MX230 |9117 20100 1432]192.0| 466 | 625 | 3 |19628|87.31| 778 | 1055
New Holland FWA | TG210 |9278 20455 1442]1933| 465 | 624 | 3 |20092]89.37 | 679 | 921

AGCO FWA | DT 180 |8838 |19485 149.1]2000| 300 | 402 | 3 |18618|82.82| 633 | 858

9765
AGCO Allis FWA | (Cummins | 8838 | 19485 1491]200.0| 300 | 402 | 3 |18618|82.82| 633 | 858
engine)

White FWA 8610 | 8838 | 19485 1492]2001| 300 | 402 | 3 |18618|82.82| 633 | 858
Challenger | Tracked | MT 735 |12705|28010 14962007 | 494 | 663 | 3 |26200[116.54] 720 | 976
John Deere | Tracked | 8310T |11775| 25960 153.9|2063| 286 | 384 | 3 |25919|115.29| 729 | 988
John Deere FWA 8310 | 9008 | 19860 1545|2073| 29.8 | 399 | 3 |18508|82.33| 741 | 1005

Massey Ferguson| FWA 82;2)7(8)'30 9795 | 21595 158.3[212.3| 265 | 356 | 3 |20765)92.37 | 710 | 963
Challenger FWA | MT655 |9795]21595 158.3|212.3| 265 | 356 | 3 |20765|92.37 | 710 | 963

Case-IH FWA | MX240 | 941020745 1591|213.4| 343 | 460 | 3 |20928/93.09| 810 | 1098
New Holland FWA | TG230 |9226 |20340 1593 |2136| 474 | 635 | 3 |19826|88.19 | 754 | 1022
AGCO Allis FWA 9775 | 9002 | 19845 160.9|215.8| 29.8 | 400 | 3 692 | 938
John Deere | Tracked | 8320T |12127|26735 162.3|217.6| 295 | 396 | 3 |26656|118.57| 780 | 1058
John Deere FWA 8320 | 9085 | 20030 163.0|2185| 29.9 | 401 | 3 |19460|86.56 | 760 | 1030

Case-IH FWA | MX255 |9775 |21550 16342192 | 462 | 620 | 3 |21234| 9445 879 | 1192
Challenger | Tracked | MT 745 |12710]28020 164.7 | 220.8| 49.7 | 666 | 3 |26433(117.58] 804 | 1090

AGCO FWA | DT200 |8904 |19630 1651|2214| 288 | 386 | 3 |17996|80.05| 716 | 971

9775
AGCO Allis FWA | (Cummins |8904 | 19630 165.1|221.4| 288 | 386 | 3 |17996|80.05| 716 | 971
engine)

White FWA 8710 | 8904 | 19630 1651|2214| 288 | 386 | 3 |17996|80.05| 716 | 971

FENDT FWA 924 | 8555 | 18860 1674 |2245| 331 | 444 | 3 |19625|87.30 | 657 | 891
New Holland | rtm/gie . 928128(2;30 11251 24805 1708|229.0| 402 | 539 | 4 |25020(111.29| 746 |1011

Massey Ferguson 8280 | 9770 | 21540 1725|2313| 265 | 356 | 3 |20925|93.08| 801 | 1086
Challenger FWA | MT665 |9770 |21540 1725|2313| 265 | 356 | 3 |20925/93.08| 801 | 1086
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Power at 540 Power at Max draw bar

. Weight 1000 PTO | Hydraulic power | Hitch pull Max torque

Make Drive Model PTO RPM RPM Class| unballasted
(kg) | (LB) | (kW) | (hp) | (kW) | (hp) | (kW) (hp) (Ib) | (kN) | (Ibft) | (Nm)
AGCO FWA DT 225 8956 | 19745 174.0 (2334 294 39.4 3 |18284|81.33 | 677 | 918

9785
AGCO Allis FWA (Cummins | 8956 | 19745 174.0 (2334 | 294 394 3 (18284|81.33| 677 | 918
engine)

White FWA 8810 8956 | 19745 174.0|1233.4| 294 39.4 3 |18284| 81.33 | 677 | 918
John Deere FWA 8420 10786| 23780 175.6 |235.5| 29.9 40.1 3 |24276|107.98| 823 | 1116
John Deere | Tracked 84;2;&”" 11966 26380 176.5(236.8| 286 | 384 | 3 [27233(121.14| 844 | 1144
John Deere FWA 8410 9271 | 20440 176.6 | 236.8| 29.8 39.9 3 120330/ 90.43 | 829 | 1124

Case-IH ‘.WVD’ STX 275 |14417|31785 178.21238.9| 36.9 49.5 4 |32944(146.54| 953 | 1292
Articulated
New Holland Art‘ilc\:/XIIZied TJ 275 [14417|31785 178.21238.9| 36.9 49.5 4 |32944(146.54| 953 | 1292
Case-IH FWA MX 285 | 981121630 180.6 [ 242.2| 47.7 63.9 3 |20820| 92.61 | 947 | 1284
Case-IH FWA MX 270 | 9480 | 20900 181.3243.2| 34.3 46.0 3 (21665|96.37 | 923 | 1251
New Holland FWA TG 255 9639 | 21250 183.4 | 246.0| 45.6 61.2 3 120629|91.76 | 831 | 1127
John Deere Tracked 8520T 12374| 27280 190.9(256.0| 29.5 39.6 3 |27960|124.37| 912 | 1236
John Deere FWA 8520 10796| 23800 191.3(256.5| 29.9 40.1 3 123197|103.19| 922 | 1250
Challenger Tracked MT 755 |13320|29365 191.9(257.3| 50.6 67.8 3 (28137|125.16| 921 | 1249
John Deere FWA 9120 16046| 35375 196.1 [ 263.0| 26.8 36.0 3 |35182|156.50| 874 | 1185
FENDT FWA 926 8555 | 18860 196.6 | 263.6 | 31.7 425 3 |19485| 86.67 | 864 | 1171
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Power at 1000

Max draw bar

Make Drive Model Weight PTO RPM Hydraulic power gli;(;r; pull unballasted Max torque

(kg) (LB) (kW) | (hp) | (kW) | (hp) (Ib) (kN) | (Ibft) | (Nm)

New Holland[dWD, Articulated| 9482 | 13608| 30000 | 204.1 | 273.7 | 42.3 | 56.7 | 4 | 33490 | 148.97 | 901 | 1222
New Holland FWA TG 285 | 9605 | 21175 | 204.9 | 2748 | 467 | 62.6 | 3 | 20744 | 92.27 | 925 | 1254
Case-lH |[4WD, Articulated| STX 325 |14481| 31925 | 2101 | 281.8 | 36.9 | 495 | 4 |32797 | 145.89 | 1062 | 1440
New Holland[dWD, Articulated| TJ 325 |14481| 31925 | 2101 | 281.8 | 36.9 | 495 | 4 |32797 | 145.89 | 1062 | 1440
Challenger | Tracked MT 765 |13311] 29345 | 211.0 | 283.0 | 495 | 664 | 3 | 28095 | 124.97 | 1012 | 1372
John Deere FWA 9200 |14959| 32980 | 2215 | 2970 | 27.7 | 371 | 3 1020 | 1383
New Holland[dWD, Articulated| 9684 | 13894| 30630 | 224.7 | 3013 | 41.9 | 56.2 | 4 | 31355 | 139.47 | 1099 | 1490
John Deere FWA 9220 | 16558| 36505 | 2371 | 318.0 | 26,6 | 35.7 | 3 | 35831 | 159.38 | 1094 | 1483
New Holland[4WD, Articulated| 9682 | 14454| 31865 | 238.5 | 319.8 | 452 | 60.6 | 4 | 34630 | 154.04 | 1159 | 1571
Challenger | Tracked MT 835 |18690| 41205 | 244.0 | 328.4 | 493 | 661 | 4 | 38429 | 170.94 | 1183 | 1604
John Deere|  Tracked 9400T |19253| 42445 | 2475 | 332.0 | 29.8 | 39.9 | 3 | 42017 | 186.90 | 1153 | 1563
John Deere|  Tracked 9453?(}0?”‘1 19253| 42445 | 2475 | 3320 | 298 | 39.9 | 3 |42017 | 186.90 | 1153 | 1563
Case-lH |[4WD, Articulated| STX 375 |17060| 37610 | 252.0 | 337.9 | 36.9 | 495 | 4 |33658 | 149.72 | 1325 | 1796
New Holland[4WD, Articulated| TJ 375 |17060| 37610 | 252.0 | 337.9 | 36.9 | 495 | 4 |33658 | 149.72 | 1325 | 1796
John Deere FWA 9420 |16895| 37246 | 2561 | 343.4 | 446 | 59.8 | 3 | 38409 | 170.85 | 1162 | 1575
John Deere | Tracked 9520T |19690| 43410 | 266.6 | 3575 | 306 | 411 | 3 | 42772 | 193.10 | 1221 | 1655
John Deere|  Tracked 9320T |19432| 42840 | 267.7 | 359.0 | 29.9 | 401 | 3 | 41342 | 183.90 | 1291 | 1750
John Deere FWA 9520 |17379| 38315 | 267.8 | 3591 | 26.4 | 354 | 3 | 40323 | 179.37 | 1231 | 1669
John Deere|  Tracked  |9620T New| 19677 | 43380 | 271.1 | 3635 | 28.6 | 384 | 3 | 40016 | 178.00 | 1233 | 1672
John Deere FWA 9320 |16583| 36560 | 2721 | 3649 | 26.8 | 36.0 | 3 | 38306 | 170.39 | 1262 | 1711
Challenger | Tracked MT 845 |18897| 41660 | 2724 | 3653 | 482 | 646 | 4 |38250 | 17014 | 1326 | 1798
John Deere FWA 9620 New |17735| 39100 | 276.4 | 3707 | 285 | 382 | 3 | 40461 | 179.98 | 1238 | 1678

STX 440
Case-lH |[4WD, Articulated| and 450 |23294| 51355 | 297.6 | 399.1 | 36.9 | 495 | 4 |38412|170.87 | 1583 | 2146
Quadtrac

Case-IH |[4WD, Articulated i;ﬁgg 17838| 39325 | 298.8 | 400.6 | 38.0 | 50.9 | 4 |40035 |178.08 | 1598 | 2167
New Holland[4WD, Articulated| TdJ 450 |17838| 39325 | 298.8 | 400.6 | 38.0 | 50.9 | 4 |40035 | 178.08 | 1598 | 2167
Challenger | Tracked MT 855 |19842| 43745 | 3194 | 428.3 | 506 | 67.9 | 4 |42798 | 190.37 | 1581 | 2144
Challenger | Tracked MT 865 |20058| 44220 | 3661 | 491.0 | 506 | 67.9 | 4 |43218 | 192.24 | 1757 | 2382
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TASK 2: IMPULSE AND VIBRATION STUDY

TASK 2A: SOURCE IDENTIFICATION OF VIBRATION AND SHOCK ON
OFF-ROAD VEHICLES

University of California, Davis

Siva Gunda
Uriel Rosa
Bryan Jenkins
Paul Erickson

INTRODUCTION

The literature review for identifying the nature and strength of the off-road vibration
levels is an on-going process. Not much literature that has been published is readily
available on the levels of vibrations present on the chassis of an off-road vehicle.
Literature is available in the form of ride comfort, where many have studied the vibration
levels on the seat of a vehicle or on the frame below the seat. The data presented in
this process do not truly represent the extreme nature of the vibration levels present on
the vehicles as the seat placement is usually chosen in a place (CG) where the vertical
vibrations are small. Even though these levels do not truly represent the entirety of the
vibration levels, they provide an indication of extreme levels and would help as an input
to the experimental design for the vibrational testing on the fuel cells.

SUMMARY

The data obtained from the literature review supplemented by part of Toro’s data
obtained on the Workman vehicle are summarized in this report to have an
understanding on the vibration levels. In presenting the summary of the data acquired
through literature review and Toro’s experimentation, each contribution was treated as
an individual vehicle; i.e., every paper that was summarized in this report was treated as
one vehicle. A brief summary of various literatures is presented to aid the understanding
on how the data was generated in a specific study that was used to compile this report.
The reviewed data were summarized into six categories:

Agricultural Machinery: Vehicles 1-9
Forestry Machinery: Vehicles 10-13
Military Machinery: Vehicles 14-19

Typical Off-road Machinery: Vehicles 20-23
Miscellaneous Machinery: Vehicles 24-30
Toro Workman Vehicle: Vehicles 31

Figure 1 and 2 shown in the next page are the identified peak and rms vertical

acceleration found in the literature. The complete numerical summary of the various
categories of vehicles is also presented in this report.
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AGRICULTURE MACHINERY

Vehicle 1 — Tractor

In his study of farm tractors J. Matthews [1] studied the vibration levels on the driver’s
seat for two models of pneumatic-tired tractor over a variety of farm surfaces and
presents the excitation frequencies and amplitudes of the recorded ride characteristics.
He presented measured values of peak and mean vibration levels felt in the three
translational directions in a table that shown below. The vibration levels were measured
while driving the tractors on five different surfaces.

Over track and pasture he reported that vertical vibrations on the two models were seen
in the frequency range of 3-5 Hz and transverse vibrations at approximately 2 Hz. Over
deep ploughed land (ground surface is severely undulated) vertical vibrations were seen
over the range of 2-6 Hz and high levels of longitudinal vibration between 1-2 Hz were
reported. Over track and rough pasture sustained oscillations at 4 Hz in pitch plane and
at 2Hz in roll plane were also reported. The table below gives the strength of these
induced vibrations in terms of the acceleration amplitudes.

Table 1: Measured linear and rotational vibrations of four-wheel drive tractor on
unmetalled track (8 mile/hr)

Comiponent | Acceleration Tracter |  Operator
amplirude, g
Mean =10 016
Vertical (160%5)
Maximum 05 07
Mean 005 007
Longitudinal (12055
Maximum | 03 0-4
Mean 010 005
Transverse (5053
Maximum 06 | 03
_ | -
Pitch Just noticeable 2-3 €8
oscillation of < =+ |
amplitude, Max, displace
ment 1°
Raoll Max. frequency 2 ¢fs (nol

| cominuous). Max, angular
| displacement 14°

—

Vehicle 2 — Tractor

In the study by B. K. Huang et al [2] accelerations at seat and chassis were measured
to quantify the vibration level in all three translation modes. It is stated that “The results
indicated that for each operation the tractor acceleration in vertical, longitudinal, and
transverse directions became larger with increased tractor speed, and the highest
acceleration occurred at a higher frequency. In transverse vibrations, little difference
was observed among the maximum acceleration verses frequency curves for different
types of farm operations”. For the vertical direction the frequency distribution curves
indicated the vibration presence in the range of 1.5-5.5 Hz for the chassis and between
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2.5-6.5 Hz for the seat. The amplitude of the vertical vibration was seen to be as high as
2g at 4 mph.

The analysis of the field data indicated that the longitudinal and transverse vibrations
were much smaller than the vertical vibration. For the longitudinal the maximum
acceleration was less than 1.2 g and the frequencies were distributed from 1.5-5.0 Hz
with the highest concentration at 2 and 3 Hz. For the transverse vibration the maximum
acceleration was less than 0.5 g and the frequencies were distributed from 1 to 4.5 Hz.

Vehicle 3 — Tractor

In their study towards improving the ride comfort by using passive seat suspension S.
Rakheja et al [3] measured the vibration levels in both translation modes and rotational
modes on a seat that is rigidly fixed to the cab on a tractor. They reported that the
resonant frequencies of the tractor predominated at around 2.6 Hz in vertical direction, 1

Hz in transverse, 1.5-4.5 Hz in longitudinal, 1 Hz in roll and 1.5-4.5 Hz in pitch. Below
are the PSD representations of their work.

o Y RN
'II & i __'._-_,._ . 1 ‘., . .l \I s
i — . ~S————e T I = =
(d) Vertical Frequency, Hi (c) Transverse [auvency, #z

el oy —————T T

i e e o O v 4.
(b) Roll Fraquency, Hz

Figure 3: PSD functions of the different modes of vibration

Vehicle 4 — Tractor

In their study of roll and pitch vibration characteristics on off-road vehicles Young et al
[4] measured the accelerations at seat-chassis attachment point on a pneumatic tired
farm tractor. It was showed that roll accelerations in general were higher than the pitch
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acceleration levels and both pitch and roll vibrations subsided after 5 Hz. It was reported
that the study of J Matthew [1] addressed sustained vibration at 2 Hz in roll and at 4 Hz
in pitch.

In conclusion Young et al [4] stated that, “Roll acceleration levels on a farm tractor are
in general, appreciably greater than pitch acceleration levels. Acceleration levels for
both roll and pitch subside remarkably for frequencies above 5 Hz. The occurrence of
multiple acceleration peaks below 6 Hz for both roll and pitch probably indicates
resonant frequencies in the rotational modes of multiple degree-of-freedom system with
a non-constant tire spring rate characteristic of unsprung off-road vehicles”.

Vehicle 5 — Tractor

In their study of the ride vibration transfer functions of tractors, Lines et al [5] used two
tractors MF 575 and MF 590 to compare between the measured and predicted
responses on the tractors using simulation and field data. Though not much data was
presented in terms of accelerations, he presented a plot of measured PSDs of vibration
in the 3 translational directions for the tractor speed of 12 km/hr.

From the plot it can be observed that, the dominant frequencies are between 0-5Hz and
the vibration level in the vertical direction is the maximum among the three translational
directions, followed by longitudinal and then lateral.

Vehicle 6 — Tractor

In their study titled, “Tractor Vibrations at the operator’s”, Gerke and Hoag [6] measured
the vibration levels at the man seat interface on a tractor in various working conditions.
All the data recorded was presented in frequency domain as weighted rms
accelerations according to the ISO 2631 standard. Vibration levels were presented for
all three translational directions. Below table summaries observations from the plots
provided in the study.

Table 2: Summary from Gerke and Hoag [6]

Vehlcle Peak rms Dominant
Working condition Speed Direction acceleration frequency f

im/s) {m/s¥ band (Hz)
Chiesel Plowing soybean ground 2.3 Vertical 0.25 2.5
Chiesel Plowing sovbean ground 23 Laferal 0.4 40
Chiesel Plowing soybean ground 2.3 Fore-aft 0.4 40
Chiesel Flowing corn ground 21 Vertical 0.22 25
Chiese! Flowing corn ground 2.1 Lateral 04 40
Chiese! Flowing corn ground 2.1 Fore-aft 04 40
Dhisking chisel-plowed ground 28 Vertical 0.7 25
Dhisking chisel-plowed ground 28 Laferal 0.4 25
Dhsking chisel-plowed ground 2.8 Fore-aft 0.4 2.5
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Vehicle 7 — Tractor

In their study of the effects of the implements free-play on tractor vibration, Bukta et al
[7] placed a accelerometer below the driver’s seat on the tractor frame and measure the
vibration with and without the implements connected to the tractor’s three-point hitch. A
mathematical model was also developed to predict the same as mentioned above when
the vehicle was moving at a speed of 6.5 km/h.

Both the measured and predicted values look to be in good agreement. From the plots
of the vertical vibrations presented and from the results it is seen that the maximum
peak-to-peak values of vertical vibration are 4.2 g and 3 g for the with-implement and
without-implement conditions respectively. The dominant frequency was found to be the
same in both cases equal to 3 Hz which was also equal to the forcing frequency.

Vehicle 8 — Tractor/Implement

In their study of vibration in cover crop rollers, Raper et al [8] measured vertical vibration
levels on three kinds of alternate roller designs aimed at lowering the vibration levels felt
on the roller. The plot shown below is directly taken from the study. The three different
types mentioned as Long straight, Short Staggered and Curved are the three alternate
designs that were looked at in the study.

200
180
160
140
- 120
100 m Long Straight
80 B Short Staggered
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60

40
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|
Y hiEte. Graes Catst Crop

Surfaces

Figure 4: Vertical vibration level of various roller designs

As observed above on the cover crop the implement sees as high as 8 g of vertical
vibration for the Long straight type of design.

Vehicle 9 — Tractor

In their study titled, “Ride vibration on tractor-implement system”, Mehta et al [9] studied
the effect off vehicle speed on the vibration level felt on the tractor at the seat driver
interface in all the three translational axes. The vibration levels were measured
independently for with and without the implement conditions. For tractor alone (without
the implement), the vehicle was driven over three different surfaces: Tar macadam
road, Farm road and Untilled field.
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Ride vibrations were presented individually for both with and without the implement
conditions. The plots below are directly taken from the study for the without the
implement condition.
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Figure 5: Variation of acceleration level with forward speed: (a) Longitudinal, (b)

Lateral, (c) Vertical, (d) Sum

For the implement condition, measurements were recorded for four different situations:
Tractor with MB plough (Transport), Tractor with MB plough (Ploughing), Tractor with
Disc Harrow (Transport) and Tractor with Disc Harrow (Harrowing).

It is stated in the results that, “The weighted r.m.s. acceleration levels in longitudinal
axis (ax) during harrowing operation, in lateral axis (ay) during transport mode and
ploughing operation and in vertical axis (az) during transport mode and harrowing
operation were insignificant (less than 0.01 m/s2) and therefore not recorded here. The
ride vibration levels in longitudinal axis were slightly damped for tractor with MB plough
and significantly (40-70%) damped for tractor with disc harrow during transport mode,
as compared to tractor alone on untilled field. Because the implement damped tractor
pitch motion, and since the driver was not seated at the centre of pitch, his motion in the
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longitudinal axis was affected. On the untilled field, no conclusive difference in
longitudinal vibration levels was found during transport mode of tractor alone and tractor
with MB plough during ploughing operation. The longitudinal vibration levels during
harrowing operation were insignificant.” The plot below is copied from the study for the
implement condition.
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FORESTRY MACHINERY

Vehicle 10 — Skidder

In his study of forestry vehicles, Rummer [10] developed a mathematical model to
simulate the vibration levels that are felt on a typical forestry vehicle. The terrain profile
was generated from the study of Aho and Katto (1971). The studied model was of a
clam- bunk skidder. Masses for each of the components and the inertial properties were
estimated from the manufactures literature.

Peak vertical acceleration levels were estimated to be 1.5 g — 1.75 g @ 1 Hz at a
traveling speed of 1.3 m/sec. No other kinds of vibrational data were documented.

Vehicle 11 — Skidder
In his further study of forestry vehicles Rummer [11] evaluates the computer model
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developed in his previous work by comparing the results to measured acceleration
values on a test track. In this work Rummer stated that “The typical prime mover for
forestry applications is a rubber tired, frame-steered vehicle with the axels solidly
attached to the frame”. In this paper Rummer compares measured and predicted
vector-sum acceleration values under the seat location. The presented values are in g
rms.

Figure 4 illustrates the comparison of the vector-sum accelerations for one of the
mathematical models. The predicted values are higher than the measured values. The
highest vector-sum acceleration for both predicted and measured values were observed
at 1.8 Hz and are equal to 1.3 g rms and 1 g rms respectively.

Vehicle 12 — Skidder

In their study titled “Vibration attenuation performance of suspension seats for off-road
forestry vehicles”, P. E. Boileau and S. Rakheja [12] reported a resonant frequency in
the vertical direction at 1.8 Hz. It is stated in their study that, “Terrain-induced vibrations
of forestry vehicles predominate in the frequency range of 0.5-5.0 Hz.

In their study Boileau et al provided a frequency spectrum of the vertical vibration
measured on the cab floor of a skidder operating under typical conditions. The dominant
frequency was measured to be in the 2.5 Hz frequency band and the maximal vertical
acceleration was approximately 0.5 g.

Vehicle 13 — Skidder/Loader/Bulldozer

In their study Wilson et al [13] presented measurements both vertical and lateral
vibrations in forestry vehicles for more effectively isolating operators from such
vibrations. In the study Wilson et al presented recent measurements on four different
forestry vehicles: Clark 667 Scarifying Skidder, Caterpillar 980 Loader, Komatsu D85
Bulldozer and Clark 664 Skidder (empty). The measurements were taken by placing
accelerometers on the vehicle frame directly under the operator seat pad. All
acceleration data is presented in the form of PSDs for all three directions of transverse
vibrations. Wilson et al stated that “of particular significance is the relatively high level of
lateral vibration compared to those in the vertical direction”.

From the figure of the PSDs presented it can be observed that in all cases the spikes
PSDs are between 1.0-3.0 Hz except on the bulldozer which has a spike in the vertical
direction at 6 Hz.

MILITARY MACHINERY

Vehicle 14 — Tank

In their study El-Demerdash et al [14] studied the ride performance of multi-axles
combat vehicles driven at various speeds over terrain profile. Three different vehicle
models were developed to study the vertical vibration and the pitching vibration levels.
The terrain considered was rigid and is presented as a PSD of Gaussian stationary
random process.

The PSD of the vertical vibration and the pitching vibration were shown in plots. The
maximum rms accelerations felt were: Vertical acceleration was approximately .2g ( two
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axle model) and pitching acceleration was 1.02 rad/sec”2 (three axle model). From the
PSD plots shown it is seen that the significant frequencies for both vertical and pitch
vibration are between 1-2 Hz. The data was simulated for a speed of 10 m/s.

Vehicle 15 — Wheel Hub

In their study Triche et al [15] conducted a set of simulations and full-scale experiments
to determine suitable shock load design requirements for in-hub (wheel) propulsion
motors for hybrid and all-electric combat vehicles. It is stated that “The test was
designed to represent severe on- and off-road situations that are realistic but not overly
improbable, as described above”.

The summary from the study as it is are replicated below.

“Drop test results are summarized by the following:
e For low speed travel with off-road tire pressures (10 to 20 psi, or 69 to 138 kPa),
shock loads of 25 to 55 g's are experienced.
e For low speed travel with on-road tire pressures (20 to 30 psi or 138 to 207 kPa),
the shock loads from a drop impact increase to 35 to 55 ¢'s.
e For on- or off-road cases where the run flat is engaged (0 psi, 0 kPa), drop
impacts result in shock loads >20 ¢'s.

Curb test results are summarized by the following:
e For cross-country travel with off-road tire pressures (69 to 138 kPa, or 10 to 20
psi), shock loads of around 60 g's are experienced.
e For on-road travel with on-road tire pressures (138 to 207 kPa , or 20 to 30 psi),
the shock loads from a curb impact increase to 60 to 95 g's.
e For on- or off-road cases where the run flat is engaged (0 kPa or 0 psi), curb
impacts result in shock loads > 90 g's.

Pothole test results are summarized by the following:
e For cross-country travel with off-road tire pressures (69 to 138 kPa , or 10 to 20
psi),
e shock loads of 60 to 90 g's are experienced.
e For on-road travel with on-road tire pressures 138 to 207 kPa (20 to 30 psi), the
shock loads from a pothole increase to 80 to 100 g's.”

Vehicle 16 - JTEV

The study, “Development of a hybrid electric vehicle for the US Marine Corps” by
LaPlante et al [16] intended at developing a JTEV for US Marine Corp. The study goal
included extremely high ability and high speed over rough terrain. These factors
influenced the design of both the mechanical and electrical system in the areas of
waterproofing, material selection, vibration hardening and isolation of components. The
suspension and chassis were designed to withstand the shock and vibration in the
extreme conditions.

In the design of the chassis it is mentioned that by FISA specification it is designed to
withstand crash imposed loads of 1.5 g lateral, 5.5 g longitudinal and 7.5 g vertical.
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Vehicle 17 — Fuel Cell Truck

In their work Maturia et al [17] studied the vibration and shock considerations in the
design of a truck mounted fuel cell APU system for on and off road conditions. In the
work it is stated that, “there are two types of excitation sources that can affect the
durability and structural integrity of the APU system: (i) tire-road dynamic interaction and
(ii) engine vibration. Based on the field measurement results, the tire-road interaction is
typically the more severe of these two excitations. Consequently, the design of a
vibration isolation system is primarily concerned with isolating the APU and truck frame
dynamics under the on-the-road vehicle operating conditions.”

The developed mathematical model was studied for various aspects including the
vibration prediction spectrum based on 4 g of uniform base excitation input per SAE
J1455 standard titled “Joint SAE/TMC Recommended Environmental Practices for
electronic equipment Design (Heavy-Duty Trucks)”. Below are the plots from the above
study showing the predicted steady-sated response of the APU system.
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Figure 7:Predicted steady state responses for APU system per SAE J1455
The peak values in the translational vibration can be observed t be between 90-250 g

occurring predominantly in the 10-60 Hz frequency band. The peak values in the
rotational vibration can be observed to be approximately 2000 rad/sec2 occurring
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predominantly in the 10-80 Hz frequency band.

Vehicle 18 — Tank

In their study titled, “Analysis and conceptual design of a semi-active suspension
system for the M5551 tank”, Margolis and Krasnicki [18] studied the feasibility of semi-
active suspensions applied to a M5551 tank. As a part of their study they reported
simulated values of the change in the rms vertical and pitch accelerations with respect
to speed at the CG location of the tank. For the plots presented in the study it can be
seen that the peak rms values at a speed of 40 mph are: vertical — 4.5 g and pitch — 24
rad/sec2.

Vehicle 19 — Mobile Shelters

In their study titles, “Blast induced shock testing on mobile communication shelters”,
Polk et al [19] measured vibration levels on the walls of the mobile shelters and reported
of maximum acceleration levels sometimes exceeding 1500 g’s. Upon certain shock
isolation systems, the measured results were still as high as 390 g’s in the horizontal
and 292 g’s in the vertical directions.

OFF-ROAD MACHINERY

Vehicle 20 — Dump Truck/Military Tank/Hovercraft

In his study titled, “Vibration and dynamics of off-road vehicles”, Craighead [20]
investigated three different off road vehicles: a 25 tonne articulated dump truck
manufactured by DJB Engineering Limited, a Vickers Mk 3b/3 battle tank and a small
hovercraft designed for agricultural use for vibration levels through simulations. He
further validated the model by comparing the simulated values to actual measured
values on the prototype vehicle mentioned above.

The results of the simulation and experimental measurements were presented for the
vertical and pitch acceleration about the CG of the vehicles. Plots were also to compare
the results. The observations from the plots and the results presented in the study are
summarized below.

Table 3: Summary from Craighead [20]

Mode of Peak ms

Nelice  SuSpemsion Vibration Acceleration acceleration

Truck
Yes
Vertical (q) 1.0 )
Fifch (radisec”) 13.0 47
Mo
Vertical (q) 0.8 )
Fifch (radisec”) 0.0 3.6
Tank
Torsion Bar
Vertical (g) o7 0.26
Fifch (radisec”) 20 1.12
Hydrogen Gas
Vertical (g) 0.4 042
Pifch (radisec’) 20 1.25
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Vehicle 21 — Air and Ground Transportation Vehicles

In his study titled, “Review of measured vibration and noise environments experienced
by passengers in aircraft and in ground transportation systems”, Stephens [21]
conducted comprehensive experimental measurements on aircrafts and various ground
transportation vehicles and presented them in plots showing the comparison between
various limits of vibration levels felt on these vehicles. The plots below are directly taken
from his study. The descriptors used in the plots are as follows:

gp: Peak acceleration in g’s associated with a particular time history.

grms: Over all rms acceleration in g’s associated with a particular time history.

Vehicle 22 — Mini-Baja

In their study titled, “Experimental and Numerical Analysis of an off-road vehicle
suspension” Buarque et al [22] presented vertical acceleration levels felt on a Mini-Baja
vehicle suspension when subjected to a sinusoidal bump input. The vehicle was
instrumented with a strain gauge type accelerometer mounted on the suspension and
was driven over the bum at a low speed of 2.0 m/sec. The maximum vertical
acceleration at such low speed was measured to be 2 g.

Vehicle 23 — Mobile Construction Machinery

In his study titled, “Survey of technical preventative measures to reduce whole-body
vibration effects when designing mobile machinery”, Donati [23] presented a plot
summarizing the vertical weighted rms acceleration seen on a number of mobile
machinery. The plot is below is taken from his study.
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Figure 8: Figure from Donati [23]

The data was recorded on the seats of these vehicles. It can be seen from the plot that
some of the vehicles see a vibration level as high as 0.3 g rms.
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MISCELLANEOUS

Mining

Vehicle 24 — Truck

In their study Remington et al [24] studied the exposure of vibration in mining workers.
Field measurements were conducted on 61 surface coal mining vehicles by placing a
tri-axial accelerometer on the seats of the vehicles. No data was presented in terms of
accelerations.

Vehicle 25 — Mining Vehicles

In their study John Gniady and John Bauman stated that in construction and mining
vehicles the amplitudes of vibration can be as high as 1.5 g and the typical frequencies
of interest are 0-20 Hz.

Vehicle 26 — Haul Truck

In his study of a Mine haul truck, Hans modeled the stuck to simulate the vehicle
dynamics. He reported that the vertical acceleration of the mainframe’s CG for travel at
50Km/h is generally below 0.1 g with an occasional excursion to 0.2 g. The dominant
frequency is about 1 Hz, consistent with the bounce frequency measured on haul trucks
in various studies.

Hovercraft

Vehicle 27 — Hovercraft

In his study of Hovercraft ride Lovesey compared the peak vibration levels on floor of a
launch (28 knot) and a small hovercraft (45 knot). The levels indicated that the ride on
the hovercraft is much smoother than the launch.

The different vibration levels were summarized for the peak values and the associated
frequencies on the 2 vehicles. The values presented are summarized below.

Table 4. Summary from Lovesey
Frequency Acceleration

Motion {Hz) (g)
Heave 1.3 014
Sway 12,5 0.05
Shunt 4.7 0.06

Earthmoving Machinery

Vehicle 28 — Excavator

In their study Dong-wook Lee et al evaluated the operator exposure to shock and
vibration in the cabin of the excavator design. The study included two different aspects
which are internal vibration caused by the engine and vibration caused due to external
disturbances. The external disturbances were further classified into bucket shock,
traveling shock and rock braking. In the present report the values of the older design are
considered to give the extreme values that the excavator cabin can feel.

Bucket shock: Peak value is approximately 2 g and the vital frequency band is 5-25 Hz
Traveling shock: It is reported in the study that this shock locates in the frequency range
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of 10-20 Hz
Rock Breaking: Peak value is approximately 1 g and the vital frequency band is 30-40
Hz

Recreation Vehicles / ATVs

Vehicle 29 — ATV

In his study Breen provides an overview on the design of ATVs. In the study Breen
reports that ATVs in operation are more than critically damped. From the figures
presented the accelerations could get to 8 g on a vertical drop.

Vehicle 30 - ATV

In his study Sushinsky measured vertical accelerations on 14 different ATVs. He quotes
that, “The vertical acceleration vector was viewed as the most important quantity in this
investigation because it could be directly linked to forces acting on the target areas. In
this study, the peak acceleration range was defined the sum of the peak magnitudes of
negative and positive accelerations. The appropriateness of using the acceleration
ranges was drawn from an examination of the acceleration profiles. The positive and the
negative peak acceleration characteristically followed each other within 0.4 sec time
increment”.

The accelerations were measured on eight different locations, four on the vehicle and
four on the driver. The four vehicle locations and the corresponding peak values are as
follows:

Front Axle: 8.7 g (Vehicle 6)
Frame: 8.0 g (Vehicle 6)
CG: 6.1 g (Vehicle 5 & 6)
Rear Axle: 10.0 g (Vehicle 6)

Toro’s Study

Vehicle 31 — Workman Vehicle

The data acquired by Toro has been shared with UC Davis to help in the design of an
experimental plan for the fuel cell vibration and shock testing.

The study by Toro was done on the new Fuel Cell Hybrid Workman e2050 golf cart
prototype vehicle. Vibration data was collected at Midland Hills CC, Minnesota. Various
possible terrain induced excitation inputs while performing golf course or other turf
maintenance such as driving over speed bumps, potholes e.t.c., were identified. The
vehicle was mounted with nine tri-axial accelerometers for acquiring the vibrational data.
Four accelerometers were placed on the four corners of the main frame (bed area) of
the workman chassis, with a fifth one located at an approximate likely location for such
a vehicle’s fuel cell (mid-mount, low, under the bed). Another four accelerometers were
placed near the wheel spindles.

The data was acquired at 6 different speeds with further variability added by the load

and suspension conditions. The data was collected under with and without suspension
condition for each of the 6 speeds and under each suspension condition further

54|Page



Final Report DE-FG36-04G0O14303

variability was added by empty and full load conditions.

The inputs from the five accelerometers on the frame were used to compute the
vibration level at any location of the vehicle. For this the vehicle was assumed to be a
rigid body. Initial analysis was done on the CG location under five different dynamic
conditions, which are: Vehicle full braking (panic stop), Vehicle tree root impacts,
Vehicle typical trip, Vehicle driveway curb impact and Vehicle speed bump impact. The
peak translational acceleration values were identified under the above mentioned five
dynamic conditions and the FFT were plotted to identify the corresponding frequency
distribution.

Table 5: Peak Acceleration of te Toro Workman Vehicle

Longiudingl Lateral Vertical
Type of Peak Bominant Peak Bominant Peak Bominant
TR, Load | Acceleration | Frequency | Acceleration | Frequency | Acceleration | Frequency
_ ____ c's) (H2) ©'s) (H2 ©'s) (H2)
Vehicle full braking (panic stop) | Shock 1.8 [ 3] - - 0.6 -5
Vehicle tree roct impacts Oscillation 21 010 20 0-30 1.3 010
Vehicle typical trip Oscillation 19 010 .30 0-10 1 0-10
Vehicle driveway curb impact | Shock 23 o-10 1.9 o-10 1.2 o-10
Vehicle speed bump impast | Shock 30 0-10 .7 0-10 1.4 010
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VIBRATION AND SHOCK SUMMARY BY VEHICLE CATEGORY
Agricultural Machinery: Vehicles 1-9
Transitional Acceleration
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Vertical Longitudinal Lateral
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat

Vehicle Acceleration |Acceleration| Frequency |Acceleration |Acceleration| Frequency |Acceleration [Acceleration| Frequency
Number Author Type of Load (G's) (G's) (Hz) (G's) (G's) (Hz) (G's) (G's) (Hz)

1 Matthews |Vibration 1.20 - 2-6 1.60 - 0-2 1.30 - 1-2

2 Haung Vibration 2.00 - 1.5-6.5 1.20 - 1.5-5 0.50 - 1-4.5

3 Rekheja Vibration - - 2.60 - - 1.5-4.5 - - 1

4 Young Vibration - - - - - - - - -

5 Lines Vibration - - 0-5 - - 0-5 - - 0-5

6 Gerke Vibration - 0.07 0-3 - 0.04 0-40 - 0.04 0-40

7 Bukta Vibration 4.20 - 3.00 - - - - - -

Implement

8 Reper Vibration 19.00 - - - - - - - -

9 Mehta Vibration - 0.25 - - 0.14 - - 0.14 -
Rotational Acceleration

Pitch Roll Yaw
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat

Vehicle Acceleration |Acceleration Frequency Acceleration |Acceleration Frequency Acceleration |Acceleration Frequency
Number Author Type of Load (rad/sz) (rad/sz) (Hz) (rad/sz) (rad/sz) (Hz) (rad/sz) (rad/sz) (Hz)

1 Matthews |Vibration - - 0-4 - - 0-2 - - -

2 Haung Vibration - - - - - - - - -

3 Rekheja Vibration - - 1.5-4.5 - - 1.00 - - -

4 Young Vibration - - 0-5 - - 0-5 - - -

5 Lines Vibration - - - - - - - - -

6 Gerke Vibration - - - - - - - - -

7 Bukta Vibration - - - - - - - - -

Implement
8 Reper Vibration - - - - - - - - -
9 Mehta Vibration - - - - - - - - -
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Forestry Machinery: Vehicles 10-13

Transitional Acceleration
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Vertical Longitudinal Lateral
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat
Vehicle Acceleration |Acceleration| Frequency [Acceleration |Acceleration| Frequency |Acceleration |Acceleration| Frequency
Number Author Type of Load (G's) (G's) (Hz) (G's) (G's) (Hz) (G's) (G's) (Hz)
10 Rummer Vibration 1.5-1.75 - 1.00 - - - - - -
11 Rummer Vibration - - - - - - - - -
12 Boileau Vibration 0.50 - 0-5 - - - - - -
13 Wilson Vibration - 0.20 0-10 - - 0-10 - - 0-10
Rotational Acceleration
Pitch Roll Yaw
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat
Vehicle Acceleration |Acceleration| Frequency |Acceleration |Acceleration| Frequency |Acceleration |Acceleration| Frequency
Number Author Type of Load (rad/s?) (rad/s?) (Hz) (rad/s?) (rad/s?) (Hz) (rad/s?) (rad/s?) (Hz)
10 Rummer Vibration - - - - - - - - -
11 Rummer Vibration - - - - - - - - -
12 Boileau Vibration - - - - - - - - -
13 Wilson Vibration - - - - - - - - -
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Military Machinery: Vehicles 14-19

Transitional Acceleration

Vertical Longitudinal Lateral
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat

Vehicle Acceleration |Acceleration| Frequency [Acceleration |Acceleration| Frequency |Acceleration |Acceleration| Frequency
Number Author Type of Load (G's) (G's) (Hz) (G's) (G's) (Hz) (G's) (G's) (Hz)

14 Demerdash [Vibration 100.00 0.20 1-2 - - - - - -

15 Triche Shock 7.50 - - - - - - - -

16 LaPlante Vibration 250.00 - - 5.50 - - 1.50 - -

17 Mathurai Vibration - - 10-80 - - - - - -

18 Margolis Vibration - 4.50 - - - - - - -

19 Polk Shock 292.00 - - 390.00 - - - - -
Rotational Acceleration

Pitch Roll Yaw
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat

Vehicle Acceleration |Acceleration| Frequency |Acceleration |Acceleration| Frequency |Acceleration |Acceleration| Frequency
Number Author Type of Load (rad/s?) (rad/s?) (Hz) (rad/s?) (rad/s?) (Hz) (rad/s?) (rad/s?) (Hz)

14 Demerdash |Vibration - 1.02 1-2 - - - - - -

15 Triche Shock - - - - - - - - -

16 LaPlante Vibration - - - - - - - - -

17 Mathurai Vibration 200.00 - 10-80 - - - - - -

18 Margolis Vibration - 24.00 - - - - - - -

19 Polk Shock - - - - - - - - -
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Typical Off-Road Machinery: Vehicles 20-23

Transitional Acceleration
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Vertical Longitudinal Lateral
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat
Vehicle Acceleration |Acceleration| Frequency [Acceleration |Acceleration| Frequency |Acceleration |Acceleration| Frequency
Number Author Type of Load (G's) (G's) (Hz) (G's) (G's) (Hz) (G's) (G's) (Hz)
20 Craighead |Vibration - - - - - - - - -
Truck 1.00 0.30 - - - - _ _ _
Tank 0.70 0.42 - - - - - - -
21 Stephens Vibration - - - - - - - - -
22 Buarque Shock 2.00 - - - - - - - -
23 Donati Vibration - 0.30 - - - - - - -
Rotational Acceleration
Pitch Roll Yaw
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat
Vehicle Acceleration |Acceleration Frequency Acceleration |Acceleration Frequency Acceleration |Acceleration Frequency
Number Author Type of Load (rad/s?) (rad/s’) (Hz) (rad/s’) (rad/s?) (Hz) (rad/s’) (rad/s’) (Hz)
20 Craighead |Vibration - - - - - - - - -
Truck 13.00 4.70 - - - - - - -
Tank 2.00 1.25 - - - - - - -
21 Stephens Vibration - - - - - - - - -
22 Buarque Shock - - - - - - - - -
23 Donati Vibration - - - - - - - - -
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Miscellaneous Machinery: Vehicles 24-30
Transitional Acceleration

Vertical Longitudinal Lateral
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat
Vehicle Acceleration |Acceleration| Frequency [Acceleration |Acceleration| Frequency |Acceleration |Acceleration| Frequency
Number Author Type of Load (G's) (G's) (Hz) (G's) (G's) (Hz) (G's) (G's) (Hz)
Mining - - - - - - - - -
24 Remington |Vibration - - - - - - - - R
25 Gniady Vibration 1.50 - 0-20 - - - - - -
26 Prem Vibration 0.20 - 1.00 - - - - - -
Hovercraft - - - - - - - - -
27 Lovesey Vibration - - - - - - - - -
Earthmoving - - - - - - - - -
28 Wook Lee  |Vibration 2.00 - 5-40 - - - - - -
ATV - - - - - - - - -
29 Breen Shock 8.00 - - - - - - - -
30 Sushinsky  |Shock 10.00 - - - - - - - -
Rotational Acceleration
Pitch Roll Yaw
Peak RMS Dominat Peak RMS Dominat Peak RMS Dominat
Vehicle Acceleration |Acceleration Frequency Acceleration |Acceleration Frequency Acceleration |Acceleration Frequency
Number Author Type of Load (rad/s?) (rad/s?) (Hz) (rad/s’) (rad/s?) (Hz) (rad/s?) (rad/s’) (Hz)
Mining - - - - - - - - -
24 Remington |Vibration - - - - - - - - -
25 Gniady Vibration - - - - - - - - -
26 Prem Vibration - - - - - - - - -
Hovercraft - - - - - - - - -
27 Lovesey Vibration - - - - - - - - -

Earthmoving - - - - - - - - -
28 Wook Lee [Vibration - - - - - - - - -
ATV - - - - - - - - -
29 Breen Shock - - - - - - - - -
30 Sushinsky  |Shock - - - - - - - - -
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TASK 2B. FUEL CELL SYSTEM VIBRATION AND SHOCK
SPECTRUM TESTING

Richard Lawrence
IdaTech

INTRODUCTION

The purpose of these vibration and shock spectrum experiments was to test
operating conditions of the IdaTech fuel cell in the Toro Workman™ off-road
vehicle. The tests focused on movement of the rear compartment where the fuel
cell is mounted. The results do not reflect direct movements or impacts on the
fuel cell itself.

SUMMARY

Upon observation of the data, it appears that the rear compartment of the vehicle
does not sustain any g-force short time impacts greater than 117.2g. The
measured g-force varies greatly depending on whether measured at
accelerometers at the back of the vehicle or the front of the vehicle. The back of
the vehicle sustains higher g-force on average than the front. The data can be
viewed in detail for each test in the Time Domain Data graphs in the appended
data section of this document. When looking at the back two accelerometers (A
and D) the high g-forces can be observed in all three axis, but only for brief
periods of time.

Analysis of the Average Spectrum data suggests that the vehicle does not
sustain any vibrations that exceed 1g. The vibrations at the higher frequencies
(above 800Hz) may be attributed to noise vibrations generated from the electric
motor and generator on the vehicle. These vibrations should not be of any
concern in terms of operation of the fuel cell. The frequencies originated from
the terrain are considered within the range of 1-20Hz and this range is where the
highest g-forces were measured. Data taken during day 2 gives more detail as a
result of two additional frequencies at vibration frequencies are utilized for all 15
inputs.

Analysis of the FRF data was largely done in MEScope. The data was used to
generate the vibrating modes of the storage compartment at the various
measured frequencies. These were obtained from the FRF processed from
recorded accelerometers data. The results of the simulations between day one
and day two tests seem to vary which is most likely due to the fact that average
spectrum data was only gathered for input three (the input used as a reference
for the FRF analysis.) All of the day two runs have Average spectrum data for all
15 inputs.

The results from day one suggest that several of the frequencies result in

vibrations in all directions, but predominantly in the z-direction. There were also
vibrations in both the x and y directions, but, for the most part, these were much

64|Page



Final Report DE-FG36-04G0O14303

smaller than the vibrations in the z-direction.

Day two’s results do not match up with day one’s results as expected. The
results of the analysis with MEScope suggest that the maijority of the vibrations
occur in the horizontal directions (x-direction and y-direction) and not as much in
the z-direction. It appears that the data and analysis are correct. The most likely
cause for the differences in results between day one and day two is due to the
lack of all the Average spectrum data for day one.

Tables 1, 2, and 3 summarize the results for the day 1 and day 2 tests. The max
and minimum values were generated via observation of the time domain data.
Table 1 corresponds to data from day 1. Tables 2 and 3 correspond to data
taken from day 2.
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Table 1: Measured acceleration and frequency data measured on Day 1 of the tests
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pavement var. Top 9 See fig. 2 -56.93 -7.83 -0.40 -32.05 -7.73 87.09 1.31 0.17 117.20 1.09 ND ND ND
grass,

pavement,

gravel var. Bottom 9 See fig. 2 -20.35 -5.21 -0.03 | -30.10 -5.63 2491 0.90 0.05 | 117.20 0.75 ND ND ND
grass,

pavement var. Bottom 9 See fig. 2 -37.42 -1.06 -0.09 | -25.97 -7.18 103.40 0.75 0.09 117.20 0.90 ND ND ND

grass,
pavement

grass,

Bottom 9

pavement var. Top 9 See fig. 2 -42.02 | -86.56 | -17.46 | -50.36 -98.39 89.53 | 76.66 | 12.93 113.90 | 72.73 ND ND ND
grass,

pavement,

gravel var. Bottom 9 See fig. 2 -17.68 | -36.24 -3.76 | -18.55 -38.24 23.50 | 41.56 5.07 98.42 | 50.09 ND ND ND
grass,

pavement var. Bottom 9 See fig. 2 -24.81 | -45.62 | -10.14 | -36.28 -55.06 | 116.00 | 49.48 8.24 | 113.90 | 96.94 ND ND ND

grass,
pavement

grass,

Bottom 9

pavement var. Top 9 See fig. 2 -53.83 | -76.66 | -21.86 | -22.21 -91.34 112.40 | 86.57 | 22.84 | 116.50 | 68.05 3.20 0.01 0.02
grass,

pavement,

gravel var. Bottom 9 See fig. 2 -19.18 | -49.37 -6.66 -29.46 -93.84 38.07 49.37 7.51 116.50 | 60.27 3.20 0.03 0.03
grass,

pavement var. Bottom 9 See fig. 2 -49.97 | -53.52 | -12.71 | -15.83 | -110.50 | 113.80 | 76.29 | 1522 | 116.50 | 79.97 3.20 0.04 0.07
grass,

pavement var. Bottom 9 See fig. 2 -52.27 | -61.02 | -18.34 | -60.81 -110.50 113.80 | 54.92 | 20.84 | 116.50 | 81.62 3.20 0.40 0.43
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Table 2: Measured acceleration and frequenc

data measured on Day 2 of the tests
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pavement var. Top 9 See fig. 2 -76.79 -0.81 -6.92 -49.61 -7.88 114.80 0.13 0.95 117.20 2.89

grass,

pavement,

gravel var. Top 9 See fig. 2 -92.85 -1.55 -6.49 -110.00 -9.09 114.80 0.12 1.29 117.20 1.12

grass,

pavement var. Top 9 See fig. 2 -95.66 -2.91 | -1049 | -105.10 -16.38 | 114.80 0.35 1.17 | 117.20 4.01

grass,

pavement Bottom 9 See fig. 2 -93.11 -1.22 -6.36 -77.02 -10.49 114.80 0.11 0.97 117.20 0.87
|

grass,

pavement var. Top 9 See fig. 2 -80.65 | -14.49 | -74.67 -44.59 -76.95 116.80 | 11.74 105.50 113.90 110.50

grass,

pavement,

gravel var. Top 9 See fig. 2 -84.78 | -19.60 | -55.27 -105.30 -78.86 116.80 | 17.23 82.70 113.70 110.20

grass,

pavement var. Top 9 See fig. 2 -93.73 | -41.38 | -66.06 -97.00 -79.12 116.80 | 40.61 108.00 113.90 109.10

grass,

pavement Bottom 9 See fig. 2 -88.74 | -13.53 | -61.83 -78.48 -77.35 116.80 | 20.18 57.57 113.90 115.40
|

grass,

pavement var. Top 9 See fig. 2 -75.26 -8.62 -58.80 -52.45 -89.45 113.80 8.11 48.25 116.50 68.59

grass,

pavement,

gravel var. Top 9 See fig. 2 -86.34 | -11.78 | -48.83 -107.60 -111.40 113.80 | 13.13 48.28 116.50 73.87

grass,

pavement var. Top 9 See fig. 2 -82.16 | -15.85 | -66.06 -104.50 -114.50 113.80 | 17.16 95.87 116.50 88.30

grass,

pavement var. Bottom 9 See fig. 2 -87.13 | -10.77 | -39.23 -82.08 -102.30 113.80 | 10.46 33.06 116.50 74.89
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Table 3: Measured acceleration and frequency data measured on Day 2 of the tests

(Hz) (@) |(Hz) | (@ |(H2) | (@ | (H2) | (@ [(H2) | (@) | (Hz) (9) (Hz) @ | (Hz) | (@ | (H2) | (q) (Hz) (a)

4.00 | 0.07 | 4.00 | 0.00 | 4.00 | 0.00 | 4.00 | 0.04 | 4.00 | 0.00 ] 672.00 | 0.00 | 660.00 | 0.00 | 672.00 | 0.00 | 672.00 | 0.00 | 0.07 | 0.00 | 0.08 | 0.00 | 0.00 | 0.04 | 0.00

4.00 | 0.01 | 4.00 | 0.00 | 4.00 | 0.83 | 8.00 | 0.00 | 4.00 | 0.00 | 52.00 | 0.03 | 52.00 | 0.00 | 52.00 | 0.00 | 52.00 | 0.02 | 52.00 | 0.00 | 0.05 | 0.00 { 0.00 | 0.03 | 0.00

4.00 | 0.16 | 4.00 | 0.00 | 4.00 | 0.01 | 4.00 | 0.11 | 4.00 | 0.01 | 792.00 | 0.00 | 1360.00 | 0.00 | 60.00 | 0.00 | 32.00 | 0.12 | 60.00 | 0.00 | 0.19 | 0.00 | 0.01 | 0.12 | 0.01

4.00 | 0.64 | 4.00 | 0.00 | 4.00 | 0.01 | 4.00 | 0.14 | 4.00 | 0.01 ] 676.00 | 0.32 | 224.00 | 0.00 | 60.00 | 0.01 | 56.00 | 0.03 | 60.00 | 0.00 | 0.70 | 0.00 | 0.01 | 0.16 | 0.01

(Hz) (@) [(H2) | (@ |(Hz) | (@) [(H2) | (@) | (Hz) | (@ | (Hz) () (H2) (@ | (Hz) | (@) | (H?2) | (q) (H2) (@)

4.00 | 0.05 | 4.00 | 0.00 | 4.00 | 0.00 | 4.00 | 0.03 | 4.00 | 0.00 | 672.00 | 0.00 | 108.00 | 0.00 | 672.00 | 0.00 | 672.00 | 0.01 | 684.00 | 0.00 | 0.06 | 0.00 | 0.01 | 0.04 | 0.01

4.00 | 0.01 | 4.00 | 0.00 | 4.00 | 0.01 | 4.00 | 0.00 | 4.00 | 0.00 | 552.00 | 0.04 | 52.00 | 0.03 | 52.00 | 0.00 | 656.00 | 0.07 | 248.00 | 0.01 | 0.09 | 0.04 | 0.08 | 0.12 | 0.06

4.00 | 0.42 | 4.00 | 0.00 | 4.00 | 0.01 | 4.00 | 0.09 | 4.00 | 0.01 ] 792.00 | 0.01 | 1340.00 | 0.00 | 772.00 | 0.00 | 32.00 | 0.02 | 780.00 | 0.01 | 0.44 | 0.38 | 0.01 | 0.11 | 0.02

4.00 | 1.00 | 4.00 | 0.00 | 4.00 | 0.01 | 4.00 | 0.12 | 4.00 | 0.01 ] 676.00 | 0.01 | 28.00 | 0.00 | 44.00 | 0.00 | 56.00 | 0.03 | 1536.00 [ 0.00 | 0.00 | 0.00 | 0.01 | 0.13 | 0.01

(Hz) (@ [(H2) | (@) |Hz) | (@ [(H2) | (@) | (Hz) | (@ | (Hz) (a) (H2) @ | (Hz) | (@) [ (H?) | (@) (H2) (@

4.00 | 0.06 | 4.00 | 0.00 | 4.00 | 0.00 | 4.00 | 0.04 | 4.00 | 0.00 | 672.00 | 0.00 | 672.00 | 0.00 | 684.00 | 0.00 | 672.00 | 0.00 | 684.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.05 | 0.00

4.00 | 0.01 | 4.00 | 0.00 | 4.00 | 0.00 | 4.00 | 0.01 | 4.00 | 0.00 ] 656.00 | 0.01 | 52.00 | 0.01 | 52.00 | 0.01 | 656.00 | 0.01 | 52.00 | 0.03 | 0.04 | 0.02 | 0.05 | 0.03 | 0.04

4.00 | 0.29 | 4.00 | 0.00 | 4.00 | 0.02 | 4.00 | 0.14 | 4.00 | 0.01 | 792.00 | 0.01 | 96.00 | 0.00 | 776.00 | 0.00 | 32.00 | 0.14 | 148.00 | 0.00 | 0.33 | 0.00 | 0.02 | 0.14 | 0.01

4.00 | 0.33 | 4.00 | 0.00 | 4.00 | 0.01 | 4.00 | 0.17 | 4.00 | 0.01 ] 676.00 | 0.00 | 144.00 | 0.00 | 44.00 | 0.00 | 56.00 | 0.04 | 28.00 | 0.00 | 0.30 | 0.00 | 0.01 | 0.17 | 0.01
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The RMS data fluctuates between runs for the day two data. This is most likely due to
the inconsistent stops made during the test runs. During these stops data were still
being sampled. It may be possible to obtain more accurate RMS values for the
vibration frequencies by further cropping of the data to remove the periods where the
vehicle was stopped.

The fuel cell is located closest to accelerometer 5, so vibrations and impacts measured
at accelerometer 5 (E) are most reflective of vibrations and impacts occurring to the fuel
cell.

TEST PROCEDURE
Hardware
The following hardware was used for these tests:
e Toro Workman™ Off-Road Vehicle
e Oros R36 DSP Analyzer Unit
e 3 Axis Dytran Accelerometers x5
e 350W DC-AC Converter
e Dell Laptop

Software

The following software was used for analysis of the data:
e NVGate v5.1.00017
e MEScope v5.0.2008.1031

Setup

The Accelerometers were attached to the rear compartment of Toro vehicle; one
accelerometer at each corner and one at the center of the compartment towards the
front of the vehicle. Figure 1 is a table of the accelerometer names, references, Oros
input channels, and respective axis labels. Figure 2 is a diagram of the physical
locations and orientations of the accelerometers on the Toro Off-Road Vehicle. Figure 3
is a photograph of the back of the Toro Off-Road Vehicle with the location of the
accelerometers circled.
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Reference Oros
Accelerometer Letter Inputs AXis
1 X
67 A 2 Y
3 Z
4 X
68 B 5 Z
6 Y
7 X
69 C 8 Y
9 Z
10 X
70 D 11 Y
12 Z
13 X
71 E 14 V4
15 Y
Figure 1: Table of Accelerometer Names
Top-down View
67 70
2@ D) 2 11
30) ?375
A N 1(1) 1(10)
< M M
- . >
+z
Y  +x
D =
68 71
o 3 (5) Qg) (Ex3 (14)
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Figure 2: Diagram of the Physical Locations and Orientations of the Accelerometers
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Figure 3: Photo of Accelerometers Layout

In Figure 2, the numbers on each axis correspond to the axis number for that
accelerometer. The numbers within the parenthesis represents the Oros channel
number used for that accelerometer axis.

A couple of things to note about the accelerometer setup:
1. Accelerometer B’s axis 3 is in the —y direction

2. Accelerometer E’s axis 2 is in the —z direction

Because these two accelerometers had to be mounted in a fashion that resulted in them
being oriented in the negative direction for one of their axis, the data for those axis will
be inverted compared to the rest of the data.

The Oros and the laptop were both powered by the 350W DC-AC converter for all the
tests. The DC-AC converter was connected to the vehicle batteries.

Each accelerometer was attached to the Oros via a 3 channel cable. The vehicle was
manned by two persons at all times; one to drive, and the other to monitor the
equipment and data sampling.

Process
The Oros was started at the beginning of each run. It would only be stopped at the end
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each run. At the end of each run the data set was saved and a new one was setup for
the next run. Data was taken over the course of two days. The data sets are broken up
into runs based on which set of holes on the golf course was being traveled. The
course was broken up into two sections for these tests:

e Top 9 (holes 1 through 9)

e Bottom 9 (holes 10 through 18)

There were four sets of data taken each day for a total of eight data sets gathered from
the course. Data was gathered throughout the duration of travel for each of the sets of
holes traveled. Voice notes were recorded during day two to mark suspected points of
interest and spots where the vehicle was stopped.

All data analysis was done post gathering and was done in NVGate.

TEST RESULTS
Data
The data in this section will be broken up in the order that the data were taken. There
are two sections of data:

1. Day One

2. Day Two
In each of these sections there are four sets of data. The Data Set Title is the name
that was given to the data set at the time of sampling. It can be used to access the
appropriate set of data from within NVGate if necessary

Day One, Run One

Driver: Richard Lawrance

Equipment Operator: Robert Dailey

Data Set Title: Morning Run 1 Holes 1 through 9, Robert and Richard

MEScope Data
The stress points of the vehicle compartment are shown below. There are two or more
sets of pictures associated with each frequency being observed. These pictures
represent each peak of the oscillation at that frequency. In each picture there are the
following views (in order from top left and then clockwise around the image):

e Z-axis view

e 3D view

e Y-axis view

o X-axis View
The frequencies chosen to be displayed here where based of the peaks seen in the g-
forces measured in the average spectrum data. Not all of the peaks are displayed.
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Accelerometer Data
Unless otherwise noted, the scaling for the graphs is as follows:

Time domain graph scale:
e X-axis: 6:14:43am to 6:31:06am
e Y-axis: +80g to -60g

FRF data graph scale:
e Top Graph
o X-axis OHz to 1.4kHz
o Y-axis: 0 to 10 no units
e Bottom Graph
o X-axis OHz to 1.4kHz
o Y-axis: -720° to 720°

Average spectrum graph scale:

e X-axis: OHz to 1.4kHz
e Y-axis: Og to 0.006g
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Figure 8: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:

Input 1 (x axis)
Input 2 (y axis)

Orange:

Green:

Input 3 (z axis)

Blue:
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Average Spectrum Data

Figure 9: Accelerometer 1(#67, Reference A).This data is for the average spectrum for
input 3. No other average spectrum data was gathered on day one of testing.

The graph scale data for the average spectrum data is as follows:
e Xx-scale OHz to 1.6kHz

e y-scale: Og to 7E-3g
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Figure 10: Accelerometer 1(#67,

The colors are assigned as follows:

Orange:

Input 1(x axis)

Green: Input 2 (y axis)
No blue for this set because there is no FRF data for input 3
Reference Input: Input 3

Reference A)

Frequency y (H2)

The graph scale data for the FRF data is as follows:

e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 8 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz

o Yy-
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Time Domain Data

61a

2202000

2202000

Figure 11: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:

Input 4 (x axis)
Input 5 (z axis)

Orange:

Green:
Blue:

Input 6 (y axis) *note that this data set is inverted from the rest of them
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FRF Data

e b

Figure 12: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:

Orange: Input 4 (x axis)

Green: Input 5 (z axis)

Blue: Input 6 (y axis) *note that this data set is inverted from the rest of them
Reference Input: Input 3

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 y-scale: 0 to 250 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°

82|Page



Final Report DE-FG36-04G0O14303

2202000

6:31:06 AM

28:00 AN

:26:00 AN

5:16:00 A

Time Domain Data

61a
7

Figure 13: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Orange: Input 7 (x axis)
Input 8 (y axis)
Input 9 (z axis)

Green:
Blue:
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Final Report DE-FG36-04G0O14303
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Figure 14: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

e Orange: Input 7 (x axis)
e Green: Input 8 (y axis)
e Blue: Input 9 (z axis)

e Reference Input: Input 3

The graph scale data for the FRF data is as follows:

e Top Graph
0 x-scale OHz to 1.25kHz
0 y-scale: 0 to 550 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 y-scale: -720° to 720°
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2202000

6:31:06 AM

Time Domain Data

Figure 15: Accelerometer 4 (#70, Reference D)

614z
7

(®) vonesaony

The colors are assigned as follows:

Input 10 (x axis)
Input 11 (y axis)

Orange:

Green:
Blue:

Input 12 (z axis)
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FRF Data

Figure 16: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:
Orange: Input 10 (x axis)
Green: Input 11 (y axis)
Blue: Input 12 (z axis)
Reference Input: Input 3

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 y-scale: 0 to 15 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 y-scale: -720° to 720°
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Figure 17: Accelerometer 5(#71, Reference E)

The colors are assigned as follows:

Input 13 (x axis)
Input 14 (z axis) *note that this data set is inverted from the rest of them

Input 15 (y axis)

Orange:

Green:
Blue:
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Figure 18: Accelerometer 5(#71, Reference E)

The colors are assigned as follows:

Orange: Input 13 (x axis)

Green: Input 14 (z axis) *note that this data set is inverted from the rest of them
Blue: Input 15 (y axis)

Reference Input: Input 3

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 y-scale: 0 to 600 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 y-scale: -720° to 720°
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Day One, Run Two
Driver: Richard Lawrance
Equipment Operator: Robert Dailey
Data Set Title: Morning Run 1 Holes 10 through 18, Robert and Richard

Accelerometer Data

Unless otherwise noted, the scaling for the graphs is as follows:

Time domain graph scale:
o X-axis: 7:04:54 to 7:17:41
e Y-axis: +30g to -30g

FRF data graph scale:
e Top Graph
o X-axis OHz to 1.4kHz
o Y-axis: 0 to 10 no units
e Bottom Graph
o X-axis OHz to 1.4kHz
o Y-axis: -720° to 720°

Average spectrum graph scale:
e X-axis: OHz to 1.4kHz

e Y-axis: Og to 0.006g

Notes

This run was ended prematurely due to the batteries needing to have time to recharge.
The data does not reflect a complete run through the bottom 9 holes of the golf course.
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Time Domain Data

Acceleration (g)

Acceleration (g)

0

Acceleration (g)

S | e i e

. - - — — — -

7:04:54 AN 7:06:00 AM 7:08:00 AM 7:10:00 AM 7:12:00 AM 7:14:00 AM. 7:16:00 AM 7:17:41 AM
7/22/2009 7/22/2009

Figure 19: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:
e Orange: Input 1 (x axis)
e Green: Input 2 (y axis)
e Blue: Input 3 (z axis)
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Average Spectrum Data

Figure 20: Accelerometer 1(#67, Reference A)

Scale Information

X-axis: OHz to 1.25kHz
Y-axis: 0g to 25E-3¢g
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FRF Data

No Magnitude ()

Phase (°)

Frequency (Hz)

Figure 21: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:
e Orange: Input 1 (x axis)
e Green: Input 2 (y axis)
e No data for input 3

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
o0 Yy-scale: 0 to 4.5 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

To17:41 AM
72212000

7:16:00 AM

7:10:00 AW

7:08:00 AW

7:06:00 A

7:04:50 AM
772212000

Figure 22: Accelerometer 2 (#68, Reference B)

Input 4 (x axis)
Input 5 (z axis)

Orange:

The colors are assigned as follows:
[ ]

Green:

Input 6 (y axis) *note that this data set is inverted from the rest of them

Blue:
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FRF Data

4

R U\

[ I

Figure 23: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:
e Orange: Input 4 (x axis)
e Green: Input 5 (z axis)
e Blue: Input 6 (y axis) *note that this data set is inverted from the rest of them

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 150 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

7:17:41 AM

7/22/2009
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Figure 24: Accelerometer 3 (#69, Reference C)

Input 7 (x axis)
Input 8 (y axis)

Orange:

The colors are assigned as follows:
[ ]

Green:

Input 9 (z axis)

Blue:
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FRF Data
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Figure 25: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:
e Orange: Input 7 (x axis)
e Green: Input 8 (y axis)
e Blue: Input 9 (a axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 325 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

(®) uopesereoy.

Figure 26: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:

Input 10 (x axis)
Input 11 (y axis)

Orange:

Green:

Blue: Input 12 (z axis)

97|Page



Final Report DE-FG36-04G0O14303

FRF Data

o Magnitude ()

Figure 27: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:
e Orange: Input 10 (x axis)
e Green: Input 11 (y axis)
e Blue: Input 12 (z axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 3 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 y-scale: -720° to 720°

98|Page



Final Report DE-FG36-04G0O14303

Time Domain Data

7:04:58 AM

Figure 28: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Input 13 (x axis)
Input 14 (z axis) *note that this data set is inverted from the rest of them

Orange:

Green:
Blue:

Input 15 (y axis)
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FRF Data

Figure 29: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:
e Orange: Input 13 (x axis)
e Green: Input 14 (z axis) *note that this data set is inverted from the rest of them
e Blue: Input 15 (y axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 250 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Day One, Run Three
Driver: Richard Lawrance
Equipment Operator: Robert Dailey
Data Set Title: Morning Run 1 Holes 10 through 18 (second try,) Robert and Richard

Accelerometer Data

Unless otherwise noted, the scaling for the graphs is as follows:

Time domain graph scale:
o X-axis: 9:55:08am to 10:13:15am
e Y-axis: +90g to -50g

FRF data graph scale:
e Top Graph
o X-axis OHz to 1.4kHz
o Y-axis: 0 to 10 no units
e Bottom Graph
o X-axis OHz to 1.4kHz
o Y-axis: -720° to 720°

Average spectrum graph scale:
e X-axis: OHz to 1.4kHz

Y-axis: Og to 0.006g

Notes
This run was a repeat of run two in order to get a full set of data for holes 10 through 18.
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Time Domain Data

/2212000

10:13:15 AM

10:12:00 AW

10:10:00 AV

10:08:00 AM

10:06:00 AM

10:04:00 AM

10:02:00 AM

10:00:00 AM

9:58:00 AW

9:56:00 AM

(6) vopessjezoy
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772212000

Figure 30: Accelerometer 1(#67, Reference A)

Input 1 (x axis)
Input 2 (y axis)

Orange:

The colors are assigned as follows:
L]

Green:

Input 3 (z axis)

Blue:
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Average Spectrum Data

a0

Frequency (Hz)

Figure 31: Accelerometer 1(#67, Reference A)

Scale Information

X-axis: OHz to 1.25kHz
Y-axis: 0g to 50E-3g
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tude ()

No Mag

Phase (°)

Figure 32: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:
e Orange: Input 1 (x axis)
e Green: Input 2 (y axis)
e No data for input 3

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 4 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

Figure 33: Accelerometer 2 (#68, Reference B)

(©) uonesapenoy

Input 4 (x axis)

Input 5 (z axis)
Input 6 (y axis) *note that this data set is inverted from the rest of them

Orange:
Green:
Blue:

The colors are assigned as follows:
[ ]
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Figure 34: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:
e Orange: Input 4 (x axis)
e Green: Input 5 (z axis)
e Blue: Input 6 (y axis) *note that this data set is inverted from the rest of them
The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 y-scale: 0 to 180 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 y-scale: -720° to 720°
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Time Domain Data
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Figure 35: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Input 7 (x axis)
Input 8 (y axis)

Orange:

Green:
Blue:

Input 9 (z axis)
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Figure 36: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:
e Orange: Input 7 (x axis)
e Green: Input 8 (y axis)
e Blue: Input 9 (z axis)
The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 y-scale: 0to 475 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

BOEHOOH— — — — — —

(®) vonesaony

10:19:15 AM
2202000

10:04:00 AW

10:00:00 AM

Figure 37: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:

Input 10 (x axis)
Input 11 (y axis)

Input 12 (z axis)

Orange:

Green:

Blue:
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FRF Data

tude ()

No Mag

Phase (°)

Figure 38: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:
e Orange: Input 10 (x axis)
e Green: Input 11 (y axis)
e Blue: Input 12 (z axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 4 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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10:13:16 AW
712212009

10:00 AW

10:08:00 AM

10:06:00 AM

10:04:00 AM

10:02:00 AW

10:00:00 AM

9758:00 AM

9756:00 AN

Time Domain Data

2202000

Figure 39: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Orange: Input 13 (x axis)

Input 14 (z axis) *note that this data set is inverted from the rest of them

Input 15 (y axis)

Green:

Blue:
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FRF Data

Figure 40: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:
e Orange: Input 13 (x axis)
e Green: Input 14 (z axis) *note that this data set is inverted from the rest of them
e Blue: Input 15 (y axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 275 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Day One, Run Four
Driver: Richard Lawrance
Equipment Operator: Robert Dailey
Data Set Title: Morning Run 1 Holes 10 through 18, Robert and Richard

Accelerometer Data
Unless otherwise noted, the scaling for the graphs is as follows:

Time domain graph scale:
e X-axis: 10:35:43am to 10:52:00amam
e Y-axis: +90g to -50g

FRF data graph scale:
e Top Graph
o X-axis OHz to 1.4kHz
o0 Y-axis: 0 to 10 no units
e Bottom Graph
o X-axis OHz to 1.4kHz
o Y-axis: -720° to 720°

Average spectrum graph scale:
e X-axis: OHz to 1.4kHz

e Y-axis: Og to 0.006g

Notes
This was the final run of the day. Itis a repeat of the bottom 9 holes.
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Time Domain Data

10:52:4D AM

10:48:00 AN

10:44:00 AM

10:42:00 AW

10:38:00 AM

10:35:23 AM

42202000

Figure 41: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Input 2 (y axis)
Input 3 (z axis)

Green:
Blue:
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Average Spectrum Data
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Figure 42: Accelerometer 1(#67, Reference A)

Scale Information

Y-axis: 0g to 450E-3g
Y-axis: OHz to 1.25kHz
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FRF Data

== ====== [=E============

No Magnitude ()

Phase (°)

Figure 43: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:
e Orange: Input 1 (x axis)
e Green: Input 2 (y axis)
e No data for input 3

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 4.5 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

AN 101
2202000

Figure 44: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:

Input 4 (x axis)

Input 5 (z axis)
Input 6 (y axis) *note that this data set is inverted from the rest of them

Orange:

Green:
Blue:
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FRF Data

300

Figure 45: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:
e Orange: Input 4 (x axis)
e Green: Input 5 (z axis)
e Blue: Input 6 (y axis) *note that this data set is inverted from the rest of them

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 300 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°

118 |Page



Final Report DE-FG36-04G0O14303

Time Domain Data

OAN 10:52:4D AM

10:48:00 AN

10:44:00 AM

10:38:00 AM

10:35:23 AM

2202000

42202000

Figure 46: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Orange: Input 7 (x axis)
Input 8 (y axis)
Input 9 (z axis)

Green:
Blue:
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FRF Data

Figure 47: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:
e Orange: Input 7 (x axis)
e Green: Input 8 (y axis)
e Blue: Input 9 (z axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 700 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

10:52:4D AM

10:48:00 AN

10:44:00 AM

10:42:00 AW

10:38:00 AM

10:35:23 AM

42202000

Figure 48: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:

Input 10 (x axis)
Input 11 (y axis)

Orange:

Green:
Blue:

Input 12 (z axis)
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FRF Data

Figure 49: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:
e Orange: Input 10 (x axis)
e Green: Input 11 (y axis)
e Blue: Input 12 (z axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 3 no units
¢ Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

OAN 10:52:4D AM

10:48:00 AN

10:44:00 AM

10:42:00 AW

10:38:00 AM

10:35:23 AM

2202000

42202000

Figure 50: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Input 13 (x axis)

Orange:

Input 14 (z axis) *note that this data set is inverted from the rest of them

Green:
Blue:

Input 15 (y axis)
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FRF Data

*****************************************************************************************

Figure 51: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:
e Orange: Input 13 (x axis)
e Green: Input 14 (z axis) *note that this data set is inverted from the rest of them
e Blue: Input 15 (y axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: 0 to 350 no units
e Bottom Graph
0 x-scale OHz to 1.25kHz
0 Yy-scale: -720° to 720°
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Day Two, Run One
Driver: Richard Lawrance
Equipment Operator: Robert Dailey
Data Set Title: Morning Run 1 Holes 1 through 9, Uriel and Richard

MEScope Data

The stress points of the vehicle compartment are shown below. There are two or more
sets of pictures associated with each frequency being observed. These pictures
represent each peak of the oscillation at that frequency. In each picture there are the
following views (in order from top left and then clockwise around the image):

e Z-axis view

e 3D view

e Y-axis view

o X-axis View
The frequencies chosen to be displayed here where based of the peaks seen in the g-
forces measured in the average spectrum data. Not all of the peaks are displayed.
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Figure 53: 72Hz
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Figure 54: 104Hz

128 |Page



Final Report DE-FG36-04G0O14303

it 18, o 3 Marin ek 1, oy 74 P oo
Figure 55: 668Hz
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Accelerometer Data
Unless otherwise noted, the graph scales are as follows
Time domain graph scale:

e X-axis: 6:21:56am to 6:37:50am

e Y-axis: +80g to -80g

FRF data graph scale:
e Top Graph
o X-axis OHz to 1.6kHz
o0 Y-axis: 0 to 3.5 no units
e Bottom Graph
o X-axis OHz to 1.6kHz
o Y-axis: -720° to 720°

Average spectrum graph scale:

e X-axis: OHz to 1.6kHz
e Y-axis: Og to 0.001g
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Time Domain Data

6:37:50 AM

6:36:00 AM

6:32:00 AM

6:30:00 AM

6:24:00 AM

7/23/2009 /2372008

Figure 56: Accelerometer 1(#67, Reference A)

Input 1 (x axis)
Input 2 (y axis)

Orange:

The colors are assigned as follows:
L]

Green:

Input 3 (z axis)

Blue:
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Average Spectrum Data
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Input 3 (z axis)

Blue:
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FRF Data

frscius

Figure 58: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:
e Orange: Input 1 (x axis)
e Green: Input 2 (y axis)
¢ No FRF data for input 3
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630,00 A 63200 G400 A 63600 A

Input 4 (x axis)
Input 5 (z axis)

Time Domain Data

52560

Figure 59: Accelerometer 2 (#68, Reference B)

Orange:

The colors are assigned as follows:
[ ]

Green:

Input 6 (y axis) *note that this data set is inverted from the rest of them

Blue:
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VAVNZA

Average Spectrum Data

a0
Frequency (Hz)

Input 4 (x axis)

Input 5 (z axis)
Input 6 (y axis) *note that this data set is inverted from the rest of them

X-axis: 0 to 1.6k
Y-axis: 0 to 0.6E-3

Orange:
Green:
Blue:

Figure 60: Accelerometer 2 (#68, Reference B)
[

The colors are assigned as follows:

Scale information:
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FRF Data

Figure 61: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:

Input 4 (x axis)
Input 5 (z axis)

Orange:

Green:
Blue:

note that this data set is inverted from the rest of them

Input 6 (y axis) *
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Time Domain Data

63750 AM

:36:00 AN

:34:00 AN

6:30:00 AW

628:00 AN

626:00 AN

628

6:21:56 A

712372000

Figure 62: Accelerometer 3 (#69, Reference C)

712812009

The colors are assigned as follows:

Input 7 (x axis)
Input 8 (y axis)

Orange:

Green:

Input 9 (z axis)

Blue:

137|Page



Final Report DE-FG36-04G0O14303

Average Spectrum Data

Figure 63: Accelerometer 3 (#69, Reference C)

Input 7 (x axis)
Input 8 (y axis)
Input 9 (z axis)

Orange:

The colors are assigned as follows:
[ ]

Green:
Blue:
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FRF Data

Figure 64: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Orange: Input 7 (x axis)
Green: Input 8 (y axis)
Blue: Input 9 (z axis)
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6:37:50 AM

2342000

:34:00 AN

5:32:00 A

:28:00 AN

Time Domain Data

(®) vonesaooy

d & & & sF

Figure 65: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:

Input 10 (x axis)
Input 11 (y axis)

Input 12 (z axis)

Orange:

Green:
Blue:
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500

200

Average Spectrum Data

Figure 66: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:

Input 10 (x axis)
Input 11 (y axis)

Input 12 (z axis)

Orange:

Green:
Blue:
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FRF Data

Figure 67: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:
e Orange: Input 10 (x axis)
e Green: Input 11 (y axis)
e Blue: Input 12 (z axis)
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Time Domain Data

Figure 68: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Input 13 (x axis)

Orange:

Input 14 (z axis) *note that this data set is inverted from the rest of them

Green:
Blue:

Input 15 (y axis)
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Average Spectrum Data

Figure 69: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Input 13 (x axis)
Input 14 (z axis) *note that this data set is inverted from the rest of them

Orange:

Green:
Blue:

y axis)

Input 15 (

Scale Information:

-axis Og to 1.5E-3g

Y
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FRF Data

Figure 70: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Orange: Input 13 (x axis)

note that this data set is inverted from the rest of them

*

Green: Input 14 (z axis)
Blue: Input 15 (y axis)
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Day Two, Run Two

Driver: Richard Lawrance
Equipment Operator: Uriel Rosa
Data Set Title: Morning Run 1 Holes 1 through 9, Uriel and Richard

Accelerometer Data
Unless otherwise noted, the graph scales are as follows
Time domain graph scale:

o X-axis: 7:16:22am to 7:33:15am

e Y-axis: +90g to -50g

FRF data graph scale:
e Top Graph
o X-axis OHz to 1.6kHz
o0 Y-axis: 0 to 5 no units
e Bottom Graph
o X-axis OHz to 1.6kHz
o Y-axis: -720° to 720°

Average spectrum graph scale:
e X-axis: OHz to 1.6kHz
e Y-axis: Og to 0.04g

Notes
This was the final run of the day. Itis a repeat of the bottom 9 holes.
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Time Domain Data

Figure 71: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:

Input 1 (x axis)
Input 2 (y axis)

Orange:

Green:
Blue:

Input 3 (z axis)
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Average Spectrum Data

40E03.

Acceleration (5)

503

Figure 72: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:
e Orange: Input 1 (x axis)
e Green: Input 2 (axis)
e Blue: Input 3 (z axis)
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FRF Data

Frequency (Hz)

50

200

Figure 73: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:

Input 1 (x axis)
Input 2 (y axis)

Orange:

Green:

No data for input 3

Top Graph

The graph scale data for the FRF data is as follows:
[ J

0 x-scale OHz to 1.6kHz
0 Yy-scale: 0 to 5 no units

Bottom Graph

0 x-scale OHz to 1.6kHz
0 y-scale: -720° to 720°
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Time Domain Data
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2342000
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Figure 74: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:

Input 4 (x axis)

Input 5 (z axis)
Input 6 (y axis) *note that this data set is inverted from the rest of them

Orange:

Green:
Blue:
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Average Spectrum Data

408

mmmmmmmmmmm

Figure 75: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:

Orange: Input 1 (x axis)

Green: Input 2 (z axis)

note that this data set is inverted from the rest of them

)'k

(y axis

Blue: Input 3
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FRF Data

Figure 76: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:
e Orange: Input 4 (x axis)
e Green: Input 5 (z axis)
e Blue: Input 6 (y axis) *note that this data set is inverted from the rest of them

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: 0 to 700 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: -720° to 720°
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7:33:15 AM

7:30:00 A

728:00 AN

7:20:00 AN

Time Domain Data

|
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7:16:22 AM

1

Figure 77: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Input 7 (x axis)
Input 8 (y axis)

Orange:

Green:
Blue:

Input 9 (z axis)
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Average Spectrum Data

a
Frequency (Hz)

Figure 78: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (y axis)

Blue: Input 3

Z axis)

(

Scale information:

X-axis: OHz to 1.6kHz

e

Ll

o

N~

@)

—

)

o

X O

P o0

> <
[

° -
<
To)
—



Final Report DE-FG36-04G0O14303

Figure 79: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

FRF Data

Input 7 (x axis)
Input 8 (y axis)

Orange:

Green:

Input 9 (z axis)

Blue:

The graph scale data for the FRF data is as follows:

Top Graph

0 x-scale OHz to 1.6kHz

scale: 0 to 200 no units

Bottom Graph

o Yy-

to 720°

0 x-scale OHz to 1.6kHz

0 Yy-scale: -720°
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Time Domain Data

7:33115 AM
12342009

(®) vonesaony

Figure 80: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:

Input 10 (x axis)
Input 11 (y axis)

Orange:

Green:
Blue:

Input 12 (z axis)
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Average Spectrum Data

Figure 81: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (y axis)

Z axis)

(

Blue: Input 3

Scale Information:

Y-axis: 0g to 80E-3g
X-axis: OHz to 1.6kHz
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FRF Data

Figure 82: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:
e Orange: Input 10 (x axis)
e Green: Input 11 (y axis)
e Blue: Input 12 (z axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: 0 to 6 no units
e Top Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

AL

Ll

5 WE0— — —

:16:22 AN
Tr2ar2009

Figure 83: Accelerometer 5 (#71, Reference E)

Input 13 (x axis)

Orange:

The colors are assigned as follows:
[ ]

Input 14 (z axis) *note that this data set is inverted from the rest of them

Green:

Input 15 (y axis)

Blue:
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Average Spectrum Data

Figure 84: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (y axis)
Blue: Input 3 (z axis)

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: 0g to 30E-3g
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FRF Data

*****************************************************************************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 85: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:
e Orange: Input 13 (x axis)
e Green: Input 14 (z axis) *note that this data set is inverted from the rest of them
e Blue: Input 15 (y axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: 0 to 200 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: -720° to 720°
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Day Two, Run Three

Driver: Richard Lawrance
Equipment Operator: Robert Dailey
Data Set Title: Morning Run 1 Holes 10 through 18, Robert and Richard

Accelerometer Data
Unless otherwise noted, the graph scales are as follows
Time domain graph scale:

o X-axis: 8:29:19am to 8:44:47am

e Y-axis: +90g to -50g

FRF data graph scale:
e Top Graph
o X-axis OHz to 1.4kHz
o0 Y-axis: 0 to 10 no units
e Bottom Graph
o X-axis OHz to 1.4kHz
o Y-axis: -720° to 720°

Average spectrum graph scale:
e X-axis: OHz to 1.4kHz
Y-axis: Og to 0.006g

Notes
This was the final run of the day.

162|Page



Final Report DE-FG36-04G0O14303

Time Domain Data

Figure 86: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:

Input 1 (x axis)
Input 2 (y axis)

Orange:

Green:

Input 3 (z axis)

Blue:
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Average Spectrum Data

a0

50
Frequency (Hz)

Figure 87: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (axis)

Blue: Input 3

(z axis)

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: 0g to 20E-3g
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FRF Data

No Magritude

PPV VNV NS

Phase (*)

20— — — — — — — — — — F=========S==========3========="=
|
|
@wo— — — — — — — — — — - == = —
|
|
. — - F=========4

Figure 88: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:
e Orange: Input 1 (x axis)
e Green: Input 2 (y axis)
e No data for input 3

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
o0 Yy-scale: 0to 1.5 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

E38:00 AN

3400 AN

8:30:00 AM

(6) onespo0y

S I e S O B RN I

12372009

Figure 89: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:

Input 4 (x axis)
Input 5 (z axis)

Orange:

Green:

Input 6 (y axis) *note that this data set is inverted from the rest of them

Blue:
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Average Spectrum Data

|
00 500
Frequency (Hz)

20

200

Figure 90: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (z axis)

Blue: Input 3 (y axis) *note that this data set is inverted from the rest of them

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: Og to 1.5E-3g
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FRF Data

Figure 91: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:
e Orange: Input 4 (x axis)
e Green: Input 5 (z axis)
e Blue: Input 6 (y axis) *note that this data set is inverted from the rest of them

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: 0 to 237 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: -720° to 720°
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7123/2009

844247 AM

Input 7 (x axis)
Input 8 (y axis)

Input 9 (z axis)
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Time Domain Data

Orange:
Green:
Blue:

7423/2000

Figure 92: Accelerometer 3 (#69, Reference C):

The colors are assigned as follows:
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Average Spectrum Data

Figure 93: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (axis)

Blue: Input 3 (z axis)

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: 0Og to 2E-3g
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FRF Data

No Magritude

Phase (*)

Figure 94: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:
e Orange: Input 7 (x axis)
e Green: Input 8 (y axis)
e Blue: Input 9 (z axis)
The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 y-scale: 0 to 80 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 y-scale: -720° to 720°
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Time Domain Data

(6) vonesepooy

Figure 95: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:

Input 10 (x axis)
Input 11 (y axis)

Orange:

Green:
Blue:

Input 12 (z axis)
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Average Spectrum Data

Frequency (Hz)

, Reference D)

Figure 96: Accelerometer 4 (#70

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (axis)

Blue: Input 3 (z axis)

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: Og to 25E-3g
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No Magnitude ()

Phase (°)

Figure 97: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:
e Orange: Input 10 (x axis)
e Green: Input 11 (y axis)
e Blue: Input 12 (z axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 y-scale: 0 to 2 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 y-scale: -720° to 720°
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Time Domain Data

Figure 98: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Input 13 (x axis)
Input 14 (z axis) *note that this data set is inverted from the rest of them

Orange:

Green:

Input 15 (y axis)

Blue:
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Average Spectrum Data

a0

500
Frequency (Hz)

Figure 99: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (axis)

Blue: Input 3 (z axis)

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: 0g to 5E-3g
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FRF Data
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Figure 100: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:
e Orange: Input 13 (x axis)
e Green: Input 14 (z axis) *note that this data set is inverted from the rest of them
e Blue: Input 15 (y axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: 0 to 94 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: -720° to 720°
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Day Two, Run Four

Driver: Richard Lawrance
Equipment Operator: Robert Dailey
Data Set Title: Morning Run 1 Holes 1 through 9, Robert and Richard

Accelerometer Data
Unless otherwise noted, the graph scales are as follows
Time domain graph scale:

o X-axis: 10:35:43am to 10:52:00am

e Y-axis: +90g to -50g

FRF data graph scale:
e Top Graph
o X-axis OHz to 1.4kHz
o0 Y-axis: 0 to 10 no units
e Bottom Graph
o X-axis OHz to 1.4kHz
o Y-axis: -720° to 720°

Average spectrum graph scale:
e X-axis: OHz to 1.4kHz
e Y-axis: Og to 0.006g

Notes
This was manned by Robert and Richard. The top nine holes were repeated.
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Time Domain Data

Figure 101: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:

Input 1 (x axis)
Input 2 (y axis)

Orange:

Green:
Blue:

Input 3 (z axis)
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0
Frequency (Hz)

Average Spectrum Data

Figure 102: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (y axis)
Blue: Input 3 (z axis)

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: 0g to 20E-3g
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FRF Data

Figure 103: Accelerometer 1(#67, Reference A)

The colors are assigned as follows:
e Orange: Input 1 (x axis)
e Green: Input 2 (y axis)
e No data for input 3
The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 y-scale: 0 to 3 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 y-scale: -720° to 720°
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Time Domain Data
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Input 4 (x axis)

Input 5 (z axis)
Input 6 (y axis) *note that this data set is inverted from the rest of them

Orange:
Green:
Blue:

Figure 104: Accelerometer 2 (#68, Reference B)
[ ]

The colors are assigned as follows:
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Average Spectrum Data
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Figure 105: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (z axis)

Blue: Input 3 (y axis) *note that this data set is inverted from the rest of them

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: Og to 1.2E-3g
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Figure 106: Accelerometer 2 (#68, Reference B)

The colors are assigned as follows:
e Orange: Input 4 (x axis)
e Green: Input 5 (z axis)

e Blue: Input 6 (y axis) *note that this data set is inverted from the rest of them

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: 0 to 430 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

(6) onesiany

Figure 107: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Orange: Input 7 (x axis)
Input 8 (y axis)
Input 9 (z axis)

Green:
Blue:
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a0
Frequency (Hz)

Average Spectrum Data

Figure 108: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (axis)

Blue: Input 3 (z axis)

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: 0g to 5E-3g
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Figure 109: Accelerometer 3 (#69, Reference C)

The colors are assigned as follows:

Input 7 (x axis)
Input 8 (y axis)

Orange:

Green:
Blue:

Input 9 (z axis)
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Bottom Graph

0 x-scale OHz to 1.6kHz
0 Yy-scale: -720° to 720°
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Figure 110: Accelerometer 4 (#70, Reference D)
The colors are assigned as follows:

Time Domain Data

Input 10 (x axis)
Input 11 (y axis)

Orange:

Green:

Input 12 (z axis)

Blue:
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Average Spectrum Data

0
Frequency (Hz)

Figure 111: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:

Orange: Input 1 (x axis)
Green: Input 2 (axis)

Blue: Input 3 (z axis)

Scale Information:

X-axis: OHz to 1.6kHz
Y-axis: 0g to 30E-3g
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FRF Data

Figure 112: Accelerometer 4 (#70, Reference D)

The colors are assigned as follows:
e Orange: Input 10 (x axis)
e Green: Input 11 (y axis)
e Blue: Input 12 (z axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: 0 to 4 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: -720° to 720°
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Time Domain Data

Figure 113: Accelerometer 5 (#71, Reference E)

The colors are assigned as follows:

Input 13 (x axis)
Input 14 (z axis) *note that this data set is inverted from the rest of them

Orange:

Green:
Blue:

Input 15 (y axis)
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Average Spectrum Data
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Orange: Input 1 (x axis)
Green: Input 2 (axis)
X-axis: OHz to 1.6kHz

Blue: Input 3 (z axis)
Y-axis: Og to 9E-3g

Figure 114: Accelerometer 5 (#71, Reference E)
[ ]

The colors are assigned as follows:

Scale Information:
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FRF Data

W/ — — — — — — - — — —— — — — — — -

The colors are assigned as follows:
e Orange: Input 13 (x axis)
e Green: Input 14 (z axis) *note that this data set is inverted from the rest of them
e Blue: Input 15 (y axis)

The graph scale data for the FRF data is as follows:
e Top Graph
0 x-scale OHz to 1.6kHz
0 Yy-scale: 0 to 270 no units
e Bottom Graph
0 x-scale OHz to 1.6kHz
0 y-scale: -720° to 720°
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CONCLUSION

The conclusion that can be drawn data is that the vibration effects from the vehicle
driving off road are fairly small overall. It appears that the brief impacts over time may
be of more concern than the vibrations caused on the vehicle. This conclusion is drawn
from the fact that while they were brief, there were impacts that resulted in
measurements of more than 117.2g-force. On the other hand, the vibrations never
seem to have a magnitude greater than 1g-force. Vibrations that were attributed to road
travel were between the OHz and 20Hz range. While vibrations could be measured in
all three axis, the amplitude of these vibrations were very small, the max being 9.97E-01
in the z axis during run 4 on day two.

It may also be beneficial to add some additional angle braces in the compartment of the
vehicle. This may assist in reducing the horizontal vibrations measured. While the fuel
cell stack could benefit from being mounted on vibration isolators to minimize the
transfer of the horizontal vibrations into the structure of the stack, it does not seem to be
of great concern if the stack is tightly attached to the chassis.
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TASK 3 — AIR QUALITY STUDY

TASK 3.A - CHARACTERIZATION OF AIR CONTAMINATION IN OFF
ROAD APPLICATIONS FOR FUEL CELL VEHICLES

Donaldson Co., Inc.
Prepared by Kevin Seguin

INTRODUCTION

When ambient air is used as a source of oxygen for the cathode in fuel cells, the life,
durability and performance of the fuel cells are affected by air quality. The cathode
catalyst and the electrolyte can be temporarily or permanently poisoned or damaged by
contaminants that are present in the atmosphere such as sub-micrometer particulate
matter, sulfur compounds, volatile organic compounds (VOCs), salts and oxides of
nitrogen (NOXx) etc. The concentration and type of these atmospheric contaminants
vary with location, time of day and season. The removal of these contaminants is
beyond the capability of current air contamination control systems (particulate filters)
used in power plants such as engines and gas turbines. Therefore to maximize the
performance, life and durability of PEM fuel cells, a new class of air contamination
control is required.

The contamination of the cathode side of a PEM fuel cell can be divided into two main
categories. The first category is poisoning of the catalyst by compounds that adsorb to
the catalyst and occupy sites. Examples are VOCs and carbon monoxide. These
compounds would be oxidized at elevated temperatures, but the operating temperature
of most PEM fuel cells is about 80-120°C, thus preventing oxidation. The second
category is either local or uniform contamination of the cathode/membrane interface by
contaminant ions'. Examples of contaminant ions are sodium, potassium, calcium,
copper, zinc and magnesium. It has been found that contamination of the cathode side
of a PEM fuel cell is even more serious than that of the anode side’. The electrolyte in
PEM fuel cells is acidic, and base gases and particles such as ammonia, salts and
limestone etc. may be harmful to the electrolyte. In general, the contamination issue for
fuel cells is very different than that of traditional power systems such as internal
combustion engines and gas turbines. Large particulate matter is filtered out of the
combustion air in engines to prevent wear, but CO and VOCs are not of concern as they
are fuels for the combustion process. Sub-micron particulate matter and chemicals are
not filtered from the combustion air in engines, as they are harmless. If the same level
of filtration is applied to the cathode air in PEM fuel cells, contaminant ions and
chemicals may permanently degrade the fuel cell.

Air contaminants vary with location in both composition and magnitude. Particulate
matter for example, varies nine orders of magnitude in concentration from calm days
over the ocean to a windy day in the desert. In addition, the size distribution of the
particulates varies depending on the source of the particulate matter. Figure 1 describes
in general terms how the contaminants vary with environmental conditions and

195|Page



Final Report DE-FG36-04G0O14303

location”.
GEOGRAPHIC URBAN RURAL/ OFF- DESERT TROPICAL
AREA Maijor ARCTIC SHORE
metropolitan Forest, tundra AND
areas with and agriculture | MARITIME
heavy industry
and motor
vehicles
ENVIRONMENTAL Rain, fog, Snow, freezing | Wet and dry Dry, Heavy rainfall.
CONDITIONS smog, snow. rain, frost. sal, sunny. 40°F to 122°F
28°F to 100°F | -40°F to 90°F corrosive 32°F to (+5°C to 50°C).
(-2°C to (-40°C to particles. 122°F Fibrous
+38°C). +32°C). 0°F to 90°F (0°C to noncorrosive
Corrosive Dry, (-18°C to +50°C). particles, molds
chemicals, noncorrosive +32°C). Sandstor and insects.
VOCs, SO2, fibrous Blowing ms,
gummy soot particles, rain, salts, | whirlwinds
particles, NOx, | ammonia, SO2, | sea spray, , dry,
NH3, and and blowing fog, snow corrosive
dried salts. dust. and ice. particles,
clays and
salts.
PARTICLE 50 - 175 <150 <135 >350,000 <135
CONCENTRATION
(Hg/m"3)
PARTICLE SIZE 0.01-30 0.01-75 0.01-10 | 0.01-500 0.01-10

RANGE
(Micrometers)

Figure 1. Types of Contaminants vs. Geographic area

Volatile Organic Compounds (VOCs) such as unburned hydrocarbon emissions from
internal combustion engines vary greatly in concentration depending on location and the
sources of emissions. Urban areas in cold climates experience days with significantly
elevated levels of VOCs due to cold started internal combustion engines. Areas where
two cycle internal combustion engines are operated have high concentrations of carbon
monoxide and VOCs. A city can have relatively low average concentrations of VOCs,
but have local areas where the concentrations are elevated. Sulfur compounds in the
air are found wherever fuels containing sulfur are combusted, agricultural areas such as
hog farms or industrial sources such as pulp mills. Typical average concentrations of a
few select pollutants in various cities listed in Figure 2 illustrates the variation that can
occur between locations. In extreme situations such as in battlefields, warfare gases
and other pollutants can be present in the air in concentrations listed in Figure 3",
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SO2 PM10 Benzene
(ppb) (Mg/m"3) (ppb)

Perth, Australia 2.0 21

London, UK 11.0 29 1.8
Rome, ltaly 1.0 52 3.7
Paris, France 5.0

Berlin, Germany 6.0 31 2.8
Shanghai, China 20.0

Delhi, India 9.0 162

Taipei, Taiwan 4.0 44

Moscow, Russia 41.0

Cairo, Egypt 26.0

Stockholm, Sweden 2.0 25

New York, US 9.0 17 3.0
Los Angeles, US 2.0 139 1.0
Houston, US 2.6 29 0.8
Minneapolis, US 9.8 25 0.5
Vancouver, Canada 2.0 14 0.7
Mexico City, Mexico 28.0 53

Sao Paulo, Brazil 16.0 54

Figure 2: Average ambient air contaminants vs. Location

Contaminant Concentration
(PPM)

Carbon Monoxide 20
Sulfur Dioxide 0.5
Benzene 50
Propane 90
Nitrogen Dioxide 0.4

Cyanogan Chloride (CNCL) 780-1560

Hydrogen Cyanide (HCN) 1780-3560
Sulfur Mustard 15

Sarin 170-340

Figure 3: Concentrations of Contaminants in a Battlefield

LITERATURE SEARCH

Particulate Contaminants

Particulate matter (PM) is typically in the size range of 10 nanometers to 100
micrometers in diameter. PM, 5 refers to the concentration of “fine” particles that are
less than 2.5 microns. PMy referse to the concentraions of ‘coarse” particles, less than
10 microns in diameter Particulate matter can also be classified as primary or
secondary particles. Primary particles, such as dust from roads or elemental carbon
(soot) from diesel fuel or wood combustion, are emitted directly into the air. Secondary
particles are formed in the atmosphere from gaseous emissions such as sulfates
formed from SO2, or nitrates formed from NO, emissions from automobiles, power
plants and other industrial combustin sources. The USEPA? has reported the average
concentration in ambient environments od PMyo ranges from 20-40 ug/m®. Much higher
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concentrations are found in more polluted urban environments. In addition, off road
vehicles are subject to higher concentration from road or soil dust.

Barris® reg)orted an avg,rage ambient range of 10-1393ug/m3. Paved goads ranged from
139 yg/m to 57 mg/m , and dirt roads from 139 ug/m to 6113 mg/m .

|Condition Dust Concentration (mg/m3)
Avg. Ambient 0.010-0138

95th % Ambient 0.089

99th % Ambient 0112

FPaved Roads 0.139-57

Dirt Roads 0.139-6113

Dust Storms 0.1-176

Worst Dust Storm 3000

0 Visibility 883

2000 Visibility 17657

Table 1. Range of Dust Concentrations in Various Engine Environments

Besse* studied the particle size distribution as a function of height above a dirt road
traveled by Light Armored Vehicles (LAVs). A sampling system was set up to take
samples from 1-3 meters above the ground at 0.3 meter intervals. The stand was
located 2 meters from the road. They found that there was only a minor shift toward the
smaller particles as height increased (Table 2). As expected, the weight percent at
each height decreased with increasing height (Table 3). The increase at 1.6 meters
was attributed to air currents caused by the vehicles body configuration or exhaust
system.

Partide Size Distnbution as a Funchon of Height

|Height (m) 4 <] 5] 7 8 g 10 15 0
0 330 222 178 130 107 B87.8 74,2 473 23
1 435 278 222 173 124 109 825 4390 209
1.3 434 285 229 179 140 115 871 519 318
1.6 493 322 257 199 153 124 103 52 306
2 498 329 264 206 150 128 107 54.4 327
23 476 307 248 181 148 121 101 536 328
26 481 318 253 197 152 124 104 551 33.8
3 514 348 280 217 166 134 112 5.6 328

Table 2: Particle size distribution as a function of height

Height, m Percentage, %
1 20.8
1.3 14.5
1.6 18.4
2 13.5
2.3 10.7
2.6 94
3 9.7
33 3.0

Table 3: Weight percentage of total airborne particulate at each height
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Chemical Contaminants

Basic make Up of Air

Air is widely established to contain 78.03-78.08% nitrogen, 20.95-20.99% oxygen, 0.94%
argon, 0.03-0.04% carbon dioxide, 0.001-0.002% neon, 0.0005% helium, 0.0001% krypton,
0.00005% hydrogen, and 0.000009% xenon, and this basic composition is relatively
constant. Other compounds maybe present and the concentrations and nature of these
compounds can vary widely from location to location and in a specific location from day to
day based on atmospheric conditions and local activity.

Measuring Contaminants

Chemical contaminants are usually reported as either mass per volume of air such as
micrograms per cubic meter (ug/m®), or part per billion by volume (ppb). Part per billion
is defined as the volume of the gaseous contaminant divided by the volume of air times
one billion.

V
pph = I_ x 107

The number of molecules in a given volume of air at constant temperature and pressure
will always be constant. This concept is known as Avogadro’s law. Most Chemical
detectors are concentration dependant and measure the number of molecules of a
particular species in a given volume. The concentration is then reported as part per
billion or part per million. This measurement is useful for determining the relative
amount of one contaminant to the next. The value of the measurement in ppb will also
be independent of temperature and pressure since the volume of both the contaminant
and air will increase proportionally with increased temperature and decrease
proportionally with increased pressure.

The ideal gas law further describes the relationship between a volume (V) of gas at a
given temperature (T), and pressure (P), and the number of molecules or moles (n).
PV = nRT

R is the ideal gas constant and is dependent on the units of measurement. The mass
(m) of a contaminant can be calculated from the number of moles divided by the
molecular weight (M).

_ m

M

Therefore,
pv =Ry

M
The mass of a contaminant in a specific volume is then dependant on pressure,
temperature, and the molecular weight of the contaminant. The value is usually
assumed to be at standard temperature and pressure, 760 mmHg, and 25°C. At this
temperature and pressure, ppb can be converted to pg/m3 with the equation®;

CIM:"IU

i
/m” = —
& 24.5

Reported Levels of Various Contaminants
Chemical contaminants in the air can be divided up in to three classes 1) acid gases 2)
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base gases 3) volatile organic compounds (VOCs). Acid gases are gases that will form
acids when mixed with water. Common examples are sulfur dioxide (SO;) which will
form sulfuric acid (H.SO4) when dissolved in water, and nitrogen oxide (NO) or nitrogen
dioxide (NO2) which will form nitrous acid (HNO-) and nitric acid (HNO3) when dissolved
in water. Nitrogen oxide and nitrogen dioxide are often combined and referred to as
oxides of nitrogen and represented as NO,. Base gases are gases that will form base
solutions with water such as ammonia (NH3) which forms ammonium (NH;OH) when
dissolved in water. Acid and base gases can also combine to form salts and can
agglomerate to form secondary particles. Organic compounds are a broad class of
compounds containing carbon chains or rings and hydrogen, and often also contain
other elements such as oxygen, nitrogen, sulfur, etc. Volatile organic compounds are
compounds that readily evaporate under room temperature and pressure. VOCs are
common and ubiquitous. They are solvents used in paints and building materials,
aerosols, fuels such as gasoline and diesel fuel, petroleum distillates and other
industrial products. They are also emitted from plants and animals by off gassing or
respiration. Acid gases and VOCs have been found to be particularly detrimental to fuel
cell performance.

The USEPA? has set national air quality standards for six principal air pollutants
nitrogen dioxide (NO3), ozone (Os3), sulfur dioxide (SO,), particulate matter (covered in
section 2.1), carbon monoxide (CO), and lead (Pb). Typical concentrations, as given by
the EPA are given in Table 4.

Contaminant Concentration in ppb
(ug/m )
Nitrogen dioxide 10-40 (19-75)
Sulfur dioxide 1.0-10 (2.6-26)
Ozone 50-200 (98-391)
Carbon monoxide 2-6 (2.3-6.8)
Lead 0-0.1 (0.8)

Table 4: Average Annual Concentration of Principal Air Pollutants

The EPA defines toxic air pollutants as those compounds that may cause serious health
problemsG. Typical examples of toxic air pollutants are benzene, perchloroethylene,
and methylene chloride. Most toxic air pollutants, like those listed, are anthropogenic,
but some are also released from natural sources such as forest fires. The Clean Air Act
identifies 188 compounds from industrial sources. The EPA and state agencies monitor
selected compounds and have compiled data to establish risk assessments and create
maps that model ambient concentrations for a given compound across the nation.
Table 5 shows some compounds of interest with the highest, median, and lowest
concentrations. Concentration maps, shown in Appendix A, illustrate how widespread
common VOCs are in the atmosphere. All of these compounds could adversely affect
fuel cell performance.
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Compound Highest ppb (ug/m3) Media ppb (ug/m3) Lowest ppb (ug/m3)
Acetaldehyde 2.6 (4.75) 0.07 (0.13) 0.0006 (0.001)
Acrolein 0.26 (0.6) 0.15 (0.34) 6.6x10 (1_5X10'4)
Benzene 1.5 (4.76) 0.2 (0.65) 0.15 (0.48)

Carbon tetrachloride 0.15 (0.94) 0.14 (0.88004) 0.14 (0.88000)
Ethylene dichloride 0.035 (0.14) 0.015 (0.062002) 0.015 (0.062000)
Formaldehyde 5.6 (6.81) 0.38 (0.46) 0.20 (0.25)
Methylene chloride 0.85 (2.94) 0.045 (0.17) 0.043 (0.15)
Perchloroethylene 0.20 (1.39) 0.022 (0.149) 0.020 (0.140)
Tetrachloroethane 0.16 (1.08) 0.012 (0.084) 0.012 (0.0810)

Table 5: Concentrations of common pollutants as measured by the EPA

Jacobson’ reported concentrations of variable gases in polluted and clean troposphere.

Compound

Clean Troposphere

Polluted Troposphere

Inorganic

Carbon monoxide

40-200 (46-229)

2000-10000 (2286-11428)

Sulfur dioxide

0.02-1 (0.05-2.6)

1-30 (2.6-78)

Nitric oxide

0.005-0.1 (0.006-0.12)

0.05-300 (0.06-367)

Nitrogen dioxide

0.01-0.3 (0.019-0.56)

0.2-200 (0.84-845)

CFC-12 0.55 (2.7) 0.55 (2.7)
Organic
Methane 1800 (1175) 1800-2500 (1175-1632)
Ethane 0-2.5(0-3.1) 1-50 (1.2-61)
Ethene 0-1 (0-1.1) 1-30 (1.1-34)
Formaldehyde 0.1-1 (0.12-1.2) 1-200 (1.2-245)
Toluene 1-30 (3.8-112)
Xylene 1-30 (4.3-130)
Methylene chloride 0.61 (2.10) 0.61 (2.1)

Table 6: Concentration of variable gases in clean and polluted troposphere in ppb

(Hg/m’)

Data obtained from the World Health Organization are in agreement with Jacobson’s
report and show that, as expected heavily populated urban areas have very high
concentrations of carbon monoxide

Cross® reported on data from a literature search on ambient pollutants in urban, rural
and military battlefield environments. He found that in urban and rural environments
eight pollutants accounted for over 99.9% of all measured pollutants. The most
common pollutants found in urban and rural environments were carbon monoxide (CO),
particulate matter less than 10 microns in size (PM1g), SO>, toluene, ozone, NOo,
particulate matter less than 2.5 microns in size (PM;5) and formaldehyde. In urban
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environments CO was the most prevalent pollutant due to automobile exhaust; in rural
environments PM1o:+ was the most prevalent due to road dust and blown dirt. In heavily
polluted battlefield environments there were fifteen chemicals accounting for over 99.5%
of the pollutants. Carbon monoxide was again the most prevalent, aluminum oxide and
other airborne particle were the next highest followed by hydrogen chloride, VOCs, NOy,
NHs;, hydrogen sulfide and hydrogen cyanide. Other chemical warfare agents such as
sarin, sulfur mustard and cyanogen chloride may be present, but studies of their
concentrations are classified. Moore and coworkers studied the effect of chemical
warfare agents and pollutants and found that some cause a depression in fuel cell
performance.

Summary of the effect of the contaminants on fuel cell output

Contanunant Concentration Percentage of original output during challenge Percentage of original output during recovery
Carbon monoxide 20 ppm 96% 100%
Nitrogen dioxide 400 ppb 100% 100%
Sulphur dioxide 300 ppb 100% 100%
Benzene 50 ppm 95% (30 mA /em®) 95%

93% (100 mA /em?)
729 (200 mA /cm”)

Propane 90 ppm 100% 100%
HCN 1780 ppm 13% 43%
HCN 3560 ppm 9% 353%
CNC1 780 ppm 11% 32%
CNC1 1560 ppm 12% 50%
Sulphur mustard 15 ppm 13% 13%
Sarin 170 ppm 30% 30%

Sarin 340 ppm 23% 23%

Table 7: Effect of Military Pollutants on Fuel Cell Performance

Off road applications will offer unique chemical contamination challenges. Vehicles
driving on fields or in forested areas will be subject to a variety of biogenic volatile
organic compounds. Forest trees have been shown to emit significant amounts of
isoprene and monoterpenes.®'? Kristine' studied the emissions of VOCs from pasture
and found emissions of oxygenated species including methanol, ethanol, propanone,
butanone, and ethanal with only a small amount of isoprene and monoterpene. Fluxes
as high as 23,000 ug (carbon) m? h™' were measured, with clover emitting more VOCs
than grass. Emission rates after mowing increased dramatically with clover emissions
increasing 80 times and grass emissions increasing 180 times. These emissions
included the above compounds plus higher levels of (Z)-3-hexenal, (E)-2-hexenal, (Z)-2-
hexen-1-ol, (Z)-3-hexen-1-ol, and (Z)-hexenyl acetate.

Concentrations of VOCs from cut grass and clover were measured by de Gouw'* who
found that as the grass dries the VOC emissions increase. The concentrations of
methanol and (Z)-3-hexenal rose immediately after cutting both grass and clover. After
approximately 200 minutes the VOC emissions started to rise again. Concentrations of
(2)-3-hexenal and acetaldehyde peaked at approximately 1 PPM 400 minutes after
cutting grass. Concentration of (Z)-3-hexenal peaked at 0.1 PPM and acetone peaked
at 2 PPM 300 minutes after cutting clover.
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Grass Clover
Compound After cutting | Peak at 400 min | After cutting Peak at 300 min
(Z2)-3-hexenal 300 1000 1000 100
(Z)-3-hexenol 200 90 500 10
Hexenyl acetate 9 1 9 <1
Formaldehyde 60 60 20 300
Methanol 300 200 2000 200
Acetaldehyde 200 1000 300 500
Butanone 60 60 200 1000
Acetone 400 2000

Table 8: VOC concentrations (ppb) in airimmediately after cutting and after drying

Pesticides are also present in low concentrations during application. Yeary15 studied
the concentrations of various pesticides in the air during application. Pesticide
concentrations were measured in the outdoor ambient air and at the applicator
breathing zone. In most measurements the concentrations of pesticides were below the
detectable limit of 1 ug/m>. Tables 9 and 10 show the results of their testing.

— 3
P e sites | detecable e | TVAPPD (gm)
Acephate 17 16 4.3 (32)
Ammonia 12 12 ---
Carbaryl 28 15 1.6 (13)
Dicofel 53 52 0.5 (6)
Diazinon 34 32 0.34)
Malathion 5 5 -
2,4-D 16 11 2.8 (25)
Xylene 30 30 -
Table 9: Outdoor ambient air during pesticide application
Pesticide Number of sample sites No. Below detectable limit TWA Hg/m3
Atrasine 22 16 0.1(1)
Bensulide 10 10 ---
Chlorpyrifos 17 9 0.35(5)
2,4-D 76 61 0.4 4)
Dacthal 2 2 -
Diazinon 20 7 1.1 (14)
MCPA 25 25 ---
Pendimethalin 8 8 ---

Table 10: Applicator breathing zone air monitoring
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Conclusion

Air quality is affected by many factors and can vary widely between locations and even
from day to day. Particulate levels generally average from 0.01-0.14 mg/m? but are
frequently higher in off road situations such as dirt roads where the level may be as high
as 6000 mg/m3. In addition, small particles, 0.01-5.0 um, can have a detrimental effect
on fuel cell cathodes. Particles of this size are often secondary particles containing
sulfur dioxide and oxides of nitrogen which are detrimental to fuel cell performance.
Typical filters for internal combustion engines are not as effective at removing these
small particles. HEPA grade filtration is most likely necessary to achieve maximum
performance for fuel cells.

Chemical contaminants also vary widely in composition and concentration depending on
location and time. The wide range of chemical contaminants should be considered in
the fuel cell filtration design. The filter should be able to remove acid gases, base
gases and a broad range of volatile organic compounds.

ANALYTICAL METHODS

Donaldson will conduct field testing of air quality, with Toro’s assistance, by fitting a
Heavy Duty Workman® utility vehicle with air monitoring and sampling devises. Air
samples will be taken at a golf course specified by Toro in St. Paul, MN. The goal of the
sampling is to determine types and concentrations of contaminants that may be
encountered in an off road fuel cell vehicle. This data will be used to test possible
contaminants to determine their affect on fuel cell performance and design filter
systems. Particulate and chemical contaminant data will be collected. Samples will be
collected at various locations around the course and in as many different conditions as
possible, i.e. morning, afternoon, during mowing or fertilizing etc. There are numerous
methods for measuring contaminant concentrations in air. The USEPA, NIOSH and
OSHA all have libraries of methods for general testing and testing for specific
chemicals. Methods usually involve using a sample pump to draw air through an
adsorbent devise or filter paper, then analyzing the adsorbent. Air samples will be
taken at the back of the vehicle (A), in between the box and the cab (B), and on the
front of the vehicle (C). Sample location A will allow us to collect contaminant data
caused by the vehicle as it disturbs the soil. Sample location B will collect contaminant
data near the potential air inlet for the fuel cell. Sample location C will collect
contaminant data from the undisturbed environment.
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Figure 4: Air sampling locations on Toro Heavy Duty Workman

Particulate Contaminants

Particulate analysis will focus on PMo and will be conducted in accordance with NIOSH
method 0600. These particles will adversely affect the performance of fuel cells and are
not removed very well by typical IC engine filtration.

Sampling of particulates will use a pump with an impactor used to remove large
particles from the air. Particles smaller than 10 microns will be collected on a pre-
weighed filter paper to determine the mass of particles in the air. A scanning electron
microscope will also be used to try to determine the size distribution and electron
dispersion spectroscopy will be used to try to determine the chemical make up of the
particles.

Chemical Contaminants

Sampling and measurement will focus on acid gases, specifically sulfur dioxide and
oxides of nitrogen, base gases, specifically ammonia, and volatile organic compounds.
Sampling and analysis of acid gases will be conducted in accordance with NIOSH
methods 6004 for SO, and/or NIOSH method 6014 for NO,. Base gas analysis will be
conducted in accordance with NIOSH method 6016 for ammonia. In these analyses, a
sample pump will be fitted with adsorbent tubes. The flow rate through each tube is
calibrated and the sample time measured and recorded. The adsorbent material in
each tube is extracted with de-ionized water. The water sample is then concentrated
and analyzed by ion chromatography. Contaminants can then be identified and
quantified.
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Sampling of VOCs will be conducted in accordance with EPA Compendium Method TO-
17, “Determination of Volatile Organic Compounds in Ambient Air Using Active
Sampling onto Sorbent Tubes”. In this analysis a pump will again be used to draw air
through adsorbent tubes to collect the contaminants for analysis by thermal
desorption/gas chromatography/mass spectroscopy. We will use two different
adsorbents for VOC sampling. Carbosieve® is used for the collection of light organic
compounds typically with boiling points from -60°C to 80°C, and Tenax® TA is used for
collection of higher molecular weight organics typically with boiling points from 100°C to
400°C. Typical flow rates and sampling times will be 0.1-1.0 Liters/minute, and 1-4
hours respectively. Samples will be returned to Donaldson’s Corporate Technology
laboratory for analysis.
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APPENDIX A: US CONTAMINANT CONCENTRATION FOR SELECTED
CONTAMINANT BY COUNTY

These maps illustrate the modeled ambient concentration of air toxics by county in
1996. Map colors indicate ranges of median concentration values, and each county is
colored according to its value relative to the rest of the country. The concentration value
displayed in maps is the median. Pollutant concentration is expressed in micrograms
per cubic meter of air (ug/m?®).
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Estimated County Median Ambient Concentrations
Acrolein — United States Counties
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Estimated County Median Ambient Concentrations
Chloroform — United States Counties
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Estimated County Median Ambient Concentrations
Formaldehyde — United States Counties
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Estimated County Median Ambient Concentrations
Perchloroethylene — United States Counties
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APPENDIX B: DEFINITIONS

Acid gas: Gas that will form acids when mixed with water. Common examples are
sulfur dioxide (SO3) which will form sulfuric acid (H,SO,4) when dissolved in water, and
nitrogen oxide (NO) or nitrogen dioxide (NOz) which will form nitrous acid (HNO;) and
nitric acid (HNO3) when dissolved in water.

Anthropogenic: Relating to, or resulting from the influence of human beings on nature.

Base gas: Gas that will form base solutions with water such as ammonia (NH3) which
forms ammonium (NH4OH) when dissolved in water.

Biogenic Compounds: Compounds produced by the actions of living organisms.

Chromatography: A series of related techniques for the separation of a mixture of
compounds by their distribution between two phases. In gas-liquid chromatography the
distribution is between a gaseous and a liquid phase. In column chromatography the
distribution is between a liquid and a solid phase.

Hydrocarbon: Compounds containing only carbon and hydrogen. Petroleum products
are a common example of hydrocarbons.

lon chromatography: A form of liquid chromatography that uses ion-exchange resins to
separate atomic or molecular ions based on their interaction with the resin

Mass spectroscopy: Mass spectrometry is a technique for separating ions by their
mass-to-charge (m/z) ratios in order to identify a compound or a molecular structure.

Organic compound: Chemical compounds based on carbon chains or rings and also
containing hydrogen, with or without oxygen, nitrogen, and other elements.

Oxides of nitrogen: A mixture of nitrogen oxide (NO) and nitrogen dioxide (NO;)
greenhouse gases produced as by-products in combustion engines and many industrial
processes; NO x in the atmosphere are converted to nitric acid (HNO3) which falls as

acid rain.

PM_ s: Refers to the concentration of “fine” particles that are less than 2.5um in
diameter.

PM1o: Refers to the concentration of “course” particles, less than 10um in diameter.
Thermal desorption: A method for vaporizing and introducing volatile and semi-volatile
compounds present in a sample into an analytical instrument by means of thermal
energy.

Troposphere: The portion of the earth's atmosphere from the surface to the tropopause;
that is, the lowest 10-20 km of the atmosphere. The troposphere is characterized by
decreasing temperature with height, and is the layer of the atmosphere containing most
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clouds and other common weather phenomena

Volatile organic compounds (VOCs): Compounds that vaporize (become a gas) at room
temperature. Common sources which may emit VOCs include housekeeping and
maintenance products, building and furnishing materials, gasoline, kerosene, diesel
fuel, industrial solvents, and plants and animals.
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TASK 3.C - AIR FILTER TESTING
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INTRODUCTION

Fuel cell systems for back-up power are best suited for use in regions where the grid is
unstable. These regions tend to be in the developing world where air quality is often
poor to unhealthy. In order for a fuel cell system to operate successfully in these
regions, contaminants in the ambient air must be removed or greatly reduced before
supplying oxygen to the cathode. As a result, air filters are routinely used to filter the air
to remove particulates and contaminants. However, no real data on air filter efficacy
and lifetime exists for fuel cell applications. It is the objective of this research to
determine efficacy and longevity of air filters with respect to removing NOx and SOx
contaminants, two contaminants that are routinely found in high levels in the developing
world.

EXPERIMENTAL SET-UP
Schematic
A simple schematic of the experimental apparatus is shown in Figure 1 and a P&ID is
provided in Figure 2. The test system can be further separated into the following sub-
systems:
e Air delivery (Figure 3): Consists of the air compressor, the air tank, the dryer and
the chiller.
e Humidification (Figure 4): Consists of the humidification tank which has an inlet
valve for water which is controlled by P&ID through Labview.
e Pollutant injection system (Figure 5): Consists of Mass Flow Controllers (MFCs)
which operate in the mSLPM range of interest for NO2 and SO..
e Gas heating (Figure 6). Consists of the heaters and the thermocouples controlled
by P&ID through Labview.
o Filter testing (Figure 6): Consists of the assembly that has been built to house the
filters in a manner that isolates them from the ambient.
e Gas sampling (Figure 7): Consists of a series of Mass flow controllers (MFCs)
which regulate the air flow rates through each of the filters during the test.
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Figure 1: Test set-up schematic
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Figure 3: Air Delivery

Figure : Humidificato
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Figure 6: Filter housings and heater control
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Figure 7: Gs. sampli?nj manifold

The air compressor, dryer, and chiller provide cold, dry air for the system to operate
(Figure 3). Solenoids at the beginning of each channel allow air to flow for testing. This
also allows channels to be shut off individually without interrupting flow to the other
channels. Mass flow meters following the solenoids measure inlet air flow and also
meters pollutant concentrations.

A first set of heaters brings the air to test temperature for each channel. The
humidification system (Figure 4) follows consisting of a chamber to allow mixing of air
and water. The system pumps water into the chambers through misting nozzles. Water
flow is controlled with variable control valves. Closed loop feedback for humidification
control is provided by the humidity sensor downstream.

This temperature and humidity controlled air then passes into the pollutant injection
system which meters flow of SO, and NO; into the air stream. Solenoid valves must
open before the pollutant is allowed to flow and are shut off when no pollutant is
needed. An air purge solenoid introduces clean air upstream of the pollutant mass flow
controllers to clear any trapped pollutant during shutdown (Figure 5).

After the pollutant injection, the flow of each channel is split into three sub-channels and
mass flow meters control flow of polluted air to the different filters (Figure 6). A final
heating stage heats each sub-channel to offset any heat lost since the initial heaters.
Filtered air is sampled and passes through to a common exhaust manifold and expelled
from the experimental area.

The sampling system consists of 12 solenoid valves and a manifold (Figure 7) to the
gas analyzer. Each channel has an upstream sample and three downstream samples;
one for each type of filter. The upstream sample is a short distance downstream of
pollution injection and will act as error signal to pollution concentration control as well as
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test data for the filters. The downstream samples will read pollution levels after the filter
to asses filter performance. The sampling system will open one solenoid while keeping
the other 11 closed. The Horiba gas analyzer will draw from the sampling system long
enough to clear the tube of previous samples as well as attain a stable reading. This
results in long periods between samples of each filter.

The system has emergency release solenoids which vent all gas from each channel

during the event of an emergency. These solenoids are normally open and must be

energized to close. In the event of a power failure, these solenoids will automatically
open causing the entire system to vent.

During the actual test, the test parameters including air flow rate, pollutant flow rates,
temperature and humidity are set to the desired values noted in the experimental plan.
All of these parameters as well as the solenoid valves are controlled from Labview and
are recorded against a date and time stamp. Each test will continue until filter failure.
Once a filter fails, the filter will be replaced and the test repeated with a new set of
values from the full factorial of the experiment.

Controls

Custom software was written using Labview to control all the test equipment. P&ID
loops were written to control the air temperature and air humidity. Code for test data
saving is included in the control software. By this means, an excel spreadsheet
containing readings for flow rate, temperature and humidity is continuously storing data
while the control program is running.

In order to achieve integrated data acquisition, we used a NI systems as detailed in
Table 1.

DAC cards Number of Al Number of Number of DIO Counters
AO
NI PXI 6723 0 32 0 0
NI PXle 6363 32 4 48 4
NI 4353 PXle 32 0 8 0
(thermocouple)
Total channel count | 32/32 36 56 4
thermocouple

Table 1: Table detailing the data cards being used for P&ID control

The acquired data is then processed through Labview to achieve P&ID control. The
Labview interface (Figure 8) allows for real time display of the parameter that is being
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controlled thereby ensuring that the gains may be manually changed if the control
system fails to achieve the desired value.

Figure 8: User interface on Labview for P&ID control of temperature and humidity

Due to the fact that there is only one gas analyzer per pollutant and several sampling
points in the system, proper multi-point pollutant monitoring can only be achieved by
implementing a sampling sequence. For that purpose, separate Labview testing
sequence code (Figure 9) was developed in order to get an automated sampling
sequence. The code creates a testing sequence in which sampling valves throughout
the system are opened one at a time while the rest of the valves are kept closed. The
software also allows one to select between manual and automatic valve command and
to indicate the sampling time during which the valves remain open until steady readings
are achieved in the analyzers. The sampling data containing the status of the valves
(open or closed) for each time, is stored on an excel spreadsheet that can be merged
with the gas concentration data from the analyzers.
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C:\Users\HyPAUL Idatech\Desktop\ldatech B¢

Figure 9: Labview user interface showing the sampling sequence involving the
upstream sample and the three filter samples. The sampling time can be set in such a
manner that a steady value can be obtained for each sample

Lastly, software to merge the Labview data and the Horiba data into one master data
file was created. The testing experiments deal with three different sources of data. The
first source is the output from Labview, which generates two separate files, and the
other two sources are the Horiba gas analyzers. Since time is the common variable in
all the data files, it is possible to merge them into one file. In order to do this, a
Windows application was developed, which generates a single output file from the four
mentioned inputs. The user interface for the software is shown in Figure 10. The intent
is to generate one master data file for each day of testing.
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Figure 10: User interface for data merge software

TEST PLAN:
In discussions with air filter companies, the critical factors for determining air filter
performance are:

Contaminant concentration
Gas flow rate
Temperature

Humidity level

With this in mind, we selected the following ranges for the key variables:

NO, — 100 and 170 pg/m®

SO, — 25 and 100 pg/m?®

Gas flow rate — 100 and 300 slpm
Temperature — 10°C and 40°C
Relative humidity — 25% and 70%

Since the interactions between the key variables are not known, we decided to perform
a factorial design of experiments, the details of which are provided in Table 2 and Table
3.
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Test Number NO- SO, Flow | Temp. Relat.iv_e
(ng/m3 | (ng/m3 | (slpm) | (°C) Humidity

1 100 25 100 10 25%

2 170 25 100 10 25%

3 100 100 100 10 25%

4 170 100 100 10 25%

5 100 25| 300 10 25%

6 170 25| 300 10 25%

7 100 100 | 300 10 25%

8 170 100 | 300 10 25%

9 100 25 100 40 25%
10 170 25 100 40 25%
11 100 100 100 40 25%
12 170 100 100 40 25%
13 100 25| 300 40 25%
14 170 25| 300 40 25%
15 100 100 | 300 40 25%
16 170 100 | 300 40 25%
17 100 25 100 10 70%
18 170 25 100 10 70%
19 100 100 100 10 70%
20 170 100 100 10 70%
21 100 25| 300 10 70%
22 170 25| 300 10 70%
23 100 100 | 300 10 70%
24 170 100 | 300 10 70%
25 100 25 100 40 70%
26 170 25 100 40 70%
27 100 100 100 40 70%
28 170 100 100 40 70%
29 100 25| 300 40 70%
30 170 25| 300 40 70%
31 100 100 300 40 70%
32 170 100 300 40 70%
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NO2 S0O2 Air
MFC MFC Horiba Horiba MFM
Test
e oS oz |SIEM | sm
1 0.8844142 0.3719336 0.0048643 0.0486 0.0008740 0.0087 99.9943
2 1.5035041 0.3719336 0.0082693 0.0827 0.0008740 0.0087 99.9909
3 0.8844142 1.4877345 0.0048643 0.0486 0.0034962 0.0350 99.9916
41 1.5035041 1.4877345 | 0.0082693 0.0827 | 0.0034962 | 0.0350 99.9882
5 2.6532425 1.1158009 0.0145928 0.0486 0.0026221 0.0087 299.9828
6 4.5105123 1.1158009 0.0248078 0.0827 0.0026221 0.0087 299.9726
7 2.6532425 4.4632035 0.0145928 0.0486 0.0104885 0.0350 299.9749
8 4.5105123 4.4632035 0.0248078 0.0827 0.0104885 0.0350 299.9647
9| 0.8844142 | 0.3719336 | 0.0048643 0.0486 | 0.0008740 | 0.0087 99.9943
10 1.5035041 0.3719336 0.0082693 0.0827 0.0008740 0.0087 99.9909
11 0.8844142 | 1.4877345| 0.0048643 0.0486 | 0.0034962 | 0.0350 99.9916
12 1.5035041 1.4877345 0.0082693 0.0827 0.0034962 0.0350 99.9882
13 2.6532425 1.1158009 0.0145928 0.0486 0.0026221 0.0087 299.9828
14 4.5105123 1.1158009 0.0248078 0.0827 0.0026221 0.0087 299.9726
15 2.6532425 4.4632035 0.0145928 0.0486 0.0104885 0.0350 299.9749
16| 4.5105123 | 4.4632035| 0.0248078 0.0827 | 0.0104885 | 0.0350 | 299.9647
17 0.8844142 0.3719336 0.0048643 0.0486 0.0008740 0.0087 99.9943
18 1.5035041 0.3719336 0.0082693 0.0827 0.0008740 0.0087 99.9909
19 0.8844142 1.4877345 0.0048643 0.0486 0.0034962 0.0350 99.9916
20 1.5035041 1.4877345 0.0082693 0.0827 0.0034962 0.0350 99.9882
21 2.6532425 [ 1.1158009 | 0.0145928 0.0486 | 0.0026221 | 0.0087 | 299.9828
22 4.5105123 1.1158009 0.0248078 0.0827 0.0026221 0.0087 299.9726
23 | 2.6532425| 4.4632035| 0.0145928 0.0486 | 0.0104885 | 0.0350 | 299.9749
24 4.5105123 4.4632035 0.0248078 0.0827 0.0104885 0.0350 299.9647
25 0.8844142 0.3719336 0.0048643 0.0486 0.0008740 0.0087 99.9943
26 1.5035041 0.3719336 0.0082693 0.0827 0.0008740 0.0087 99.9909
27 0.8844142 1.4877345 0.0048643 0.0486 0.0034962 0.0350 99.9916
28 | 1.5035041 1.4877345 | 0.0082693 0.0827 | 0.0034962 | 0.0350 99.9882
29 2.6532425 1.1158009 0.0145928 0.0486 0.0026221 0.0087 299.9828
30 4.5105123 1.1158009 0.0248078 0.0827 0.0026221 0.0087 299.9726
31 2.6532425 4.4632035 0.0145928 0.0486 0.0104885 0.0350 299.9749
32 4.5105123 4.4632035 0.0248078 0.0827 0.0104885 0.0350 299.9647
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The experimental plan consists of two phases:

Phase I: Initial Shakedown
During the initial shakedown, equipment is tested for functionality and accuracy. During
this phase, we:

e Tested control loops on heaters and humidifiers. These tests were conducted
with dry runs (no pollutants) to ensure accurate control and stability of
environmental systems.

e Checked for leaks and proper pressure drops.

e Calibrated the gas analyzers and pollution injection systems.

After initial shakedown, the first test run may commence along with any additional
troubleshooting.

Phase II: Tests

The test plan entails using the above setup to run a range of tests as shown in the full
factorial (Tables 2 and 3). The data for the performance of the fuel cell will be measured
by the gas analyzers. This data can be plotted against time and the results from the
various tests can be combined and assessed based upon a number of parameters. Of
particular interest are the lifetime performance curves of the filters. We intend to get two
data points under each set of conditions. Due to numerous issues detailed in the
“Issues and Recommendations” section, no Phase Il test data was collected.

DATA

Equipment Calibration

The calibration of the Horiba gas analyzers involves a procedure which includes first
zeroing the device and then calibrating at a determined span value. The Horiba NO
analyzer achieved near zero NO readings with ambient air which allowed the zero
setting for the analyzer to be set. For effective calibration of the Horibas, the actual
reading on the gas analyzers must be in the vicinity of the actual theoretically expected
values. This was achieved both for low range and high range calibration (Table 4 and
Figure 11).

Air Flow Rate | NO Flow Rate | Theoretically Actual Value on | Within
(SLPM) (mSLPM) Expected NO Gas Analyzer Satisfactory
Reading on Gas | (ppm) Calibration
Analyzer (ppm) Range based
on Horiba
Manual
2 7.5 0.075 ~0.071 Yes
1.2 8 0.133 ~0.16 Yes

Table 4: Theoretical and actual values for NO concentrations during gas analyzer

calibration.
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Figure 11: Graph showing stable readings in the vicinity of the expected values. The
sudden changes at the span set show the successful calibration to actual values.

A similar calibration was performed on the SO, analyzer.

Air Filter Pressure Drop Test

For the initial shakedown, the three channels of the system were operated running dry
air (no pollutant content) through it. During this phase, mass flow meters and controllers
were calibrated and tested using the LabView interphase. Air heaters were tested using
the feedback given by the different thermocouples. Similarly, the humidity equipment
was tested for different water flow rates using feedback from the humidity sensors.

As part of the initial shakedown, pressure drop tests were conducted for channel 1. For
that purpose, an analog differential pressure gauge was connected at each filter inlet
and outlet. Using the LabView interphase, the mass flow controllers of each sub-
channel (1-A, 1-B and 1-C) were regulated in order to test different flow rate working
values (100 to 300 slpm). For each value of flow rate considered, 3 independent
measurements of pressure drop were taken. The three filters and their corresponding
pressure drop results are shown in Figures 12 to 15.
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Figure 13: Filter B

4 o - B
Figure 14: Filter C

229 |Page

Final Report DE-FG36-04G0O14303



Final Report DE-FG36-04G0O14303

Pressure drop Filter A
11
10 |
9 ;w“
8 | /n@’
S 7 L ’
i 6 F & Seriesl
= 5 | il B Series?
(-9 4 |
<5 3 H‘"’/Q A Series3
i & Trendline
0
0 50 100 150 200 250 300 350
Mass flow rate (slpm)
Pressure drop Filter B
10
__ 8 o\
(@)
T 6 Y ¢ Seriesl
=
= 4 B Series2
3
2 = Series3
0 Trendline
0 50 100 150 200 250 300 350
Mass flow rate (slpm)
Pressure drop Filter C
6
5 /(%‘
o4
T /VF ¢ Seriesl
c 3
= "/ya/ B Series2
2 }
Series3
1 —p-l—
> —— Trendline
0
0 50 100 150 200 250 300 350
Mass flow rate (slpm)

Figure 15: Pressure drop test results

The above results show values of pressure drop between 0.7 and 9.7 in H,O, with filter
A having the highest pressure drop and filter C the lowest. As expected, pressure drop
increases with increasing values of flow rate. For all three filters, the measured filter
pressure drop is well within the fuel cell system requirements.
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ISSUES AND RECCOMENDATIONS

Several major setbacks were encountered in the collection of data which are still
ongoing. Many of these issues stem from a design which would operate continuously
with dangerous gases. The safety requirements of the university necessitated that the
entire system be housed externally and this remote operation requirement for safety
created further difficulty with system operation and integration. The problems
encountered are inherent in trying to design a fully automatic full scale test for multiple
filters. The major issues and recommendations are listed below.

1.

The original design was intended for operation in a fume hood with poisonous
gases being held external to the personnel area. A safety review required that
the system be housed in a remote external area that further necessitated
construction of a dedicated facility (outdoor cover). The delay and construction
costs of building this cover became a major obstacle to the completion of the
project. The original budget planned for an 18 month project. While personnel
were overseeing construction of the cover, the budget for personnel was quickly
consumed during the delay. The construction also delayed the project
significantly such that continuity of personnel was not maintained.

. Continuity of personnel became a major issue for this project as volunteer

researchers were relied upon as the personnel budget was spent in the first 18
months of the project. Generally, these researchers were looking for a project
that could be completed quickly and thus recruitment of qualified personnel
became a major issue. These researchers were required to learn a complicated
system and code before progressing with data collection and analysis. Trouble
shooting became major obstacles for those researchers as the original design
changed and previous personnel associated with the design were unavailable for
discussion. This was a failure of communication that is inherent in a university
system.

Continuous operation was in the original design but this required complex safety
controls and notifications. Integration of this remote continuous day and night
operation required more time than it was designed to save. Although we are
continuing the operation of this current system at our own expense, we suggest
that the operation of the filters be run as a cumulative test in a daily discrete
manner rather than a continuous test.

The humidifier tanks are designed to inject a water spray into the test air in order
to bring the air to the desired relative humidity for a given test. In the original
design, a water pump was used to pump water from the faucet into the electronic
valve at the top of the humidifier tank. This electronic valve was designed to
allow the right amount of water into the tank as per the test requirement. A
feedback control loop used the data from a relative humidity sensor to control the
opening of the valve. The water pump from the faucet was deemed necessary to
provide water to the valve at its operating pressure. This water pump, however,
proved to be too big for the purposes of the test and ruptured the water pipe
because the electronic valve was not sufficiently open causing a pressure
buildup in the pipe itself. This rupture caused some damage to electronic
equipment in and around the humidifier tanks. Following this episode, we
recently managed to successfully run the humidity control system using water
directly from the faucet flowing into the electronic valve. As such, one key
recommendation would be to do away with a pump in any future test.
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5. We find that the chiller that we are using in our test is not delivering sufficiently
cold air to run tests at temperatures as low as 10°C. We, therefore, recommend
that any similar test in the future use a much more effective chiller than the one
used in our test.

6. It has been reported that the pipe heater used in our test once turned red and ran
a temperature in excess of 1000°C while being controlled using the feedback
P&ID loop. We recommend finding a way of programming a safety limit into the
heater control system.

7. Calibration of the gas analyzers at our operating range proved to be a major
problem with no ready solution. The ranges of concentration of the SO, and
NO- gases are near the limits of physical detection. As such, we recommend
that the gas analyzers be thoroughly tested before designing the experimental
matrix. The experimental matrix may then be designed in such a manner that we
may be certain that the gas analyzers would be effective under the test
parameters.

8. Integration of the analyzers for remote and continuous operation proved to be
problematic. Dependence on solenoids for switching the flow to and from the
analyzers to measure inputs and outputs from the various systems also created
numerous problems with calibration. Since inputs and outputs need to be
monitored, it is suggested that two sets of analyzers be purchased.

9. The air compressor originally procured proved insufficient for the purposes of our
test. We, therefore, procured an additional compressor to allow greater capacity.
The original budget did not include compressors for air delivery as building air
was expected to be used. The removal of the system to a remote location
required the compressors be purchased and a complex air delivery system to be
installed and used.
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TASK 4: DESIGN, ASSEMBLE, AND TEST TWO TORO WORKMAN™
MID DUTY UTILITY VEHICLE WITH AN IDATECH FCS 3000 LIQUID
FUELED FUEL CELL SYSTEM

Richard Lawrence
Mike Hicks
IdaTech

TEST VEHICLE 1 (TV-1)

During the suspension of this program, Toro® determined that the IdaTech FCS 3000
fuel cell system (developed during the suspension under a separate contract to the US
Navy as a subcontractor to Hoku;Program ID 06UJ9A00008B) matched the operational
requirements of the Workman® Model e2065. As a result, a Toro® Workman® Model
e2065 light-duty maintenance truck was received (Figure 1) and retrofitted to house an

IdaTech FCS 3000 fuel cell system (Figure 2). The model e2065 unit was designated
test vehicle-one (TV-1).

Figure 1: Toro’'s Workman™ Model 2065
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Figure 2: IdaTech’s FCS 3000 Liquid Fuelled System

Three FC3000 fuel cell systems were assembled and all three passed operational
testing. One fuel cell system, while sitting next to the vehicle, was used to charge the
batteries. After successfully demonstrating that the fuel cell system could charge the
batteries, the fuel cell system was reconfigured and installed into the vehicle (Figure 3).

Fuel Tank
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Figure 3: Original configuration of FC3000 in TV-1

TV-1 was deployed at River's Edge Golf course in Bend, OR (Figure 4) during the
summer of 2008. Figure 5 is a graph of the system parameters while the vehicle was
driven on the golf course. The control method is for the fuel cell to maintain a battery
voltage of 56 Vdc. which means that the fuel cell ramps up and down with battery
voltage. In this case, the battery voltage was low at start-up so the fuel cell ramped up
and charged the batteries to 56 Vdc. Afterwards, the fuel cell system ramped up and
down with power usage and at the end of the run the batteries were at 56 Vdc
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Golf Coure

igure 4: TV-1 at River's Ed
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Figure 5: System Parameters of TV-1 while operating at River's Edge Golf Course

The unit did experience several shutdowns during the course of its summer operation,
the details of which can be found in Table 1. During the winter an upgrade was
performed on the fuel cell system. The upgrade consisted of new H2 recirculation pump
mounting, improved cabin fan, new current sensor, improved fuel line routing, new
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DATE START | END | BARS | FUEL | MAINTENANCE
14-Jul Monday, July 14, 2008 3.7 5.1 2 | FULL | RETURNED TO SHOP FC NOT ON BATTERY LOW
15-dul Tuesday, July 15, 2008 5.1 5.4 FULL | RETUENED TO RIVER'S EDGE
21-Jul Monday, July 21, 2008 54 6.4 STARTED
23-Jul Wednesday, July 23, 2008 6.4 6.7 7/8 FC COOLANT SW
24-Jul Thursday, July 24, 2008 6.7 8.7 REPLACED REFORMER FUEL PUMP
25-Jul Friday, July 25, 2008 8.7 8.9 1/4 CHECKED FC 2X LOW H2 PSIG AND RAFF. FILLED TANK
25-Jul Friday, July 25, 2008 HIGH CAB TEMP AND VAPORIER ERROR
RETURN TO SHOP. WILL NOT START EMERGENCY SWITCH
28-Jul Monday, July 28, 2008 8.9 11 6 | 5/8 OPERATOR ERROR
29-Jul Tuesday, July 29, 2008 111 12 10 | 5/8 RAN 3 HOURS AT SHOP NO PROBLEM FULL TANK/FULL CHARGE
29-Jul THEY RAN TRUCK
30-Jul Wednesday, July 30, 2008 12.4 13 1 ON COURSE 1-9 5:30- 7:21
5:30 12 1
6:35 8 | SID RESTARTED
6:44 S/D RESTARTED
7:05 S/D RESTARTED
7:20 13 OK
7:21 S/D LEFT COURSE
MOST OF THE TIME KEY ON. LOTS OF STOPS.
IN 3 HOURS ACCUMULATED 4 HRS KEY ON
30-Jul Wednesday, July 30, 2008
1-Aug Friday, August 01, 2008 5:30 | 8:25 6 | SIU
12.8 15
BACK NINE 5:30 SAL IS DRIVER
6:06 S/D SUPPLY UNDER VOLTAGE DURING ACCELERATION
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DATE START | END | BARS | FUEL | MAINTENANCE
6:30 FC ONLINE
6:39 LONG RUN 12-13
6:46 5172
6:48 6
6:52 S/D LOW CELL VOLTAGE
6:53 S/U
7:01 S/D MANUAL WILL NOT RAMP UP
7:03 S/U RAMPS UP
7:12 BOUNCING, DOWN HILL RUN
7:17 15 7
7:23 9
7:32 S/D LOW CELL VOLTAGE WHILE ON RUN 17T-17G
7:32 S/D
7:39 9 BATTERY 52.7 V
7:50 15 10
8:25 S/D MANUAL-WILL NOT RAMP DOWN COULD BE OK.
2-Aug Saturday, August 02, 2008 10:05 17
STUCK ON COURSE BATTERY DEAD. FC WILL NOT S/U SUSPECT
LOW VOLTAGE ATTACHED CHARGER
3-Aug Sunday, August 03, 2008 6:10 FULLY CHARGED
4-Aug Monday, August 04, 2008 5:20 17 10 | S/U START SYSTEM
6:14 FUEL CELL ONLINE
7:25 18 10 | 3/4 DROVE BACK NINE TWICE
5-Aug Tuesday, August 05, 2008 17.5 19 10 | 5/8
BED FULL OF SAND TOD ONBOARD S/D LOW CELL VOLTAGE
18TH FAIRWAY SECOND RUN
6-Aug Wednesday, August 06, 2008 19:12 20 6| 7/16 FC FAULT 3X
7-Aug Thursday, August 07, 2008 4:30 FILL FUEL TANK
8-Aug Friday, August 08, 2008 5:30 s/U
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DATE START | END | BARS | FUEL | MAINTENANCE
6:17 FC ONLINE
6:19 FAULT
7:00 S/U
7:10 S/D LOW CELL VOLTAGE CELL-1
9—Aug Saturday, August 09, 2008 WASH VEHICLE
10- Sunday, August 10, 2008
Aug CHARGE VEHICLE GRID
11- Monday, August 11, 2008
Aug 6:10 S/U
10 | 7/8 PUMP CYCLE UP AND DOWN
6:29 S/D CATALYST HEAT TIME OUT
6:31 AUTO RESTART PUMP UO/DOWN THEN STEADY
6:55 S/D LOW CELL VOLTAGE CELL-1
9:56 VEHICLE IN SHOP
13- Wednesday, August 13, 2008
Aug 4:46 S/U IN SHOP
5:20 FC ONLINE
5:44 MOVE TO RIVER'S EDGE
5:50 ON 10th TEE
20.3 21 10 | F
6:20 BACK NINE COMPLETED
6:24 1 HOLE REGEN MOTOR CONTROLLER S/D
6:51 COMPLETE FRONT NINE
21.3 22 10 | 3/4 1.8 kW
6:59 5 GAL | LEFT RUNNING
8:00 S/U FUEL CELL OFF. MAINTENCE CREW USING VEHICLE
14- Thursday, August 14, 2008
Aug 5:10 5| S/U 342.859 HR
5:52 FC ON LINE
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DATE START | END | BARS | FUEL | MAINTENANCE
6:15 7 | S/D LCV CELL-1
6:38 S/D LCV CELL-1 BATTERY DROP
6:39 S/U 344.855 HR
6:43 1MTHGTO12THF
7:02 S/D LCV CELL-1
7:03 S/U
7:10 POWER DROP RAPIDLY
712 S/D MANUAL
712 EMO
7:20 WILL NOT RESTART INSTANT S/D
7:58 S/U STARTS
8:08 POWER OFF NO FAULT BOTH ON LINE ZAHN?
8:11 S/D VERY HOT DAY
8:17 S/U BED OPEN WILL NOT RAMP
8:24 24 7
8:27 S/D MANUAL
9:04 S/U FC ONLINE RAMPS UP
11:13 10 SYSTEM OFF
16- Saturday, August 16, 2008
Aug 2 PLACED ON CHARGER
17- Sunday, August 17, 2008
Aug 10 REMOVE CHARGER
18- Monday, August 18, 2008
Aug 5:10 10 | 1/2 NOISE TEST RAIN THUMDER LIGHTING
dB 80 MOWER
48 AMBIENT
20' 68 CART
45 AMBIENT
3 46 START UP
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DATE START | END | BARS | FUEL | MAINTENANCE
3 57 ONLINE
COMPUTER DOESN'T STORE DATA CLOSED
6:05 S/D ON COURSE HEAVY RAIN RETURN S/D UNKNOWN
19- Tuesday, August 19, 2008
Aug 5:25 S/U
5:51 SHUT COMPUTER
5:54 OPEN COMPUTER AND ITS ON
6:06 FC ONLINE THEN S/D
6:07 WILL NOT RESTART, REMOVE COMPUTER
6:13 S/U MOVE TO YARD S/U
6:15 S/D UNKNOWN CAUSE
25- Monday, August 25, 2008
Aug NEW CATHODE AIR FILTER

NEW SHORTER CORRAGATED HOSE BURNER BLOWER

NEW H2 THREE WAY VALVE FOR ANOTHER SYSTEM

BURNER HEATER WIRE REROUTE

REROUTE METHANOL FEED LINE

BOLT DOWN REFORMER - ONE LEG

FIX CAPACITOR THAT BROKE OFF FROM REFORMER BOARD

S/U SYSTEM TRY NEW GUI FROM TOD NEEDS WORK

29- Friday, August 29, 2008
Aug SYSTEM OPERATING FULLY CHARGE BATTERIES
2-Sep Tuesday, September 02, 2008 7:39 29 10 | FULL | MEET WITH DIR. MARKETING. VEHICLE RUNNING
9:40 S/D, S/U TAKE VEHICLE TO SHOP
14:40 31 1134 FC OFF, S/U WILL NOT RAMP
14:56
MANUAL S/D AND S/U FC RAMPS 5 BAR S/D MANUAL NOISE
SOUNDS LIKE COOLANT PUMP
3-Sep | Wednesday, September 03, 2008 5:20 s/U
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DATE START | END | BARS | FUEL | MAINTENANCE
6:08 FC ONLINE 500W AND RAMPING LEAVE VEHICLE FOR CREW W/
COMPUTER CONNECTED
9:03 FC ONLINE TRY NEW GUI DOESN'T WORK
9:17 FC S/D LOW H2 PRESSURE
15:30 10 S/U 2 MINUTES 10 BARS
4-Sep |  Thursday, September 04,2008 | 10.40 1/2_ | FC ONLINE PORTABLE CAN'T LOG ON
8 ADD 1 GAL FUEL. CREW LIKES VEHICLE BECAUSE IT IS QUIET
10:45 | 32.0 3/4 CREW TAKING OUT ON COURSE AFTERNOON
5-Sep Friday, September 05, 2008 6:30 35 10 | 3/8 s/U
14:19 36 51 1/2 ADDED FUEL BURNER FLAME OUT SUCK UP FUEL
S/U GUI STILL NOT WORKING
REFORMER EXHAUST MELTED BED PLASTIC
6 FUEL CELL ON RUN 1/2 HOUR
6-Sep Saturday, September 06, 2008 5:25 6 S/U VEHICLE TO COURSE
7-Sep Sunday, September 07,2008 | 1545 | 39 5| 1/2 | S/UINSTANT RED LIGHT
8-Sep Monday, September 08, 2008 5:20 s/U
6:10 F/C FAULT LOW H2 PRESSURE/LOW CELL
6:13 S/U
6:15 FC ON LINE AND RAMPING LEFT RUNNING
9:06 9 |5/8 SYSTEM OFF
9:09 S/U NEW GUI SAVES DATA ADDED FUEL
9:21 S/D LOW H2 PRESSURE PRV?
9-Sep Tuesday, September 09, 2008 40 1 PLACED ON CHARGER
16:00 41 3 FUEL ADDED 1.1 GAL ADDED COOLANT 1"
5 S/U FC ONLINE THEN FAULTS ON CHARGER O/N
10- | Wednesday, September 10, 2008
Sep 6:30 41 10 S/U DRIVE - BLOWER AND RECIRC NOT ON S/D
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DATE START | END | BARS | FUEL | MAINTENANCE
12:00 41 9 S/U OK
16:00 42 6 | 3/4 S/U INTERMINT H2 RECIRC. THEN S/D PUT ON CHARGER
11- Thursday, September 11, 2008
Sep 15:30 43 4| 3/4 SYSTEM S/D
FOUND BROKEN WIRE RELAY SWITCH TO FC POWER
FOUND INTERMITENT CONNECTOR TO ATLAS BOARD
REPAIRED AND TRIED THREE TIME TO START S/D LOW CELL
VOLTAGE RAMPS TO 50 AMPS? PREF FALLS WITH Pfeed
15- Monday, September 15, 2008
Sep RETURN TORO TO IDATECH. CHECK REFORMER pREF PRV OK.
SUSPECT ZAHN RAMPING TOO QUICK AND TOO HIGH 50 AMPS
AT STACK. MAYBE FUEL PUMP, BUT H2 PRESSURE STAYS UP
WHILE CELLS FALL
17- | Wednesday, September 17, 2008
Sep FOUND WIRE WE REPAIRED IN FIELD FOR BLOWER WAS
REVERSED, CONNECTOR #11 TO BLOWER RELAY. CHARGED
BATTERY.
18- Thursday, September 18, 2008
Sep 43 10 | FULL
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firmware, onboard data acquisition, dash meter to monitor battery charging current. The
new firmware increased the allowable fuel cell ramp rate and improved the maximum
net output from 2.2kW to 2.8kW peak. In addition, the new layout design is easier to
manufacture and maintain as the new design can be removed as one unit with minor
disconnects. The new layout is shown in Figure 6.

Figure 6: Second géneration ihtegration of FCS3000 in TV-1

In all, the fuel cell system in TV-1 obtained the following statistics while operating on a
rough and highly terrain, during high ambient temperatures and being exposed to
several types of particulants — dirt, dust, grass clippings, fertilizer and sand.
e Total run time of 318 hrs
Consumed 474 liters of HydroPlus™ fuel
Produced 357 kW-hrs
Experienced 172 thermal cycles
kW-hrs/L = 0.753

TEST VEHICLE 2 (TV-2)

IdaTech installed a fuel cell and reformer into a second prototype, a Toro Workman
MDE battery-electric utility vehicle. The MDE is a newer version of the Workman 2065
used in TV-1. The new vehicle design incorporates front wheel shocks and an
accessible area under the front hood. The batteries were placed two in front and two in
the rear compartment which eliminated the “saddle bag” batteries external to the rear
compartment in the first vehicle. A photo of TV-2 in front of the High Desert Museum is
shown in Figure 7. The FCS design is the same as the upgraded version in TV-1
(Figure 6).
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MUSEUM

THE HIGH DESERT

TV-2 was deployed at the High Desert Museum during the summer of 2009. A typical
drive cycle is shown in Figure 8 and the summer 2009 operational history is shown in
Table 2.

TV-2 HDM STACK POWER AND Vbat
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Figure 8: Power output and battery voltage of TV-2 at the High Desert Museum
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Table 2: TV-2 Daily Record at the High Desert Museum, Summer 2009
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DATE TOD | HRS | BARS | FUEL | MAINTENANCE
2-Jun Tuesday, June 02, 2009 6:30 2.1 10 | 3/4 S/U IN SHOP OK
7:30 FIRST DAY High Desert Museum (HDM) Difficult to get FC to
kick on.
11:30 Call from Jeff S/Ds
12:04 2.8 10 | 1/2 Arrive FC ON fully charged. Why? 1/2 tank. Drive get S/D
3-Jun Wednesday, June 03, 2009 | 14:30 4.1 811/2 ADD FUEL 3/4 Comments: love vehicle, front battery needs
brace fore aft. Accelerator pedal to sensitive. Shocks bottom
out they will adjust.
5-Jun Friday, June 05, 2009 | 14:30 4.6 9| 5/8 ADDED FUEL 7/8 FOR WEEKEND
9-Jun Tuesday, June 09, 2009 | 14:16 8.8 911/4 ADDED FUEL 7/8 Add 1 pt coolant
DCDC Converter loose
15-Jun Monday, June 15, 2009 | 14:22 11.8 6 | 3/8 HAD BEEN RUNING. S/U. ADDED FUEL 7/8. BLOWER
NOISE, BUT IT GOES AWAY. 1.8kW LEFT ONLINE
19-Jun Friday, June 19, 2009 | 14:30 13.6 6 | 3/8 BED MELTED LOSE VENT REPLACE.ADDED FUEL 7/8
24-Jun Wednesday, June 24, 2009 | 14:30 14.6 10 | 7/8 NEW EXHAUST VENT NEW DCDC CONVERTER SHEET
METAL, SEPARATE METER WIRING, FIX STEAM T/C.
DELIVERED VEHICLE
25-Jun Thursday, June 25, 2009 7:30 14.6 10 | 7/8 PHOTOS OF VEHICLE IN FRONT OF MUSEUM
26-Jun Friday, June 26, 2009 | 10:40 15.1 8 |7/8 PHOTOS OF VEHICLE SYSTEM
30-Jun Tuesday, June 30, 2009 | 10:10 19.4 15| 7/8 BASICALLY DEAD, ADDED FUEL S/U
30-Jun Tuesday, June 30, 2009 | 15:10 19.5 5|7/8 1.4 Kew
2-Jul Thursday, July 02, 2009 | 14:51 21 10 | 1/4 FUEL ADDED TO 7/8, BATTERY WEDGE FELL OUT
7-Jul Tuesday, July 07,2009 | 15:36 25.7 5/6 FUEL ADDED TO 7/8
15-Jul Wednesday, July 15, 2009 | 14:20 32.5 0 | FUEL ADDED TO 7/8
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DATE TOD | HRS | BARS | FUEL | MAINTENANCE
21-Jul Tuesday, July 21, 2009 8:45 33.3 5|1/2 AT RIVERS EDGE WITH UC DAVIS FOR S&V
21-Jul Tuesday, July 21, 2009 | 10:37 33.3 10 | 1/2 AT RIVERS EDGE BACK 9- 2 FRONT 9- 1
22-Jul Wednesday, July 22, 2009 5:30 33.3 10 | 1/2 AT RIVERS EDGE FRONT 9
23-Jul Thursday, July 23, 2009 5:30 33.3 10 | 1/2 AT RIVERS EDGE FRONT 9-3 BACK 9-2
27-Jul Monday, July 27, 2009 7:30 36 10 | F DELIVER HDM
29-Jul Wednesday, July 29, 2009 | 13:30 371 4 | 5/8 S/D LOOSE VOLTAGE TAPS
31-Jul Friday, July 31, 2009 | 14:30 38.3 711/4 FILL TANK GET DATA CARD
4-Aug Tuesday, August 04, 2009 | 14:20 40 0|1/4 CHARGER ON S/U BURNER FLAME OUT
5-Aug Wednesday, August 05, 2009 REMOVE TV-2 AND DELIVER TV-1
17-Aug | TROUBLESHOOT TV-2 TO NO AVAIL. REPLACE REFORMER W/ REFORMER FROM TV-1 THEN REPLACE REFORMER BOARD
19-Aug Wednesday, August 19, 2009 7:20 40.1 10 | 3/4 DELIVER TO HDM
21-Aug Friday, August 21, 2009 | 13:47 40.8 9112 GOT DATA CARDS, FILLED TANK 7/8
25-Aug Tuesday, August 25, 2009 7:37 43.6 7112 FIX DAMAGED RADIATOR, GOT DATA CARDS, FILLED
TANK 7/8
1-Sep Tuesday, September 01, 2009 7:37 46.5 3| 5/8 FILLED TANK 7/8. Don: SYSTEM DOESN'T CHARGE WHEN
DRIVEN S/D
3-Sep | Thursday, September 03, 2009 | 15:00 47.4 10 | 5/16 FILLED TANK 7/8
8-Sep Tuesday, September 08, 2009 | 14:34 48.7 10 | 1/4 FILLED TANK 7/8. S/D DRIVING
11-Sep Friday, September 11, 2009 | 14:34 50 8 |5/8 FILLED TANK 7/8.
15-Sep Tuesday, September 15, 2009 | 15:03 52.1 8|1/4 FILLED TANK 7/8.
21-Sep Monday, September 21, 2009 9:02 54.4 71 1/4 FILLED TANK 7/8.
25-Sep Friday, September 25, 2009 9:02 57.2 711/4 FILLED TANK 7/8.
REMOVED FROM THE HDM

Abbreviations: S/U — Start Up; S/D — Shut Down; HDM — High Desert Museum;
BARS: vehicle battery charge level on scale 0 to 10; TOD — Time Of Day; TV — Test Vehicle
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Unlike the golf course, the High Desert Museum is a rough but flat terrain and extremely
dusty and dirty. In only 57 hours of operation, the amount of dust and dirt build-up on
the fuel cell system was significant. Compare the amount of dust in Figure 8 to the as
build in Figure 6. However, even with the amount of dust and dirt build-up, the system
still operated without issues. In all, the fuel cell system in TV-2 obtained the following
statistics at the High Desert Museum:

e Total run time of 368 hrs
Consumed 315 liters of HydroPlus™ fuel
Produced 149 kW-hrs

Experienced 63 thermal cycles
kW-hrs/L = 0.473

Figure 8: TV-2 Prototype Fuel Cell Powered Vehicle at the High Desert Museum after
57.2 hours Exposure

A picture of TV-2 next to other vehicles at the High Desert Museums is shown in Figure

9. As you can see, TV-2 is approximately the same size as the other vehicles employed
by the High Desert Museum.
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Figure-9: TV-2 Fuel Cell Powered Vehicle at the High Desert Museum and their other

vehicles

LESSONS LEARNED AND CORRECTIVE ACTIONS

There were two main learning’s from the field trials: (1) need to restrain all wiring
otherwise the vibrations from the off-road conditions will damage the wiring and
connections and (2) off-road conditions are significantly more dirty and dusty the on-
road conditions so sensitive equipment must be protected. A summary of the lessond

learned is shown in Table 3.

Table 3: Issue and Corrective Actions

Issue

Corrective Action

System overheat on hot days

Added additional cooling fans

Thermocouple shorted

Added restraint

Wires fell of coolant switch

Added restraint

Fuel pump slowed down from dirt build-up

Sealed pump gearbox opening

Fuel line dry

Remove tank dip tube and place tanck
connection on bottom

Inverter not ramping

Installed new inverter and firmware

Troubleshooting faults takes too much
time

Added onboard data acquisition

Too many circuit boards increase
likelihood of wiring breakage

Consolidation of circuit board
recommended
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