
FINAL REPORT

BETWEEN

BROOKHAVEN SCIENCE ASSOCIATES

AND

Project Entitled:

Brookhaven PI:

Submitted by: Michael J. Furey
Manager, Research Partnerships
Brookhaven National Laboratory

FOR CRADA NO.

BNL-101061-2013-CRAD

C-08-11

CWS4DB: A Customizable Web Service for Efficient Access to Distributed
Nuclear Physics Relational Databases

TECH- X CORPORATION

Jerome Lauret

DE-SC0012704
Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. with the U.S. Department of Energy. The publisher by accepting the manuscript
for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes.

DISCLAIMER

This work was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors or
their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or any third party’s use or
 the results of such use of any information, apparatus, product, or process disclosed,
 or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof or its contractors or subcontractors. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

PROTECTED CRADA INFORMATION
BNL-101061-2013

FINAL REPORT

FOR CRADA NO. C-08-11

BETWEEN

BROOKHAVEN SCIENCE ASSOCIATES

AND

TECH-X CORPORATION

Project Entitled: CWS4DB: A Customizable Web Service for Efficient Access
to Distributed Nuclear Physics Relational Databases

PROTECTED CRADA INFORMATION

This product contains Protected CRADA Information which was produced
on 6/7/13 under CRADA No. C-08-11 and is not to be further disclosed for a
period of five years from the date it was produced except as expressly
provided for in the CRADA.

Brookhaven PI: Jerome Lauret

Submitted by: Michael J. Furey
 Manager, Research Partnerships
 Brookhaven National Laboratory

Notice: This manuscript has been authored by employees of Brookhaven Science Associates,
LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The
publisher by accepting the manuscript for publication acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for United States
Government purposes.

PROTECTED CRADA INFORMATION
BNL-101061-2013

DISCLAIMER

This work was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof or its contractors or
subcontractors. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency
thereof.

FINAL REPORT
CRADA BNL-C-08-11

TITLE: CWS4DB: A Customizable Web Service for Efficient
 Access to Distributed Nuclear Physics Relational
 Databases

BROOKHAVEN PI(s): Dr. Jerome Lauret
 RHIC/STAR Experiment, Physics Department
 Phone: (631) 344-2450
 Fax: (631) 344-3257
 Email: jlauret@bnl.gov

INDUSTRY PARTNER: Tech-X Corporation

OBJECTIVE:

Tech-X proposes to develop a system providing an efficient access for the High-Energy and
Nuclear Physics data stored in distributed heterogeneous relational databases. The system will
consist of a generic Web Service, customized client APIs, and tools that facilitate generation of
custom client APIs. The access to the data will be mediated by mechanisms that provide data
caching and adaptive scheduling of the query plans.

PROJECT DESCRIPTION:

An increasing fraction of the data generated in Nuclear and High-Energy Physics is managed in
distributed and relational databases. As the size of this data grows and the collaborative nature of
these experiments increases, the ability to access differently organized relational databases
remotely, efficiently and yet in a user-friendly and interoperable manner is becoming very
important. This community lack tools addressing this need and accommodating related
challenges.

Tech-X therefore proposes a system to overcome the outlined challenges by bridging relational
databases with high-level APIs through Web services. In particular, the distributed and
heterogeneous nature of the databases will be addressed by creating a Web service on top of
OGSA-DAI, which provides mechanisms coordinating access to diversified data resources. Such
Web service would not be easily integrated into legacy code and applications or present a user-
friendly environment for configuration and management. Therefore, the challenge of allowing
for high-level queries will be overcome by providing a means to generate customized interfaces
on top of the Web service client and provide tools and infrastructure for load balancing, efficient
caching, on-demand services and tiered deployment and management. Additionally, we intend to

PROTECTED CRADA INFORMATION BNL-101061-2013

mailto:jlauret@bnl.gov

FINAL REPORT
CRADA BNL-C-08-11

address the challenge of efficiency of data access in the situations when there are many queries
of different types over distributed data sources, so that the

number of data transfers is minimized. Other factors may also be taken into account when
making query plan include workload of database servers, network bandwidth, pattern of requests,
and priority of different operations.

ROLES AND RESPONSIBILITIES:

The STAR Software and Computing (S&C) team with share the responsibilities with Tech-X for
the determination of Phase II specific CWS4DB system and load balancing additional
requirements and properties definition, the design and implementation of an auto-caching
infrastructure, the development of a prototype on-demand data resource node, and a prototype
pre-cache capability for production job workflows. This collaborative work is essential for
providing a useful, robust, and tested software infrastructure.

The STAR S&C project has the capability of supplying a realistic testbed for the CWS4DB
framework, along with the operational experience to critically assess the system performance and
efficient data access that is essential for the project success. Furthermore, STAR S&C will
provide the deployment and integration use case for delivering the CWS4DB framework in a
smooth and non-disruptive manner by deploying the prototype framework within their
development and eventually (after a hardened product is developed) production environments.

ACCOMPLISHMENTS: See attachment.

PROTECTED CRADA INFORMATION BNL-101061-2013

SBIR Phase II Final Report

CWS4DB: A Customizable Web Service for
Efficient Access to Distributed Nuclear Physics

Relational Databases

November 15, 2011

Award Number: DE-FG02-07ER84757
Grant Supported by the DOE office of Nuclear Physics

Award Recipient: Tech-X Corporation

Reporting Period: August 15, 2008 - August 15, 2011

Submitted by: Dr. Mark L. Green, Principal Investigator
Email: mlgreen@txcorp.com

Telephone: 716-204-8690

Submitted to: Dr. Manouchehr Farkhondeh
Email: manouchehr.farkhondeh@science.doe.gov

SBIR/STTR Rights Notice

These SBIR/STTR data are furnished with SBIR/STTR rights under Grant No. DE-FG02-07ER84757. For a period of 4 years

after acceptance of all items to be delivered under this grant, the Government agrees to use these data for Government purposes

only, and they shall not be disclosed outside the Government (including disclosure for procurement purposes) during such

period without permission of the grantee, except that, subject to the foregoing use and disclosure prohibitions, such data may

be disclosed for use by support contractors. After the aforesaid 4-year period the Government has a royalty-free license to use,

and to authorize others to use on its behalf, these data for Government purposes, but is relieved of all disclosure prohibitions

and assumes no liability for unauthorized use of these data by third parties. This Notice shall be affixed to any reproductions

of these data in whole or in part.

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Contents

1 Executive Summary 2

2 Technical Achievements and Project Activities 4

2.1 Task 1. Determine CWS4DB System and Load Balancing Additional Require-
ments and Properties . 5

2.2 Task 2. Design and Implement Tiered Deployment Capabilities 17

2.3 Task 3. Design and Implement Auto-Caching Infrastructure 35

2.4 Task 4. Enable Multi-VO Role-Based Capabilities 40

2.5 Task 5. Develop Dynamic On-Demand Data Resource Access 43

2.6 Task 6. Develop Fault Resilient Data Resource Pathways 47

2.7 Task 7. Develop a Prototype On-Demand Data Resource Node 49

2.8 Task 8. Prototype Pre-Cache Capabilities for Production Job Workflow . . . 55

2.9 Task 9. Develop a Customizable Site Specific Test Suite 56

2.10 Task 10. Write Progress and Final Reports 67

3 Products Developed 67

3.1 Presentations and Publications . 67

3.2 Research Project Website . 102

3.3 Product Sheet . 120

3.4 Project Whitepaper . 123

4 Documentation 135

4.1 RESTful Service Documentation . 135

4.2 Commander Documentation . 199

4.3 Installation Guide . 219

1

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

4.3.1 Introduction . 219

4.3.2 The Pre-requisites . 219

4.3.3 Installation of Commander . 223

4.3.4 Installation . 224

4.3.5 How To Use STAR Services . 225

2

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

1 Executive Summary

The CWS4DB system architecture was developed from the successful completion of our Phase
I investigation and input from our Nuclear Physics collaborators. The Execution Node as
denoted in Figure 1 is where the user jobs are executed. We are presenting two CWS4DB
client possibilities in support of the Execution Node applications. The top CWS4DB client
is MySQL specific and represents an extension of the Phase I project, the bottom CWS4DB
client illustrates the further development of the Phase II project with a Phase III effort.
The significant difference between the two is the further abstraction of the CWS4DB client
library from a MySQL specific interface representation to a generic interface specification.
This would be developed in a Phase III effort as it extends our CWS4DB MySQL client
library to a vendor-neutral connector specification. The CWS4DB MySQL specific or generic
SQL provide user code bindings and have the capability of generating Web Service query
requests to the Data Resource Node CWS4DB service. The proposed query auto-caching
capability described in the following tasks is denoted here as the “queryCache”, this is where
the cached query results are stored on the Execution Node.

Figure 1: CWS4DB Architecture Diagram

The Data Resource Node as denoted in Figure 1 is where the main CWS4DB Web Services
reside. The OGSA-DAI HOST provides a Tomcat server for the CWS4DB Web Service URIs.
The back-end of the CWS4DB Web Services is supported by the OGSA-DAI system. The

3

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

OGSA-DAI data resources shown at the top of this figure are configured via the CWS4DB
User Interface (UI). There are several different modes of operation under investigation for
configuring OGSA-DAI data resources describe in the following tasks. The proposed query
auto-caching capability described in the following tasks is denoted here as the “queryCache”,
this is where the cached query results are stored on the Execution Node. The CWS4DB
Status Infrastructure depicted in the Figure 1 was developed in the Phase I project and will
be including in the Phase II CWS4DB system. The CWS4DB Load Balancing Infrastructure
stores the data resource node statistics in a local database or file and also transmits them
to the centralized Master Load Balancing Host.

The Phase II objectives included taking into account what was learned from the research
in Phase I and extending the CWS4DB prototype into a production-quality, load-balanced,
auto-caching, grid-enabled, fault-tolerant, on-demand system that is described in the intro-
duction. Each step of the work plan involved a separate piece of technical functionality that
was implemented in way that can be exercised in the STAR computing environment, yet
developed in a general way for application to other NP projects. The goal was to produce a
set of software tools and services that can be easily adapted by the NP application developer.

4

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2 Technical Achievements and Project Activities

During the project startup it turned out that it required far longer than expected to suc-
cessfully obtain a Cooperative Research and Development Agreement (CRADA) with our
Brookhaven National Laboratory (BNL) collaborators. Shortly after beginning the CWS4DB
Phase II project in August 2008 the PI, Dr. Green, began the CRADA paperwork process
including the refinement of the proposed project Statement of Work with our BNL STAR col-
laborator, Dr. Lauret. We continued to work diligently with the BNL research partnerships
team and BNL attorneys until the CRADA was approved. We subsequently transferred the
required funds to BNL so that our BNL collaboration could move forward unencumbered.
Unfortunately, the delay in the CRADA put our collaboration with BNL behind schedule but
through an outstanding commitment by Dr. Lauret we were able to identify an appropriate
individual on the BNL staff to immediately start work on the CWS4DB project. In addition
our Tech-X and BNL teams were able to move forward on accomplishing a significant amount
of work on all TASKS listed in the Project Schedule.

The overall Phase II project tasks tracked the project schedule put forth in the Phase II
proposal. The Phase II project schedule, Figure 2, is included below for reference. The
Phase II task summary, goals, and our accomplishments, results, and analysis are listed in
the following subsections.

Figure 2: Phase II Project Schedule

We managed this project using dotProject, an open-source, multi-user project management
tool that helps us organize the projects, tasks, companies, departments, events, contacts,
to-do lists, resources and generate Gantt charts and reports. We input this Phase II project
in dotProject, breaking each task into subtasks by their allotted quarter.

5

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2.1 Task 1. Determine CWS4DB System and Load Balancing
Additional Requirements and Properties

Objective: Extend the Phase I developed requirements and properties and continue proto-
type work with our partners. An expanded listing of requirements and properties obtained
during the Phase I project that will further satisfy the STAR collaboration and in addi-
tion we strive to generalize these requirements to meet a broader scientific and enterprise
community need.

Summary:

a) Expand the list of requirements and properties obtained during the Phase I project that
will further satisfy the STAR collaboration and strive to generalize these requirements to
meet a broader scientific and enterprise community needs

b) Investigate the potentially high-impact parameters identified in Phase I project

c) Investigate placement strategies for individual STAR databases on appropriately opti-
mized servers

d) Perform additional research to determine the optimal grouping of STAR databases

e) Investigate the impact of the factors like wait, interactive, and connection timeout, join
buffer size, query cache size and limits, max allowed packet size etc on the STAR database
servers tuned for specific database and table support

f) Investigate incorporating the additional database statistics determined in the Phase I
project into an objective function that can be fit based on actual root4star database
query loading

g) Use the capability of generating root4star database queries based on typical STAR jobs
to test and develop this system on Tech-X computer resources for developing the load
balancing algorithm and system

h) Investigate genetic algorithm based optimization of this load balancing weighting function
as indicated by preliminary results from the Phase I project

i) Perform further investigation which has the potential to yield additional requirements
and properties

We have met our goals for this task over the course of this effort, building on the requirements
from the Phase I effort and developing an architecture to meet the needs of our STAR
collaborators. We discuss in particular our technical achievements and results from this
effort in the following subsections.

Expand on Requirements

In working with our BNL collaborators, the CWS4DB system and load balancing require-
ments have been refined. In Figure 3, the “data storage” represents the backend data
storage i.e. MySQL, Memcache, Distributed File System, etc. and “pool” is a set of
data storage server nodes i.e. a group of identical database servers with a common pur-
pose. Here a group of MySQL servers dedicated to data reconstruction tasks; for ex-
ample may have pool categories: OFFLINE PRODUCTION, OFFLINE CALIBRATIONS,

6

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

OFFLINE ANALYSIS, ONLINE CALIBRATION, ONLINE MONTORING, FILECATA-
LOG, LOGGER, or TEST.

Figure 3: Generic component scheme consistent with the STAR collaboration point of view

Useful diagrams for the Data Service and Pool Registry Web services that met the needs of
the STAR collaboration are presented in Figures 4 and 5.

The Data Service, Figure 4, is a Web service package that knows how to execute requests
on a single data storage type, and how to collect performance metrics for this type. The
desired Data Service typical capabilities are: a) announce one or more pools and related
performance metrics to a Pool Registry, b) perform a load balancing between available
nodes from a selected pool, c) execute requests passed by Pool Registry to Data Service,
d) periodically poll pool nodes and collect performance metrics to be used in internal load
balancing.

The Pool Registry, Figure 5, is a Web service package that keeps records of available
Data Services and announced pools (local or remote). Pool Registry also provides an
interface to submit request for user jobs. The desired Pool Registry typical capabilities
are: a) store local pool announcements from various local Data Services, b) store remote
pool announcements from remote Pool Registry instances, perform load balancing between
available local and remote pools, d) pass user requests to least loaded pools found by Pool
Registry Load Balancer.

There are a couple of approaches for efficient load balancing defined by:

1. Pool Registry Load Balancer, which takes care of remote vs. local pools, and

7

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 4: Data Service Instance

Figure 5: Pool Registry Instance

8

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2. Data Service Load Balancer, which takes care of local node load balancing.

A thorough investigation of caching options was required and represented an integral part of
the overall load-balancing scheme. An intelligent or smart cache strategy features of interest
are:

1. “cache”type Data Services where“cache”Data Service pools take priority over“storage”
Data Service pools in terms of Pool Registry load balancing, thus providing cache
options early in the request life cycle,

2. Data Service internal caches that are specific to storage types. For example, MySQL
Query Cache and Oracle In-Memory Cache. The local Data Service policy file should
regulate internal cache parameters and usage.

We continued to add additional requirements as the underlying project schedule tasks pro-
gressed. In addition to the requirements identified in the Phase II project work plan and the
first two quarters of project work we determined the need for:

1. Advanced indexing server for enhancing MySQL query auto-caching infrastructure.

2. High availability and fault tolerance of STAR MySQL data resources.

3. Investigation of cache control policies including explicit invalidation, time to live, and
invalidation on read.

(a) Local caches with hash table or variable:

i. Set static variable i.e. - in php RESTful service “static $name”

ii. If not set i.e. - in php RESTful service“if (! $name) {//fetch from database}”

The OGSA-DAI infrastructure has some significant limitations in utilizing SOAP messaging
exclusively. We identified that a RESTful interface for the CWS4DB infrastructure and Data
Services provided a factor of 2 faster accesses. Furthermore, optimizing the interface object
definitions with JSON instead of XML provided a significant boost in performance with a
significant reduction in the required network bandwidth. The STAR collaboration desired
use case for “simplified read” is illustrated below:

1. User job action:

(a) Call Pool Registry Web service get data by URI method, with request URI like
urn:OFFLINE PRODUCTION: Calibrations emc/bemcMapping

2. Pool Registry Web service actions:

(a) Pool Registry Dispatcher:

i. Checks user authentication via internal or external authentication infrastruc-
ture component,

9

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

ii. Parses URI and determines pool information and request parameters,

iii. Ask Pool Registry Load Balancer to determine best available pool ID for
current request,

iv. Pass the request to Pool Controller, asking to execute it on a pool ID from
the Load Balancer, and

v. All actions by the Pool Registry Request Dispatcher are regulated by local
policies (user authentication, local vs. remote preferable dispatch, etc.).

(b) Pool Controller:

i. Contacts owner of the selected pool (Data Service Web service) and passes
job request.

3. Data Service Web service actions:

(a) Data Service Request Dispatcher as Data Service Load Balancer to find least
loaded node from provided pool,

(b) Data Service Load Balancer determines least loaded pool node using the informa-
tion provided by the Performance Metrics Collector,

(c) Data Service Request Dispatcher passes the Job Request and Node ID to Data
Service Pool Controller, and

(d) Data Service Pool Controller executes request on Data Service server node and
returns the result to Data Service Request Dispatcher.

A summary of the STAR requirements for the CWS4DB Load Balancer include

Local Job Cache requirements:

1. Should be simple,

2. Fast in-memory cache,

3. Accommodate pre-identified cache-able request according to Job Execution policy.

Pool Registry Load Balancer requirements:

1. Distributed round-robin algorithm based on local and remote pool states and external
policies,

2. Transparent cache capabilities, required to reduce the amount of “remote” requests,

3. Ability to intelligently re-direct failed “remote” call to next available remote pool, thus
providing the required fault tolerance,

4. Ability to perform multiple parallel requests to Data Service instances, thus reducing
overall wait time for multi-request calls.

Data Service Load Balancer requirements:

1. Simple round-robin algorithm for pools composed of nodes with equal processing ca-
pability (default method),

10

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2. Weighted round-robin with response time as weight for a mixture of low and high
performing server pools,

3. Weighted round-robin with limits on number of active connections for a mixture of low
and high performing server pools,

4. Request dispatch, based on a data storage defined performance metrics, using real-
time or near real-time node information collected by Performance Metrics Collector,

5. Utilize transparent local cache capabilities, specific to chosen Data Service data storage,
to reduce “local” requests,

6. Ability to distinguish between “overhead” requests to local data storage, and data
retrieval requests. For example, this feature should allow to dispatch most of the
“overhead”requests to local cache pool, thus reducing data storage queries substantially,

7. Planned maintenance or outages of pools should be identified automatically, redirecting
requests to backup pools according to local policy.

Architectural Design and Development

We worked with our STAR collaborators to determine architectural design that would pro-
vide the level of service required by the STAR infrastructure at our February 2010 face-
to-face meeting. The original design of the new infrastructure was limited by the require-
ment of not changing any of the STAR production code base, however during this meeting
our collaborators pointed out that they were redesigning the production code base and could
allow changes to occur. Drs. Lauret and Green seized this opportunity to make the collab-
orative project infrastructure much more valuable to the STAR collaboration by including
RESTful interfaces into the STAR code redesign. We believe that the multi level caching
infrastructure provided by Tech-X and STAR is quite impressive and will provide a great deal
of value to the STAR collaboration. These well-defined interfaces have proven to be pivotal
in providing a more robust environment for the STAR production jobs database queries. We
have followed the architecture shown in Figures 6 - 10 to develop our service components:

Project Task Tracking and Management

We used several tools for tracking this long running task that are highlighted below:

dotProject: dotProject is an open-source, multi-user project management tool that helps
us organize the projects, tasks, companies, departments, events, contacts, to-do lists, re-
sources, and generate gantt charts showing our progress. We used this tool to manage
assigned personnel, resources, task logging, and our Work Breakdown Structure (WBS) for
this effort. This WBS and the gantt chart summarizing our performance in the beginning of
this document were produced using our dotProject instance.

Redmine Project Management: Redmine is a flexible project management web applica-
tion design of which is influenced by ‘Trac’ and developed using ‘Ruby on Rails’ framework
and it is cross-platform and cross-database. The notable features of Redmine are multiple
projects support, flexible role based access control, issue tracking system, gantt chart and
calendar, documents and files management, feeds and email notifications, per project wiki,

11

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 6: CWS4DB Architecture Diagram

12

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 7: CWS4DB Architecture Distributed Data Provider Diagram

Figure 8: CWS4DB Architecture Star DDP Communications Diagram

13

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 9: CWS4DB Architecture Single Cluster Scenario Diagram

Figure 10: CWS4DB Architecture Multi Cluster Scenario Diagram

14

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

per project forums, time tracking by providing an option to update time as one works on the
task, custom fields for issues, time-entries, projects and users, integration with SVN, issue
creation via email, multiple LDAP authentication support, and multiple databases support.

Over the course of this effort we phased in Redmine as another tool for managing this project.
This tool, complete with its issue tracking and Wiki documentation engine have allowed us
to create and maintain a rich interface for managing the resources and schedules associated
with CWS4DB. An example of the Wiki documentation we have built up over the course of
this effort is included in Figure 11.

Figure 11: Redmine Project Management Wiki Documentation Interface

Tech-X Knowledge Base: KnowledgeBase Manager Pro is used to for sharing information
about organization or business unit, troubleshooting information, articles, white papers, user
manuals, or answers to frequently asked questions as shown in figure 12

Tech-X Mac A&D: MacA&D is a comprehensive tool for system modeling and simulation,
requirements management, structured analysis and design, object-oriented modeling with
UML and data modeling of information systems. It has diagram editors for process models,
data models, class models, state models, object models, structure models and task models.
Each model shows a different view of the software system integrated through a global data
dictionary as shown in figure 13, figure 14.

15

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 12: Knowledgebase CWS4DB

16

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 13: CWS4DB Execution Node

Figure 14: CWS4DB Data Resource Node

17

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2.2 Task 2. Design and Implement Tiered Deployment Capabili-
ties

Objective: Develop a tiered deployment based protocol for the CWS4DB system. The
potential STAR collaboration resource providers will have various and potentially limited
infrastructure and/or network connectivity. Thus, a tiered deployment protocol is necessary
for a successful CWS4DB system deployment on these resources.

Summary:

a) Develop the tiered deployment based on the possibility of remote servers that may have
limited internet bandwidth and/or high latency issues

b) Specify and implement this tiered deployment protocol for user-friendly configuration of
the CWS4DB system

c) Provide the necessary installation configuration tools required for deployment and sub-
sequent system validation and verification provided by the customizable site specific test
suite

We have met our goals for this task in developing and implementing RESTful web services
and user interfaces in support of the tiered deployment of the CWS4DB system. We discuss
our individual accomplishments in the following subsections.

Develop a Tiered Deployment of the CWS4DB System

The Phase I work was performed on the Tech-X server cyber.txcorp.com. We have since re-
purposed this server and configured a new main server (orbiter.txcorp.com) for the CWS4DB
development and testing. This required the migration of the original Phase I CWS4DB in-
frastructure along with new versions of Globus, Tomcat, OGSA-DAI, PHP, and Apache Web
Server.

In order to provide a secure and robust build and test environment we installed a commercial
Thawte SSL certificate for the Apache Web Server. This provides the transportlevel encryp-
tion that our CWS4DB Web service infrastructure uses for security. These two servers are
configured such that the testing of our tiered deployment infrastructure and protocol can be
tested.

All of our web services will support these four levels of deployment and cyber.txcorp.com is
configured to emulate our four CWS4DB tiers:

Level 1: CWS4DB Base Execution Node provides the STAR C++ API CWS4DB library
bindings with a CWS4DB public data resource node configuration.

Level 2: CWS4DB Private Static Data Resource Node provides a static local configured
private data resource node.

18

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Level 3: CWS4DB Private Dynamic Data Resource Node provides a dynamically configured
private data resource utilizing local and remote data resources.

Level 4: CWS4DB Public Dynamic Data Resource Node provides the complete public dy-
namic system utilizing local, remote, and auto configured data resources and the CWS4DB
status infrastructure.

The testing of all levels have been performed on the cyber.txcorp.com utilizing a locally
configured 8 node simulated cluster resource provided by this multi-core server. The Level 1
deployment protocol utilizes a local MySQL database presented as a RESTful data resource.
The Level 2 deployment protocol utilizes the Level 1 deployment but utilizes a remote MySQL
database served by the orbiter.txcorp.com server and presented as a RESTful Data Resource.
Levels 3 and 4 use a combination of ‘cyber and orbiter’ server cores for testing the STAR
data resources.

Eucalyptus and OpenNebula

In conjunction with this task we have investigated a variety of cloud computing tools. That
is, though Eucalyptus has many features for developing and maintaining cloud infrastructure,
we found that it is not feasible to implement and use this infrastructure for CWS4DB devel-
opment because several of its critical features are not open-source. After investigating other
cloud infrastructure technologies we have settled on OpenNebula, an open-source project
that has been adopted by several big players in the cloud and grid computing community.

We have setup our physical infrastructure to have a cluster-like architecture with a front-end,
and a set of cluster nodes where a physical network joining all the cluster nodes with the
front-end. We have installed OpenNebula on the front end and ran node scripts on all the
nodes where Virtual Machines will be executed. We have developed the service architecture
for different nodes and tested with all 4 levels of deployment protocols using the cloud’s
front-end node infrastructure setup. We have hosted our services and data resources at
different nodes on the cloud environment for resource distribution. More explanation of
implementation and testing can be found in Task 5 accomplishments.

Orbiter Service Oriented Architecture

Over the course of this effort we have enabled several CWS4DB capabilities as web services
through the Orbiter Service Oriented Architecture (SOA). This system expresses a software
architecture that capitalizes on use of loosely coupled software services to support the re-
quirements of the business processes and software users. In a SOA environment resources on
a network are made available as independent services that can be accessed without knowl-
edge of their underlying platform implementation. The software components are reusable
because the interfaces are standards-based and they are independent of the underlying im-
plementation.

Web Services (WS) are open standards-based, modular, distributed, dynamic web applica-
tions that are self-described, published, located, or invoked over internet protocols. Portals

19

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

and Gateways use collections of WS that perform simple or complex tasks and they might be
used to create more complicated applications. WS normally use the standard client-server
model where the client sends a XML query to the server and the server responds with a XML
result. Web Services Definition Language (WSDL) is a special XML grammar created for
self-describing web services. A WS has a WSDL file that defines the communication protocol,
the available methods, data transfer syntax, and the location of the service endpoints.

It was determined as a result of our work in task 1 that a RESTful web service interface would
provide the most flexible, robust and efficient access to CWS4DB resources. To this end we
have developed a number of RESTful Orbiter web services, featured in Table 1 facilitating
the work on the rest of these tasks, in addition to supporting the Commander thick-client
interface and site-specific testing.

Table 1: CWS4DB RESTful Web Services

Services Description

OrbiterConnectivityService Provides an endpoint for testing and verifying connectivity.

OrbiterErrorHandlerMessageService A service for creating and managing other web service interface errors

OrbiterFederationExplorerService Provides a listing of services, by node and package

OrbiterMasterSlaveDatabaseValidationService Compares the Orbiter Master database tables with the Slave

database tables, can replace/repair as well

OrbiterNoopService An “emtpy” service for Quality of Service testing, which does full

authentication verification and database connection without querying

or returning any information

OrbiterQueryDbConnectionStringService A service interface for managing database connection string informa-

tion

OrbiterQueryDbLoadBalancerService Provides load balancing support including updating database rank

and status

OrbiterQueryService A service interface for running queries against a particular database.

Supports query caching.

OrbiterResourcePreCacheService Provides the ability to pre-cache Query Db sql queries when a new

database resource was added to resource table

OrbiterSimulatorService Simulates running several queries against a particular database. Col-

lects timing and performance information.

OrbiterVersionInformationService Provides information on web service family versions

Orbiter services were designed in an object-oriented manner, where common functionality
was built in reusable components that allowed us to rapidly prepare web service-enabled
functionality for deployment. A common Orbiter Service component was developed that
encapsulates much of the lifecycle and infrastructure associated with an Orbiter service im-
plementation, enabling the more streamlined development of new Orbiter services. This
component allows services to define their properties and business logic in a more straight-
forward manner, allowing the Orbiter services to be more maintainable and stable as the
infrastructure continues to grow.

20

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Orbiter Services return a WSDL (Web Service Description Language) description of their
interfaces as well as an XSD (XML Schema Definition) for its defined service attributes and
their values. The service WSDL and XSD provide a regular description of the operations and
parameters accepted by an Orbiter service and also permit client code to be automatically
generated that will comply with the service’s expected requests. The Orbiter Federation
Explorer, a Java Thick Client Commander module that is discussed in further detail later in
this section, both displays the WSDL and XSD and also uses them to construct customized
test cases for every service. The Orbiter Federation Explorer dynamically constructs testing
Graphical User Interfaces from these API descriptions, allowing users to systematically run
Orbiter Services against their input. A screenshot of this capability is shown in Figure 15.

Figure 15: Commander Federation Explorer for the Orbiter CWS4DB Query Service

Orbiter SOA development was performed within the context of a major and minor versioning
system, where services released for a specific major version are maintained in minor version
revisions that are abstracted for service users. Apollo, Orbiter’s first and current major ver-
sion, can be invoked by using apollo in the service URI, where this will always resolve to the
latest minor version deployed on the host. By using this system the Orbiter service devel-
opment team can continuously release improvements to deployed services without affecting
Orbiter service users. Orbiter Taurus and Orion were also released over the course of this
effort.

21

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Commander Application

In conjunction with this task we have investigated, designed and developed Orbiter Com-
mander, a thick-client desktop application designed to facilitate graphical user interaction
with the Orbiter SOA infrastructure developed over the course of this effort. Commander is
being developed using the Eclipse Integrated Development Environment (IDE), which pro-
vides streamlined compile/launch features as well as integration with Subversion, a revision
control system that preserves the integrity and history of developed code. Eclipse’s API for
its Rich Client Platform (RCP) allows Graphical User Interfaces (GUIs) to be rapidly de-
veloped using several constructs, including well-defined extension points for defining custom
extensions to its capabilities. Through Eclipse RCP Orbiter Commander is able to provide
a sophisticated interface complete with dock-able windows, pre-defined preference pages, an
integrated help system, and complete branding and licensing information.

We prepared both a paper and a talk on Orbiter Commander that highlights its flexible and
extensible design and its seamless integration with Orbiter web services. This peer-reviewed
paper was accepted by the Gateway Computing Environments 2010 (GCE10) workshop and
a talk was given at the workshop at the Supercomputing Conference (SC10) on November
14, 2010 in New Orleans, Louisiana. The paper and talk are attached later in this document.

Figure 16: Orbiter Commander CWS4DB Suite of Modules

22

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Commander’s functional capabilities are implemented as independent and self-contained
components called modules, which are organized in suites of broader categories. Users can
use multiple modules/suites at one time, giving them a rich experience in a fully customiz-
able desktop interface. A screenshot of the CWS4DB Orbiter Commander suite is shown
in Figure 16. Eclipse RCP also automatically enables user-configurable preference pages
and about/licensing information that improves the overall experience for Commander users,
shown in Figure 17.

(a) User-Configurable Preference Pages

(b) About and Licensing Information

Figure 17: Preferences and Licensing information

Commander is capable of utilizing Orbiter RESTful services from an arbitrary remote loca-
tion, utilizing full authentication and validation for any of the STAR services provided in
this project. Interaction with Orbiter RESTful services is enabled through an OrbiterREST-
Client, which was developed as a part of a Connectivity component for Orbiter Commander.
This client code handles web service parameters and authentication in a simple and easy-

23

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

to-use set of classes. The architecture for Commander is illustrated in Figure 18, where the
Commander framework and its individual modules communicate with the Orbiter web ser-
vices to gain access to their capabilities and to fuse their information into rich user interfaces.

Commander	
 Update	
 Site	

Commander	

Module	

Commander	

Module	

Commander	

Module	

Secure	
 REST	

Commander
Commander	

Module	

Commander	

Module	

Commander	

Module	

Automa7c	
 and	
 User-­‐Ini7ated	
 Updates	

Figure 18: Commander Architecture with Orbiter Web Services

(a) Successful Connection

(b) Unsuccessful Connection

Figure 19: Comman-
der Connectivity Indica-
tor/Tester

Commander includes an indicator in its main toolbar that al-
lows users to see and test Commander’s connectivity with the
deployed Orbiter infrastructure. This button, shown in Fig-
ures 19a and 19b, will indicate whether Commander is able
to connect to the Orbiter connectivity service deployed at the
Spallation Neutron Source. A successful connection indicates
that Commander is able to interact with the other deployed
services. An unsuccessful connection, shown with a red ‘X’,
indicates that Commander cannot connect to Orbiter, which
could be due to network issues on either end. Commander will
periodically retry this connection, and clicking this button will
re-try this test and show the current status.

Commander also enables fully configurable HTTP and
HTTPS proxy settings, allowing Commander to interact with
the Orbiter SOA through a proxy instead of directly through
an internet connection. Proxy settings can be configured via

Commander’s preference pages, and will persist in future sessions.

Commander provides interfaces for configuring its individual service endpoints. This ad-
vanced capability allows experienced users to alter the hostname, service package, and service
version for a particular service call made within Commander, facilitating troubleshooting or
manual fail-over in the event that the given host cannot be reached. This interface, shown
in Figure 20, also permits configured service endpoints to be tested individually, which can

24

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

be used in troubleshooting a capability in an individual module.

Figure 20: Commander Orbiter Service Client Configuration

Commander takes advantage of the perspectives extension point within the Eclipse Rich
Client Platform, providing configurable view orientations that allow users to better orga-
nize their modules for their purposes. Module views automatically appear in an Eclipse
perspective corresponding to the application suite that they belong to. Users can click to
switch between these suites, preventing view “crowding” and automatically organizing mod-
ules according to their functional capabilities. Module views are programmed with a default
orientation that we believe most users would favor, however each view is fully dock-able
to allow users to completely tailor Commander to their needs. Commander uses multiple
threads to start modules such that the application can still be used while another module is
loading.

We have also implemented a mechanism for communication between running modules within
the application. Though we have used an approach that allows modules to be developed com-
pletely independently, we have enabled interaction through a loosely-coupled communication
framework. This allows modules to not only share functionality without code duplication, it
allows certain Commander features to be programmatically accessed, opening the door for
future interaction through third-party tools, interfaces, and scripts.

Commander is designed using industry-accepted principles of object-orientation and encap-
sulation, ensuring that the application will remain scalable and maintainable over a long
period of time. We have also defined custom Eclipse extension points for Commander which
greatly simplifies the process of creating and maintaining new Commander modules. That

25

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

is, the Eclipse IDE will automatically generate Commander-compliant code based on the
extension points we’ve defined for the application. An example of the Commander module
extension, from which code can be generated, is shown in Figure 21.

Figure 21: Commander Extension Point for the Query Simulator Module

Over the course of this effort we have developed the following Eclipse RCP extension points,
which provided a rich and comprehensive development environment for Commander capa-
bilities.

Commander Modules: an extension point for generating a Commander-compliant module

Commander Suites: an extension point for generating a Commander-compliant module
suite

Connectivity Activators: an extension point for generating a Commander-compliant ac-
tivation workflow

Connectivity Clients: an extension point for generating a Commander-compliant Orbiter
web service client

Orbiter Commander consists of 503 Java source files, totaling nearly 80,000 lines of code/comments.

26

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

It has currently been tested on and can be deployed to the following systems and architec-
tures:

• Mac OS X (cocoa/x86) 32-bit - tested with Snow Leopard (10.6)

• Mac OS X (cocoa/x86) 64-bit - tested with Snow Leopard (10.6)

• Windows (win32/x86) 32-bit - tested with Windows 7

• Windows (win32/x86) 64-bit - tested with Windows 7

• Linux (gtk/x86) 32-bit - tested with Fedora 13

• Linux (gtk/x86) 64-bit - tested with Scientific Linux 5

The Eclipse IDE and its exported RCP applications are supported by the Eclipse Equinox
p2 provisioning system, an OSGi implementation. An RCP application, broken into several
supporting JAR files, can be individually and incrementally updated from a central appli-
cation repository, allowing the user to either automatically or manually retrieve the latest
releases for their application instance. Orbiter Commander was designed to allow its individ-
ual modules to be updated by the user using this system, and we have enabled this Eclipse
feature and built a repository site for Commander modules. This mechanism allows users to
easily and seamlessly retrieve the latest releases of Commander capabilities or to integrate
new capabilities into their installation using a simple point-and-click interface (shown in
Figure 22).

Figure 22: Orbiter Commander Update Site

For this effort we have developed several modules that enable the development and testing of
capabilities for this project. Users can invoke these capabilities using a simple point-and-click
interface. These modules include:

27

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Query Resource Monitor: An Orbiter Commander Module for viewing the status of
query resources

Query Simulator: An Orbiter Commander Module for running the CWS4DB Query Sim-
ulator

Query SSH: An Orbiter Commander Module enabling an interactive SSH terminal to re-
mote resources

Python Interpreter Module: An Orbiter Commander Module for executing Python com-
mands

Orbiter Federation Explorer: An Orbiter Commander Module for browsing and testing
Orbiter web services

Further detail on these modules is included in the following subsections.

STAR Resource Monitor

The Orbiter Commander Resource Monitor allows users to browse CWS4DB query resources
and determine their running status. Query resources are placed on an interactive Google map,
where statistics including bytes sent and received, thread counts, load averages and memory
utilization are displayed according to the resources’ geographic locations. Alternative views
show this information in a table or graph form. The host list on the left side of the module
displays the STAR resources, where clicking on one centers the statistics tab on the particular
resource of interest.

This module facilitates the streamlined use of the other modules in this CWS4DB suite by
enabling users to perform actions on a selected query resource. Users may opt to run a query
against a resource, run a full query application simulation against a resource, or open an
SSH terminal window and connection to a resource, simply by right-clicking on a resource
in the list provided. A screenshot of this module is shown in Figure 23.

Query Simulator

The Orbiter Commander Query Simulator Module allows users to interact with the Orbiter
query service (discussed in more detail under Task 3). Using this module users may run a
STAR input file against any host, specifying the output format, whether or not to perform
the query (or a no-op operation), use the query cache, or to use validation, allowing this
service to be tested wherever it is deployed. Service round-trip timings can be displayed to
benchmark the services between resources as well, providing a powerful tool for interacting
with the query service. This module also enables interaction with the simulator service,
where multiple queries can be run against the tiered deployment infrastructure for testing
and benchmarking. A screenshot of this module is shown in Figure 24.

28

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 23: Orbiter Commander STAR Resource Monitor

29

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 24: Orbiter Commander STAR Simulator Module

Query SSH Module

The Orbiter Commander Query SSH module provides a terminal window permitting secure
connections to remote resources. This module will accept connection information and make
an SSH connection to a remote resource, providing an interactive terminal for working on
the machine. This module enables secure authentication using a password, passcode or SSH
key pair. Complete with VT100 character support, this module provides a rich interface for
interacting with remote resources used in the CWS4DB effort. A screenshot of this module
is shown in Figure 25.

30

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 25: Orbiter Commander Query SSH Module

This module delivers its own complete version of the SSH protocol, such that systems without
SSH capabilities can immediately interact with remote resources out of the box, without the
need for other supporting libraries or applications on the system. However, if the user’s
system has already been configured for SSH via the command line, Commander will utilize
the existing SSH configuration file to provide a dynamic point-and-click interface to their
stored configurations. Shown in Figure 26, the saved configurations are displayed on the left,
and selecting one of these configurations will automatically fill in the configuration options
on the right. This permits a simple one-click connection to preconfigured hosts.

31

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 26: Orbiter Commander Query SSH Configuration

Python Interpreter Module

The Orbiter Commander Python Interpreter module allows users to interact with their
command-line python installation on their local machines. By configuring Commander to
use the path to an existing python installation, this module is capable of executing single or
multi-line Python scripts loaded from an external file. In addition, this module can be used
interactively by entering python commands through the prompt provided in the module’s
main view. In the screenshot featured in Figure 27, the Commander Python Interpreter
module is being used to execute a Python script that tests an Orbiter web service. The
service URI was specified as a command-line argument.

32

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 27: Orbiter Commander Python Interpreter Module

Orbiter Federation Explorer

The Orbiter Commander Federation Explorer module provides an interactive interface for
browsing and testing Orbiter web services developed over the course of this effort. An Orbiter
web service interface was created that returns the base stations, network nodes, and available
services for an Orbiter host endpoint. This tool permits Orbiter administrators to interact
directly with the Orbiter web services for development and testing purposes.

After an Orbiter base station or network node is selected, a list of all Orbiter SOA web
services is provided, in groups by package names. Selecting a service will display its ser-
vice Application Programming Interface (API), Web Service Description Language (WSDL)
definition, and a schema, generated by the service itself to describe its capabilities and pa-
rameters. A screenshot of this interface is included in Figure 28.

This module also permits users to interact with these services through a simple and dynamically-
generated Graphical User Interface (GUI). This dynamic interface, shown in Figure 29, will
display all possible operations for the selected service, and for each operation will list the
possible parameters, and if applicable, the possible values. The graphical representation of
the available service operations and attributes is driven by a call to retrieve the WSDL and
schema for the service. This tool examines these descriptors and dynamically generates the
testing interface, allowing this interface to automatically adjust as services and their APIs
evolve over the course of development.

33

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 28: Orbiter Commander Federation Explorer Module

Figure 29: Orbiter Commander Federation Explorer Dynamic Testing Interface

34

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Users can set service call values, omit or include optional parameters, and opt to use SSL
encryption for the calls. Clicking “test’ will execute the service, using imported Orbiter
credentials for secure service calls, and will print the authenticated call, response header,
and response message body for the user’s review. This has proven to be an indispensable
tool in developing and testing the services supporting this effort.

Commander Help and Manual

In conjunction with Orbiter Commander we have been developing a comprehensive user
manual that is fully integrated into the Commander application via Eclipse RCP extension
points. This manual, with content for each Commander module as well as the application
framework as a whole, provides searchable as well as browsable content to assist users in
understanding and interacting with the application. This help content can also be reviewed
through standard web browser; a screenshot of this portion of this user manual content is
included in Figure 30. These help pages are attached later in this document.

Figure 30: Orbiter Commander Manual and Help Content

35

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2.3 Task 3. Design and Implement Auto-Caching Infrastructure

Objective: Provide a sophisticated auto-caching mechanism in order to increase the effective
system performance based on work with our partners. We have determined that a two-
level auto- caching algorithm is necessary and desirable to increase the effective system
performance for our STAR collaborators. The development and testing of this system is our
main objective.

Summary:

a) Develop a sophisticated auto-caching mechanism to increase system performance

b) Develop a testing suite for determining performance of the auto-caching candidate infras-
tructure configurations. This will aid in the determination of the auto-caching perfor-
mance evaluation.

c) Investigate the performance of several execution node auto-cache locations

d) Investigate several auto-caching storage strategies in order to efficiently and reliably de-
termine if a query result file exists

e) Investigate hierarchical storage strategies for potentially millions of query result files

f) Investigate file system inode limitations and performance during our investigation of the
auto-caching file and directory structure

g) Implement caching query results on a proxy server and retrieve/copy them from another
server when requested without making a database call.

We have accomplished our goals in this task over the course of this effort, investigating several
caching mechanism and developing a RESTful web service interface as well as a graphical user
interface for interacting with this CWS4DB component. This work has a significant potential
for increasing STAR application performance where network congestion or network latency
or network bandwidth are key factors. Specific work on this task is included in the following
subsections.

Caching Mechanism Investigation and Service Interface

In this task we implemented query result caching on proxy servers at different levels of
network and made them available for other servers in the network. When a request comes
in and if the query result was not found in cached files list on this requested server, and is
available in one of the proxy servers in the network, the cache file will be retrieved rather
than making a call to the database server. The function of a proxy server that caches query
result on the server’s hard disk so that the result can be quickly retrieved by the same or
a different user the next time that query is requested. The proxy cache eases bandwidth
requirements and reduces delays that are inherent in a heavily trafficked, Internet-connected
network. Because the result is stored locally on the proxy server, the file is delivered to
the next request at local network speeds. The proxy cache has query results already stored
and can retrieve them for the user quicker than having to retrieve them from the Database
Server.

36

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

We have wrapped this caching mechanism in an Orbiter RESTful web service interface to
allow remote use to authenticated and authorized users. These users can manage the caching
by setting a request parameter for caching to ‘on’ or ‘off’. When cache is set to on, first the
service will look for any cached files in the cache folder and the cache file will be retrieved
rather than making a call to the database server. If the cache file doesn’t exist in the cache
folder then the service will make a database call and the query result will be cached so that
the next time the same request comes in the cache file will be retrieved. An authenticated
and authorized user has the ability to get, list, delete, and recreate the cache by using
OrbiterCacheFileService.

We developed and tested the auto-caching mechanism by using a representative STAR appli-
cation code database run log. This log is representative of a STAR application reconstruct-
ing 50 events of 500GeV data. There are approximately 6700 database queries required
for this reconstruction. The simulation was run between our Boulder, Colorado Tech-X or-
biter.txcorp.com testbed server and the dbx.bnl.gov server located at BNL. The processing
time for the simulation was approximately 806 seconds. We also have run this simulation
from the Tech-X Buffalo, New York office with significantly better performance of approx-
imately 334 seconds. This is representative of the current network conditions, server load,
script and database overhead. We also ran this simulation on our local orbiter.txcorp.com
MySQL database server in approximately 38 seconds. This analysis gave us insight in cre-
ating an efficient auto-caching mechanism capable of storage and indexing of many queries
representing a relatively small amount of data.

We have investigated the performance of several execution node auto-cache locations for
example, private local scratch space, network mounted files system placement, and group ac-
cessed network mounted file system placement. We have tested this scenario for determining
the performance of the auto-caching and the testing results are shown in Figure 31.

CWS4DB Infrastructure Load Balancing Design

In conjunction with this effort we conducted an in-depth investigation into the STAR task
1 requirements, and incorporated several testing scenarios in order to understand the load
balancing impact on our auto-caching mechanism. There were many different algorithms to
consider in load balancing which server should receive the next connection, and how to cluster
queries to servers that potentially have memory caches of the query result of interest. We
investigated random, round-robin, least connections, fastest response, hashed, and weighted
algorithms.

In general the best algorithm depended heavily on the server workload. Adding a new server
to the pool was generally not as simple as plugging it in and notifying the load balancer.
Normally, there must be a ramping up of workload to a given server that complicated our
auto-caching mechanism even further. We made progress on functional partitioning and
filtering and data partitioning methods. We implemented the Sphinx indexer for MySQL
and tested the increased performance in indexing query strings.

Network bandwidth was important and depended on the last mile normally. To investigate

37

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 31: Orbiter Simulator Service Performance

python ./testOrbiterREST.py https://cyber.txcorp.com/orbiter/service/star/OrbiterStarSimulatorService.php

/operation/runfile/debug/on/format/json/host/local/file//tmp/testfiles/star.pp500.full.sql/

address/http://64.240.154.24/orbiter/service/star

Service attributes : host/local, address/http:// and address/http://64.240.154.24/orbiter/service/

star IP Address for DNS name resolution.

Result:

Number of trials averaged: 1

Total number of queries: 6549

Total size of queries: 38963293

Total query time: 139.37202596664

Before the pre-cache service populates any cache files, the service request has to make database calls

to retrieve the query results. We have observed delays in processing the request.

python ./testOrbiterREST.py https://cyber.txcorp.com/orbiter/service/star/OrbiterStarSimulatorService.php

/operation/runfile/debug/on/format/XML/host/remote/file//tmp/testfiles/star.pp500.full.sql/

address/http://64.240.154.24/orbiter/service/star

Service attributes : host/remote, address/https:// and address/https://cyber.txcorp.com for

DNS name resolution.

Result :

Number of trials averaged: 1

Total number of queries: 6549

Total size of queries: 38963175

Total query time: 644.20057988167

Now we ran the pre-cache service to populate the pre-cache files at this resource node.

python ./testOrbiterREST.py https://cyber.txcorp.com/orbiter/service/star/

OrbiterResourcePreCacheService.php/operation/runprecache/

resource/64.240.154.24\|star\| ...

Once the pre-cache service has populated all the cache files, we made a service request and the processing

response was significantly faster than when no cache files were existed at this node.

python ./testOrbiterREST.py https://cyber.txcorp.com/orbiter/service/star/OrbiterStarSimulatorService.php

/operation/runfile/debug/on/format/json/host/remote/file//tmp/testfiles/star.pp500.full.sql/

address/http://64.240.154.24/orbiter/service/star

Service attributes : host/remote, address/http:// and address/http://64.240.154.24/orbiter/service/

star IP Address for DNS name resolution.

Result:

Number of trials averaged: 1

Total number of queries: 6549

Total size of queries: 38963293

Total query time: 138.62204384804

38

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

the database service payload size we wrote a custom RESTful PHP database service with a
JSON (JavaScript Object Notation) payload to compare with the XML payload. We logged
the performance data for each SQL operation to calculate and log JSON and XML payload
size. On average over a dataset the equivalent JSON payload was 8.8-10.1 times smaller.
In general an order of magnitude lower bandwidth loading is required with the JSON PHP
service.

Tech-X has installed Nimbus and utilized the Nimbus client with the available science clouds
in support of the STAR on-demand database service.

• The Nimbus infrastructure provided limited upload/download bandwidth consistently.

• The required STAR image is relatively large due to the size of the MySQL database.

• We investigated several ways of populating the STAR database and tested query per-
formance with our RESTful PHP JSON database service successfully.

• The OGSA-DAI XML database services could not be loaded on the Nimbus science
cloud due to memory constraints.

• We investigated the cloud enabled MySQL database Drizzle.

The latest version of Babel has been implemented on the STAR DB driver as well as the
integration of the RESTful PHP JSON database services. We have also made progress on the
development of a JavaScript GUI for displaying load balancing and system status. The load-
balancing infrastructure was currently deployed within the BNL firewall and we installed a
version at Tech-X Boulder Headquarters. The design and implementation of this mechanism
is featured in Figures 32, 33, and 34.

39

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 32: CWS4DB Load Balancer Design

Figure 33: CWS4DB Load Balancing Implementation

40

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 34: CWS4DB Load Balancing Composite

2.4 Task 4. Enable Multi-VO Role-Based Capabilities

Objective: Develop the CWS4DB infrastructure required for user-friendly management and
caching capabilities. The authentication and authorization for multiple Virtual Organiza-
tions (VOs) is essential for delivering a high quality of service with user-friendly management
capabilities. We will use the standard GSI security, authentication, and authorization meth-
ods available within the Globus infrastructure for this task.

Summary:

a) Enable Multi-VO Role-Based Capabilities using standard OSGA-DAI security, authenti-
cation, and authorization methods available within the 3.0 version

b) Implement the GSI security features of Globus
c) Investigate the effective VO role-based utilization of the auto-caching capabilities as de-

scribed in Task 3
d) Investigate providing the capability for private usage of cached queries

We have met our goals for this task over the course of this project, developing services
supporting VO management and query capabilities. Details are discussed in the following
subsections.

Virtual Organization Management Service

We have completed the development and testing of the hierarchical Virtual Organization
(VO) role-based task work. We installed and configured a test Virtual Organization Man-
agement Service (VOMS) on a testing server called cyberrepo.txcorp.com at the Tech-X Cor-
poration. This server was be used for generating a VOMS Proxy with role-based attributes

41

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

for testing our CWS4DB role-based capabilities and in addition the project Principal Inves-
tigator, Dr. Green is a member of the STAR Collaboration, which has a VOMS server for
testing also. As envisioned in our Phase II task work plan the use of a grid unique id (guid)
functioned as expected as the project PI, Dr. Green, has used this approach in some of his
previous work.

In addition, we completed a proof of concept trial run using our CWS4DB RESTful Data
Service interface for passing a X509 proxy or a VOMS X509 proxy to our service and success-
fully extracting the subject Distinguished Name and role where applicable. This information
was then used for authentication/authorization and enabling access to the auto-caching hi-
erarchical storage scheme.

RESTful VO-Enabled Query Service

We were able to provide the capability for private usage of cached queries by using the
following directory structure: path-to-cache-storage/cache/guid/VO/role/md5sum. Only an
authenticated and authorized user can set vo (virtual organization name) and role (his role in
the organization) for Multi-VO Role-Based caching. When a query request is made with vo
and role, first the service will look for any cached files in the cache folder created(using sha1)
for the specific Virtual Organization and the cache file will be retrieved rather than making
a call to the database server. If the cache file doesn’t exist in the specified VO cache folder
then the service will make a database call and the query result will be cached (sha1) so that
the next time the same request comes in the cache file will be retrieved. An authenticated
and authorized user has the ability to get, list, delete and recreate the Multi-VO Role-Based
cache by using OrbiterCacheFileService and by passing virtual organization name and role.

For a detailed explanation how it was implemented, path-to-cache-storage denotes the site
specific disk storage location, cache denotes the top level auto-caching directory (this di-
rectory will have list access removed a-x), grid unique id (guid) denotes a 64-128 character
based string value stored as a site specific cache key value, VO denotes the Virtual Organiza-
tion short name, role denotes the users mapped role, and md5sum denotes the cached query
result data file. This storage scheme will provide private access to VO role-based authorized
users as without the knowledge of the site specific cache key value a user cannot access the
file system cached query results as the top level directory list access has been removed.

The Orbiter Query Service is shown in Figure 35.

42

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 35: Orbiter Query Service

Service Attributes:

- /orbiter/service/star/OrbiterSTARQueryService.php/format/{XML|JSON}/host/{local|remote}/database/

{database name}/query/{query string}/cache/on/vo/{virtual organization}/role/{admin/user}

- Service attribute definitions.

path-to-cache-storage

- Will be taken from define(’ORBITERCACHEFILELOCATION’, ’/tmp/cache’);

/vo/{virtual organization}/

- default value: null

- Virtual Organization short name.

/role/{admin/user}/

- default value: null

- Requesting user role.

/guid/{will be the Sha1 of vo + role}/

- default value: null.

Example to use private cache using service OrbiterSTARQueryService:

- Service attributes:

path-to-cache-storage

- Will be taken from define(’ORBITERCACHEFILELOCATION’, ’/tmp/cache’)

/vo/{virtual organization}/

- value: star.

/role/{admin/user}/

- value: admin

/guid/{will be the Sha1 of vo + role}/

- value: 664uncgtg33g9mng6ons38lj11.

/cache/on

- When cache is set to "on", it caches the response to the cache location set in the directory structure.

The result of the query is cached in /

tmp/cache/cache/664uncgtg33g9mng6ons38lj11/star/admin/869uncgtg33g9mng6ons38lj38

(Query result Sha1).

43

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2.5 Task 5. Develop Dynamic On-Demand Data Resource Access

Objective: This on-demand service will provide a STAR MySQL database instance using
the Virtual Workspaces infrastructure, Sun Grid Utility Computing resources, and investi-
gate Grid deployments. Based on the load balancing and performance optimization study
conducted in the Phase I project an on-demand data resource CWS4DB system capability
is desired. This on-demand service will provide a STAR MySQL database instance using
the Virtual Workspaces infrastructure (Nimbus) developed at Argonne National Laboratory.
This database can then be integrated with CWS4DB data resource nodes as a data resource
for providing additional load balancing capabilities.

Summary:

a) Develop Dynamic On-Demand Data Resource CWS4DB system capability

b) Integrate STAR MySQL database with CWS4DB data resource nodes as a data resource
for providing additional load balancing capabilities.

c) Investigate expanding this on-demand service by developing infrastructure and tools for
deploying STAR MySQL database servers on Sun Utility Grid Computing resources

d) Integrate these database servers within the CWS4DB system as OGSA-DAI data re-
sources and evaluate their performance and on-demand capabilities.

e) Utilize the Virtual Workspaces execution environment developed at Argonne National
Laboratory and supported by the NSF Computer Systems Research (CSR) Virtual Play-
grounds project

f) Investigate deploying and configuring an optimized STAR MySQL database server utiliz-
ing the Virtual Workspaces infrastructure

g) Evaluate the databases on their performance and on-demand capabilities

h) Find a load balancer algorithm to calculate the ranking.

i) Set up a virtual machines infrastructure in place at Buffalo to perform testing.

Collaboration with Argonne National Laboratory

Our Argonne National Laboratory (ANL) collaborator, Dr. Keahey, participated in further
developing the dynamic STAR on-demand resource that is the main focus of this task. We
obtained accounts within the Nimbus cloud-computing environment for testing our CWS4DB
infrastructure and we installed and tested the base Nimbus infrastructure on our Tech-X test
bed.

We made significant progress on this task with Tech-X personnel as out ANL collabora-
tor had significant prior committments. This has enabled the dynamic STAR on-demand
resource that is the main focus of this task. We obtained accounts within the Nimbus cloud-
computing environment for testing our CWS4DB infrastructure and we have installed and
tested the base Nimbus infrastructure on our Tech-X test bed. We completed the design and
development of this task and determined the bandwidth limitation of the Nimbus infras-
tructure. Due to the size of the STAR collaboration database the required Virtual Machine
(VM) image size was problematic when starting the on-demand VMs.

44

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

We have created a table which will have all the available database resources with type, rank
and the status. An authorized user can add a new db resource to the list by using the Query
DB Connection String Service and the load balancer sets the ranking based on weighted
score and make it available to use by the query service and other services. That way every
time a new database resource node is added to the virtual work stations on demand it will
be made available for all the services to use.

In the Task 2 we have setup our physical infrastructure to have a cluster-like architecture
with a front-end, and a set of cluster nodes and installed OpenNebula. We have integrated
STAR database resources with the OpenNebula distributed virtual infrastructure resource
nodes as a data resource, so the Orbiter Load Balancer balances the service requests load
among these nodes. A brief example of how to use these two services are explained below.

Orbiter Query Database Load Balancer Service

In conjunction with this task we have developed a Query Load Balancer Orbiter web service.
This service is responsible for load balancing the query and other databases. Also used for
updating the database rank and status. The service response will return connection strings
of the type specified by the user based on the rank and status.

Brief example of use: The Orbiter Load Balancer Service is shown in Figure 36.

Orbiter Query Database Connection String Service

We have also developed a Query Database Connection String Orbiter web service to facilitate
work on this task. This service provides the user an ability to add, update, and delete the
database connection string information so that the user can manage database resources on
demand.

Brief example of use: The Orbiter Query Db Connection String Service is shown in Figure
37.

45

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 36: Orbiter Load Balancer Service

// Service name

OrbiterQueryDbLoadBalancerService.php

// Service API

/operation/api/

- output a service API listing only

// Service operations

/operation/get/

- Gets a list of connection strings

/operation/update/

- Updates the rank of a given connection string

/operation/schema/

- Displays the schema.

/operation/wsdl/

- Displays the wsdl.

// Service attribute definitions

/operation/{get|update|schema|wsdl}

- Performs the user specified operation

- default value : api

/html/{on|off}/

- default value : off

- When on, displays the schema or wsdl in the html format

/type/{star|orbiter|cyber}/

- default value : star

- type of the database

/endpoints/{integer value}

- default value : 3

- Number of connection strings to be retrieved

/rank/{integer value}/

- default value : 1

- database rank

/constr/{string value}/

- default value : null

- Connection string

/status/{1|0}/

- default value : 1

- connection string status

/format/{json|api|schema}/

- default value :json

- Output format

46

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 37: Orbiter Query Db Connection String Service

// Service name

OrbiterQueryDbConnectionStringService.php

// Service API

/operation/api/

- output a service API listing only

// Service operations

/operation/insert/

- Insert the connection string

/operation/update/

- Updates the rank and status of a given connection string

/operation/delete/

- Deletes the connection string

/operation/schema/

- Displays the schema.

/operation/wsdl/

- Displays the wsdl.

// Service attribute definitions

/operation/{api|schema|wsdl|insert|update|delete}

- default value: api

- Performs the user specified operation

/html/{on|off}/

- default value: off

- When on, displays the schema or wsdl in the html format

/constr/{string value}/

- default value: null

- Connection string

/type/{star|orbiter|cyber}/

- default value: star

- type of the database

/status/{1|0}/

- default value= 1

- connection string status

/rank/{integer value}/

- default value: 0

- database rank

/format/{json|api|schema}/

- default value: api

- Output format

47

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2.6 Task 6. Develop Fault Resilient Data Resource Pathways

Objective: Investigate eliminating a single point of failure for the STAR C++ API bound
codes database query requests.

Summary:

a) Develop a fault resilient CWS4DB capability that will automatically tolerate a failed
OGAS-DAI data resource and satisfy data resource queries from a designated secondary
data resource

b) Incorporate the fault resilient CWS4DB capability into the CWS4DB Data Resource
Node service level

c) Investigate failure modes of the OGSA-DAI data resource

d) Implement several recovery mechanisms including timeout retry, secondary data resource
utilization, and finally local data resource usage in order to develop a robust fault resilient
data resource pathway

We have met our goals for this task in conjunction with this effort. The Principal Investigator,
Dr. Green has defined the fault resilient data resource pathway. We have successfully tested
this proof-of-concept in the Orbiter RESTful infrastructure and we plan to implement this
on Eucalyptus once it is in place at BNL. This proof-of-concept is shown in Figure 38.

Figure 38: Proof-of-Concept Fault Resilient Data Resource Pathway for the Orbiter RESTful
Service Infrastructure

try {

$this->_activeQueryDbs[$dbConstant] =

new mysqli($constArray[0], $constArray[1], $constArray[2], $constArray[3], $this->_dbPort);

} catch {

// Throw a warning to the user and return the existing array if not empty

trigger_error(’Database Connection Warning!’, E_USER_WARNING);

if (!empty($this->_activeQueryDbs)) {

return $this->_activeQueryDbs;

} else {

trigger_error("Orbiter Error, Connect error");

}

}

This will tolerate a failed data resource and satisfy the queries from existing secondary
data resources. The original OGSA-DAI SOAP services were quite rigid with respect to
establishing fault resilient pathways, as the services tend to hang when a data resource
was not available. Our RESTful service design is much more flexible when dealing with
data resource failures. We have the ability to fully configure the number of attempts that
the RESTful service will make based on the available secondary resources. Furthermore, the
warnings are logged such that the resource administrator can extract the required information
form the services logs for further assess the resource reliability.

We have implemented 3 levels of fault resilient mechanism in our services. Our query service
uses Load Balancer to get the top three high ranked active database resources available

48

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

to make a connection. If the first resource fails to connect for some reason it will try
connect second and third resources and keeps them as an array of available data resources
for querying. When the database query fails at one of the resources it will try the other
resources available in the database resources array. The service will trigger an error only
if all the fault resilient mechanisms are failed. The number of database resources can be
changed and can be set in the requesting query service to make it more fault resilient system
when more db resources are available for use.

An example of the developed fault resilient mechanism is shown in Figure 39. This will tol-
erate a failed data resource and satisfy the queries from an existing secondary data resource.

Figure 39: Example of a Fault Resilient Mechanism for Orbiter Services

foreach($dbQueryList as $val) {

$this->_activeQueryDbs = $this->setQueryDb($val);

}

if (!empty($this->_activeQueryDbs)) {

return $this->_activeQueryDbs;

} else {

trigger_error(

"Orbiter Error 111:1425 E_USER_ERROR

Query database connection object list is empty.",

E_USER_ERROR);

}

$connObj = new mysqli($constArray[0], $constArray[1],

$constArray[2], $constArray[3], $this->_dbPort);

if (mysqli_connect_error()) {

trigger_error(

"Database Connection Warning! Can not connect

to Database server.",

E_USER_WARNING);

} else {

$this->_activeQueryDbs[] = $connObj;

}

return $this->_activeQueryDbs;

49

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2.7 Task 7. Develop a Prototype On-Demand Data Resource
Node

Objective: Investigate and prototype the deployment of an on-demand data resource node
to meet the dynamic data demands of the STAR collaboration.

Summary:

a) Investigate a Level 4 deployment of the STAR CWS4DB data resource node

b) Work with the Virtual Workspaces team in deploying and testing the performance of
on-demand data resource nodes

c) Utilize the major features of the Virtual Workspaces infrastructure in achieving this task,
specifically remote deployment and lifecycle management, group management capabilities,
per-client usage tracking and authentication/authorization

d) Work with the STAR BNL team with the deployment and testing of the Sun Grid Utility
Computing group resources

e) Extend the collaboration with the Open Science Grid (OSG)

We have met our goals for this task in conjunction with this effort. Details are discussed in
the following subsections.

Virtual Workspaces and OSG Collaboration

Similar to Task 5 the on-demand data resource node provides the capability of scaling the
STAR collaboration data delivery by utilizing cloud and grid computing resources that are
currently available. The Virtual Workspaces infrastructure and the Sun Grid Utility Com-
puting group resources have been used to investigate the development of the on-demand
node for servicing STAR database resource queries. We have created a table which will have
all the available database resources with type, rank and the status. An authorized user can
add a new db resource to the list by using the Query DB Connection String Service and
the load balancer sets the ranking based on weighted score and make it available to use by
the query service and other services. That way every time a new database resource node is
added to the virtual work stations on demand it will be made available for all the services
to use.

We are following the below listed diagram in support of on-demand resource for the STAR
collaboration as STAR has worked quite closely with the Open Science Grid and the Nimbus
project in providing resources for the collaboration.

We have also been working with the Eucalyptus infrastructure as the DOE Magellan cloud
resources are capitalizing on its capabilities. Drs. Lauret and Green have agreed to setup
Eucalyptus available resources at BNL and Tech-X for further investigating the limitations
of the Virtual Facility described in Figure 40. The following sub-tasks have been undertaken
to complete this task.

50

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 40: Virtual Facility and Open Science Grid Integration Plan

51

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Database Testing and Timings

Using sequences of SQL operations that are recorded from actual STAR DB usage, we eval-
uated database performance under load by timing numerous repetitions of these operations
against local and remote databases. These sequences are shown in Figures 41-46.

We have implemented code to log performance data for each SQL operation in such sequences.
sql profile.php takes the input filename as an argument. It reads the file line-by-line, attempts
to parse each line as a SQL statement, and executes the SQL. It opens a connection to a
local database for logging the queries and also opens a separate database connection for the
timed SQL operations based on the connection statements in the input file.

The query logging uses three database tables. The ‘dataset’ table records the input file name
and assigns it a unique dataset id. The ‘query’ table records distinct query statements per
dataset. The table ‘query log’ records query duration, JSON size and XML size for every
query executed. JSON size and XML size are determined by encoding the query results as
JSON and XML strings and taking the size of those strings. Queries that returned a large
number of rows and columns resulted in a PHP out of memory error when trying to encode
as JSON or XML, so the SQL result set is limited to one million characters prior to encoding.

Automated Resource Load Monitor

This task implemented a basic automated load monitoring system for distributed resources.
The LoadChecker system is built on RESTful Web services written in PHP and a Java client.
The monitor client can use either a local MySQL database connection or Web services that
connect to a remote MySQL host. To monitor a resource such as a server, the client is
run on it at 1-minute intervals using the standard GNU scheduler, cron. It reads activity
statistics from the operating system and MySQL server, and then writes the statistics to a
MySQL database. The client and Web services exchange information using JSON (JavaScript
Object Notation) messages, which are generated and handled using standard PHP JSON and
json.java.org packages. The get resource.php and post stats.php services are RESTful, using
URL parameters to identify the resource being monitored. The post stats.php service also
accepts a JSON structure sent via HTTP POST in order to support sending a larger set of
statistics than would be possible if the values were URL-encoded. LoadChecker thus provides
an automatic, continuous, persistent log of load statistics that is important to support stress
testing and load balancing.

Nimbus and Cloud Integration

The cloud client has been downloaded; Nimbus cloud client has been installed; openssl was
acquired after which access to diverse clouds has to be requested. Then dependencies have
to be gathered and installed on Cyber. Certificates must be created for Nimbus upon which
a p12 file would be created. This file is moved to the .globus directory, which is in the
home directory of the user. The cloud allows access through an RSA public and private
key pair. Those two keys are Cyber’s keys and should be copied to the “.ssh” folder into
the home directory of whoever intends to use the cloud. The said keys can be found in

52

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 41: Overall Database Performance and Timings

53

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 42: Sample SQL Sequences for Database Performance Timings

Figure 43: Timing Results for db-perf-test.txt

Figure 44: Timing Results for offline.auau200.full.sql

Figure 45: Timing Results for offline.dau200.full.sql

54

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 46: Timing Results for offline.pp500.full.sql

/usr/local/nimbus-testing/keys. In that same directory we can figure a file named pass-
word.txt. Inside of that can be found a password relevant to the cloud’s initialization.

Before deploying an image, the cloud requires the user to request a lease first. All com-
mands are located in /usr/local/nimbus-testing/NIMBUS-cloud-client/bin. This is achieved
by typing:

./grid-proxy-init.sh

A Nimbus script could allow the user to perform a myriad of operations such as listing,
upload deploy and delete images. Setting up custom images demands the utilization of Xen
on the machine intended to be used in the creation of the image. After installation of Xen,
subsequent Xen-tools such as Ubuntu, Lenny, Etch (for Debian based system users); Fedora,
SuSe, Mandriva, the Yellow Dog Update Manager (for RPM based systems) also need to be
installed. In addition to installing Xen, a Xen patched kernel has to be run.

Initial user interface for the on-demand data resources has several components utilizing the
YUI Yahoo interface and the Eclipse Rich Client Platform (RCP) that has the capabilities for
managing and running the STAR production job simulations on the available data resources.

55

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

2.8 Task 8. Prototype Pre-Cache Capabilities for Production Job
Workflow

Objective: Prototype Pre-Cache Capabilities for Production Job Workflow.

Summary:

a) Run a site specific test suite of pre-defined data resource node test and perform validation
queries

b) Investigate how to add capabilities for a authenticated and authorized user to invalidate
the auto-caching date resource node query cache so that it can be flushed remotely.

c) Investigate adding the capability for the authenticated and authorized user to invalidate
execution node query caches on a node by node basis or on a entire cluster wide basis.

d) Provide a pathway for an authenticated and authorized user upon configuration of the
CWS4DB system to execute the customizable site specific test suite for pre-caching pro-
duction job query caches

e) Provide this capability also for an existing and configured CWS4DB data resource nodes.

We have met our goals for this task in conjunction with this effort. We have created a web
service OrbiterResourcePreCacheService that is used to pre-cache computational job query
results on each resource node, which runs a star sql file and pre-populates the cache files
at every node level when a resource is added to the resource list. When an on-demand
data resource node is added for a STAR production and run the site specific test suite for
the validation of queries, the pre-cache service will pre-cache the subsequent production run
query results at the each node.

When a request comes in at a local server and if the query result was not found in cached files
list on this requested server and if we set the host to remote and the address to remote server
address, it will look at the pre-cache file directory and will retrieve from the proxy server
that was pre-cached on the server’s hard disk so that the result can be quickly retrieved.

The Orbiter Resource Pre-Cache Service is shown in Figure 47.

56

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 47: OrbiterResourcePreCacheService API

Service Name: OrbiterResourcePreCacheService.php

- Manages the pre-caching

Service attributes:

- /orbiter/service/star/OrbiterResourcePreCacheService.class.php/format/

{XML|JSON}/operation/runprecache/resource/database resource address

- /orbiter/service/star/OrbiterResourcePreCacheService.class.php/format/

{XML|JSON}/operation/flushprecache/resource/database resource address

- Service attribute definitions.

/runprecache/{use this to run the pre-cache}/

- value: on

/flushprecache/{use this to flush the pre-cache}/

- value: on

/resource/{database resource address}/

- value: database resource address

2.9 Task 9. Develop a Customizable Site Specific Test Suite

Objective: Develop customizable site-specific test suite

Summary:

a) Develop tests to validate and verify the performance and data delivery capabilities of the
CWS4DB system

b) Use the information mined from MySQL server query log files generated by STAR pro-
duction and user job queries to test and validate the CWS4DB system and available data
resources

c) Provide the tools necessary for investigating the performance and tuning of specific data
resource nodes

d) Work with our collaborators in determining a customizable site specific test suite to
complete this task

In order to deliver a high quality of service infrastructure, a customizable and site specific
test suite is required to validate and verify the performance and data delivery capabilities
of the CWS4DB system. We have met our goals in conjunction with this task, discussed in
more detail in the following subsections.

Continuous Integration

In conjunction with this task we have installed and maintained phpUnderControl as the pri-
mary tool for ensuring the quality and integrity of Orbiter services and infrastructure. This
tool facilitates the continuous integration of Orbiter code to ensure that changes do not ad-
versely impact other components within the system. phpUnderControl, built upon the Java
CruiseControl, provides build statistics, metrics, test coverage analysis, code browsing, code
quality analysis, automated documentation generation, and unit test execution, which com-
posed a solid foundation for building quality services for the Orbiter SOA. A brief overview
of phpUnderControl functionality is shown below.

57

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

1. ‘Overview’ shows the details like date and time of last build, date and time when it is
last changed and its log entry; Number of Unit Tests passed or failed. It also displays
the PHPUnit PMD rule showing the errors/warnings in the files and PHP CodeSniffer
violation.

2. ‘Tests’ displays the status - whether success or failure and time elapsed for each test.
It also shows how the unit tests and test suites are organized.

3. ‘Metrics’ displays the summary of project metrics as the following

(a) Number of Build Attempts

(b) Number of Broken Builds

(c) Number of Successful Builds, and

(d) Breakdown of Build Types

(e) Scatter Plot of Good and Broken Builds across Time and Date

(f) Unit Coverage

(g) Area Chart of Executable and Covered Tests against Lines of Code and Build

(h) Unit Tests

(i) Area Chart of Executable and Covered Tests against Tests and Build

(j) Test to Code Ratio

(k) Area Chart of Classes, Methods,Test Classes and Methods against Classes or
Methods

(l) Coding Violations

(m) Area Chart of PHPCodeSniffer, PHPUnit PMD and PHPDoc against Violations
and Build

(n) Test Execution

(o) Time-Area chart of Execution time across Builds

(p) Duplicated Code- Lines and Tokens across Builds

4. ‘Coverage’ displays the percentage of Coverage of Lines of Code, Functions/Methods
and Classes in the current directory and colorizes the status based on a legend.

5. ‘Code Browser’ lets user browse the code. It also displays a summary of errors and
notices against each file.

6. ‘Documentation’ generates documentation based on PHPDoc-formatted comments and
the structure of the source code itself. It also categorizes API into the corresponding
packages of source code. It also displays Todo List. The Orbiter API has been de-
veloped using PHPDoc template ‘Earthli’ and has been classified into corresponding
packages the classes belong to. An API for a class includes class description, authors,
version, copyright, link, todo, license, method summary, methods, parameters, and
exceptions. This is illustrated in the figure 48.

7. ‘CodeSniffer’ sniffs PHP files to detect violations of a defined coding standard. It also
displays the summary of PHP CodeSniffer violation and detailed level violations. This
guarantees a high quality code base adhering to the defined standards for the CWS4DB
project.

8. ‘PHPUnit PMD (Project Mess Detector)’ scans code, looks for potential problems and
reports violations of each PMD rule. The PHPUnit PMD displays the Errors/Warnings
across the corresponding files identified based on the rules namely PHPUnit PMD /

58

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

CodeCoverage, PHPUnit PMD / CRAP, PHPUnit PMD / NPathComplexity, PH-
PUnit PMD / CyclomaticComplexity, PHPUnit PMD /TooManyFields, PHPUnit
PMD / ExcessiveMethodLength and PHPUnit PMD / ExcessivePublicCount.

9. ‘PHP-CPD-Copy Paste Detector’ shows the duplication of lines of code in different
files.

10. ‘Changeset’ shows the set of modifications made since the last successful build.

Figure 48: Orbiter phpUnderControl Documentation

The versioned releases and branching implemented in our Orbiter Infrastructure as explained
in detail under Task 2 are built on different builds in Cruise Control. A screen capture of
the same is shown in figure 49. This allows us to manage all of our Orbiter major versions,
ensuring that each release independently passes our testing infrastructure and quality control
measures.

We have developed more than 106 unit tests for Orbiter and about 81 unit tests for CWS4DB
classes and the related infrastructure. These tests ensured the stability of the system as we
continued to add functionality to the Orbiter SOA infrastructure over the course of this effort.
Unit testing in this case examines the core functionality of the Orbiter SOA implementation,
ensuring that individual and atomic functionality is consistent and functions as expected
as the code base evolves over time. In addition to these unit tests we have also developed
a number of service-level tests that test the overall API and expected results from calling
the front-end RESTful services. Integrated with phpUnderControl and its automated testing
through continuous integration, our service-level tests ensured that CWS4DB deployments

59

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 49: Versioning and Branching in PHPUnderControl

60

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

of Orbiter services maintained a stable set of services, exercising the operations of each one
using PHP cURL.

Timing based testing using the latest STAR database snapshot

The stress testing of the CWS4DB infrastructure is done through a series of scripts and files
that simulate STAR production jobs. The script listed in listed in Figure 50 simulates the
STAR reconstruction database access pattern for our development and testing environment.

We set up a server at Buffalo Center for Computational Research that has a large capacity
with very good connectivity that we have used to test the performance of the services. We
ran tests for all the 4 sql files provided against the latest production quality database. We
used the Orbiter SOA services developed over the course of this effort to test the caching,
pre-caching and querying capabilities of the system on this server and were able to retrieve
timings with which to benchmark other deployments. We wrapped the functionality of the
above stress testing script as an Orbiter service that can be accessed through a remote host
for deployed testing capabilities. An example run of the Simulator service on this server is
included in the following pages, exercising the output formats and IP versus DNS lookups.

61

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 50: Script Simulating STAR Production Jobs

<?php

function get_time() {

list($usec,$sec) = explode(’ ’, microtime());

return ((float)$usec + (float)$sec);

}

$start = get_time();

$conn = false;

$cnt = 0;

while ($line = trim(fgets(STDIN))) {

$handled = false;

if (!strncasecmp("connect", $line, 7)) {

// try to parse line as ’CONNECT user@host AS dbuser ON db’

$strarr = split("[\t]+", $line);

if (sizeof($strarr) == 6) {

$user = $strarr[3];

$db = $strarr[5];

$str = $strarr[1];

$ha = split("[@]", $str);

if (sizeof($ha) == 2) {

$host = $ha[1];

echo "Connecting to ".$host." as ".$user."\n";

$conn = mysql_connect($host, $user, "");

if (!$conn) die (’Connection error: ’.mysql_error());

$handled = true;

}

}

} else if (!strncasecmp("use", $line, 3)) {

// try to parse line as ’USE DB dbname’

$strarr = split("[\t]+", $line);

if (sizeof($strarr) == 3) {

$db = $strarr[2];

echo "USE ".$db."\n";

$link = mysql_select_db($db);

if (!$link) {

die("Can’t select DB ".$db);

$handled = true;

}

}

} else if (!strncasecmp("select", $line, 6) || !strncasecmp("show", $line, 4)) {

// process line as query

$result = mysql_query($line);

if (!$result) { echo "Query: ".$line."\nError: ".mysql_error()."\n";

} else {

$rowcnt = 0;

while ($row = mysql_fetch_array($result, MYSQL_NUM)) { $rowcnt++; }

echo "Query result: ".$rowcnt." rows\n";

}

$handled = true;

} else if (!strncasecmp("quit", $line, 4)) {

// disconnect from DB if ($conn) {

if ($conn) {

mysql_close($conn);

$conn = false;

}

$handled = true;

}

if (!$handled) {

echo "\nSkipping line:\n".$line."\n";

$cnt++;

}

}

$elapsed = get_time()-$start;

echo "Total time: ".$elapsed." sec";

?>

62

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

python ./testOrbiterREST.py http://128.205.41.182/orbiter/kdev

/service/webservice/OrbiterSimulatorService.php/operation/

runfile/file//tmp/testfiles/auau7_log.sql.rtf/format/json/cache/on

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1361776

Total query time: 114.83887505531

python ./testOrbiterREST.py http://128.205.41.182/orbiter/kdev

/service/webservice/OrbiterSimulatorService.php/operation/

runfile/file//tmp/testfiles/auau11_log.sql.rtf/format/json/cache/on

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1359417

Total query time: 116.78107690811

python ./testOrbiterREST.py http://128.205.41.182/orbiter/kdev

/service/webservice/OrbiterSimulatorService.php/operation/

runfile/file//tmp/testfiles/auau39_log.sql.rtf/format/json/cache/on

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 117.37054586411

python ./testOrbiterREST.py http://128.205.41.182/orbiter/kdev

/service/webservice/OrbiterSimulatorService.php/operation/

runfile/file//tmp/testfiles/auau200_log.sql.rtf/format/json/cache/on

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 117.68230295181

python ./testOrbiterREST.py http://128.205.41.182/orbiter

/kdev/service/webservice/OrbiterSimulatorService.php/operation

/runfile/format/xml/cache/on/file//tmp/testfiles/auau7_log.sql.rtf

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 2267497

Total query time: 129.42278599739

python ./testOrbiterREST.py http://128.205.41.182/orbiter

/kdev/service/webservice/OrbiterSimulatorService.php/operation

/runfile/format/xml/cache/on/file//tmp/testfiles/auau11_log.sql.rtf

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 2267497

63

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Total query time: 134.40248394012

python ./testOrbiterREST.py http://128.205.41.182/orbiter

/kdev/service/webservice/OrbiterSimulatorService.php/operation

/runfile/format/xml/cache/on/file//tmp/testfiles/auau39_log.sql.rtf

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 2267497

Total query time: 134.59920406342

python ./testOrbiterREST.py http://128.205.41.182/orbiter

/kdev/service/webservice/OrbiterSimulatorService.php/operation

/runfile/format/xml/cache/on/file//tmp/testfiles/auau200_log.sql.rtf

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 2267497

Total query time: 132.66522622108

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau7_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 251.5587079525

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau11_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 252.59035301208

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau39_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 245.11031603813

64

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau200_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 253.29887604713

python ./testOrbiterREST.py http://128.205.41.182

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau7_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 255.44179987907

python ./testOrbiterREST.py http://128.205.41.182

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau11_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 255.52873706818

python ./testOrbiterREST.py http://128.205.41.182

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau39_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 255.93114089966

python ./testOrbiterREST.py http://128.205.41.182

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau200_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

65

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 254.40869903564

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/noop/on/debug/on/file//tmp/testfiles/auau7_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 250269

Total query time: 117.55900597572

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/noop/on/debug/on/file//tmp/testfiles/auau11_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 250263

Total query time: 117.02989602089

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/noop/on/debug/on/file//tmp/testfiles/auau39_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 250238

Total query time: 117.36743593216

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/noop/on/debug/on/file//tmp/testfiles/auau200_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 250250

Total query time: 117.95971107483

python ./testOrbiterREST.py http://128.205.41.182

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

66

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

/operation/runfile/noop/on/debug/on/file//tmp/testfiles/auau7_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 250260

Total query time: 114.50704908371

python ./testOrbiterREST.py http://128.205.41.182

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/noop/on/debug/on/file//tmp/testfiles/auau11_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 250376

Total query time: 115.08740878105

python ./testOrbiterREST.py http://128.205.41.182

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/noop/on/debug/on/file//tmp/testfiles/auau39_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 250293

Total query time: 115.82376503944

python ./testOrbiterREST.py http://128.205.41.182

/orbiter/kdev/service/webservice/OrbiterSimulatorService.php

/operation/runfile/noop/on/debug/on/file//tmp/testfiles/auau200_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 250297

Total query time: 114.05878996849

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/trunk/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau7_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 269.27799105644

67

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/trunk/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau11_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 253.02259516716

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/trunk/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau39_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 253.49148702621

python ./testOrbiterREST.py http://txc02.ccr.buffalo.edu

/orbiter/trunk/service/webservice/OrbiterSimulatorService.php

/operation/runfile/debug/on/file//tmp/testfiles/auau200_log.sql.rtf

RESPONSE:

Number of trials averaged: 1

Total number of queries: 2918

Total size of queries: 1362013

Total query time: 254.53757119179

2.10 Task 10. Write Progress and Final Reports

100% of progress and continuation reports are complete.

3 Products Developed

3.1 Presentations and Publications

In conjunction with this effort we have produced a number of presentations and publications,
listed below. We have attached these presentations and publications in the following pages.

68

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Green, Mark L. “CWS4DB: A Customizable Web Service for Efficient Access to Distributed Nuclear Physics
Relational Databases.” SBIR/STTR Exchange Meeting. September 13-14, 2010, Gaithersburg MD, USA.

Ruby, Catherine L., Green, Mark L., and Miller, Stephen D. (2010) “Orbiter Commander: A Flexible Ap-
plication Framework for Service-Based Scientific Computing Environments,” Grid Computing Environments
Workshop, 2010. GCE’10 Nov. 14, 2010, New Orleans LA, USA.

Green, Mark L. “CWS4DB: A Customizable Web Service for Efficient Access to Distributed Nuclear Physics

Relational Databases.” SBIR/STTR Exchange Meeting. October 24-25, 2011, Gaithersburg MD, USA.

69

PROTECTED CRADA INFORMATION BNL-101061-2013

CWS4DB: A Customizable Web Service
for Efficient Access to Distributed

Nuclear Physics Relational Databases

Headquarters Boulder, CO	

Buffalo, NY	

FY 2008 SBIR Phase II Proposal Award Number: DE-FG02-07ER84757	

Mark L. Green, PI	

Tech-X Corporation, Buffalo Office	

Systems Integration Group	

CWS4DB Project

Tech-X: Mark L. Green (PI), Catherine L. Ruby, Krishna Kantam, Srilakshmi
Ramireddy

Need: As the size of NP data grows and the collaborative nature of HENP experiments
increases, the ability to access differently organized relational databases remotely,
efficiently, and yet in a user-friendly and interoperable manner is becoming very
important.

Partners: Jerome Lauret (STAR project at BNL), Kate Keahey (Nimbus project at
ANL), Doug Olson (Open Science Grid), Alexandre Vaniachine (ATLAS project ANL/
CERN)

DOE Beneficiaries: Nuclear and high energy physics communities, national
laboratories, and collaborative projects

Commercial Beneficiaries: Companies requiring efficient web service access to
distributed relational databases with high-level database and user APIs	

A customizable Web Service for Efficient Access to Distributed Nuclear
Physics Relational Databases

DOE NP Phase I and II – Manouchehr Farkhondeh

Problem Identification
•  The importance of this project comes from the fact that a large fraction of

the ever-growing data generated by Nuclear Physics (NP) experiments is
stored in relational databases. For example:

–  The BNL Relativistic Heavy Ion Collider (RHIC) supports STAR (Solenoidal Tracker at the at
the RHIC) which composed of 52 institutions from 12 countries, with a total of 529
collaborators;

–  relational databases (such as Condition databases, Calibration databases, and Geometry
databases) are heavily used in the STAR experiment;

–  while accessing data in such databases is convenient and available for local users who are
familiar with a particular database, the situation becomes more complicated when the
databases are distributed and heterogeneous.

•  Tech-X therefore proposes a system to
overcome the outlined challenges by bridging
relational databases with high-level APIs
through Web services.

–  In particular, the distributed and heterogeneous nature
of the databases will be addressed by creating Web
services in the Orbiter Federation Service Oriented
Architecture (SOA), which provides mechanisms
coordinating access to diversified data resources
through ReST (Representational State Transfer)
services, caching, authentication, and authorization.

CWS4DB Technical Objectives
•  Tech-X proposes to develop a customizable Web service for efficient

access to distributed NP databases. The proposed system will consist of:
–  a generic Web service for accessing arbitrary distributed relational databases,
–  a reference client implemented at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven

National Laboratory (BNL), for the Solenoidal Tracker at the at the RHIC (STAR) experiment,
and

–  a tool for creation of the high-level and domain-specific clients required by particular
applications.

•  The Phase II objectives include:
–  Take into account what was learned from the research in Phase I and extend the CWS4DB

prototype into a production-quality, load-balanced, auto-caching, grid-enabled, fault-tolerant,
and on-demand system.

–  Use a flexible work plan involving a separate
piece of technical functionality that can be
implemented in a way that can be exercised
in the STAR computing environment, yet
developed in a general way for application’s
from other NP projects.

–  The ultimate goal is to produce a set of
software tools and services that can be
easily adapted by the NP application
developer.

PROTECTED CRADA INFORMATION BNL-101061-2013

CWS4DB Tasks

•  Task 1: Determine CWS4DB System and Load Balancing Additional
Requirements and Properties (Tech-X & BNL)

–  Extend the Phase I developed requirements and properties and continue prototype work with
our partners.

•  Task 2: Design and Implement Tiered Deployment Capabilities (Tech-X)
–  Develop a tiered deployment based protocol for the CWS4DB system.

•  Task 3: Design and Implement Auto-Caching Infrastructure (Tech-X & BNL)
–  Provide a sophisticated auto-caching mechanism in order to increase the effective system

performance based on work with our partners.

•  Task 4: Enable Multi-Virtual Organization Role-Based Capabilities (Tech-X)
–  Develop the CWS4DB infrastructure required for user-friendly management and caching

capabilities.

•  Task 5: Develop Dynamic On-Demand Data Resource Access (Tech-X)
–  This on-demand service will provide a STAR MySQL database instance using the Virtual

Workspaces infrastructure, Virtual Machine Computing resources, and investigate Grid
deployments.

CWS4DB Tasks Continued

•  Task 6: Develop Fault Resilient Data Resource Pathways (Tech-X)
–  Investigate eliminating a single point of failure for the STAR C++ API bound codes database

query requests.

•  Task 7: Develop a Prototype On-Demand Data Resource Node (Tech-X &
BNL)

–  Investigate and prototype the deployment of a on-demand data resource node to meet the
dynamic data demands of the STAR collaboration.

•  Task 8: Prototype Pre-Cache Capabilities for Production Job Workflow
(Tech-X & BNL)

–  We will provide a pathway for an authenticated and authorized user upon configuration of the
CWS4DB system to execute the customizable site specific test suite for pre-caching
production job queries.

•  Task 9: Develop a Customizable Site Specific Test Suite (Tech-X)
–  In order to deliver a high quality of service infrastructure a customizable and site specific test

suite is required to validate and verify the performance and data delivery capabilities of the
CWS4DB system.

Project Management
•  Subversion Repositories

–  Multiple readers and committers
•  Redmine, Trac, and Wiki Sites

–  Integrates ticketing system, repositories, milestones, and roadmap
•  Eclipse Integrated Development Environment

–  Tracks code modifications based on Redmine and Trac tickets
•  Zend Studio, Development Server, and Server

–  Commercial PHP development and enterprise level server
•  Content Management System (Drupal)

–  Offsite collaborator access to project information
•  Knowledgebase Manager

–  Coding best practices, design patterns, systems and integration
information

•  MacA&D Developer

–  Analysis and Design (A&D) with requirements management and
use case development

•  dotProject
–  Open source PHP based project management software

Project Status

PROTECTED CRADA INFORMATION BNL-101061-2013

CWS4DB Database Query
Caching and Optimization

•  Network bandwidth is important and
depends on the last mile normally

•  Database server load is minimal
•  Investigate the database service

payload size
•  Wrote a custom ReSTful PHP

database service with a JSON
(JavaScript Object Notation) payload
to compare with the XML payload

CWS4DB Database Query Caching and
Optimization

•  Log performance data for
each SQL operation

•  Calculate and log JSON and
XML payload size

•  On average over a dataset the
equivalent JSON payload is
8.8 – 10.1 times smaller

•  In general an order of
magnitude lower bandwidth
loading is required with the
JSON PHP service

CWS4DB Load Balancing Design CWS4DB Proxy Implementation

PROTECTED CRADA INFORMATION BNL-101061-2013

CWS4DB Cloud On-Demand Resources
•  Tech-X has installed Nimbus and utilized the Nimbus client with

the available science clouds in support of the STAR on-demand
database service.

–  The Nimbus infrastructure provided limited upload/download bandwidth
consistently.

–  The required STAR image is relatively large due to the size of the MySQL
database.

–  We investigated several ways of populating the STAR database and tested
query performance with our ReSTful PHP JSON database service
successfully.

–  The Open Grid Services Architecture - Database Access and Integration
(OGSA-DAI) XML database services could not be loaded on the Nimbus
science cloud due to memory constraints.

–  We are still investigating utilizing Eucalyptus and the cloud enabled MySQL
database Drizzle

Nimbus components
(Keahey, ANL)

CWS4DB Summary

File Name : star.pp500.full.sql	

https://cyber.txcorp.com/orbiter/service/star/OrbiterStarSimulatorService.php	

/cache/off/	

/format/XML/	

/host/local/	

/file//tmp/testfiles/star.pp500.full.sql/	

/address/http://64.240.154.24/orbiter/service/star/	

Result:	

Number of trials averaged: 1	

Total number of queries: 6549	

Total size of queries: 38,926,201 bytes	

Total query time: 76.9 seconds	

Total query rate: 85.1 query/second.	

CWS4DB Summary

New class files and services developed to accomplish the above tasks:	

-- orbiterAutoLoader.php (150)	

-- OrbiterAttributeParser.class.php (147)	

-- OrbiterCacheFileService.php (723)	

-- OrbiterCacheManager.class.php (236)	

-- OrbiterDatabaseConnection.class.php (212)	

-- OrbiterErrorHandler.class.php (509)	

-- OrbiterErrorHandlerMessageService.class.php (526)	

-- OrbiterMailer.class.php (187)	

-- OrbiterMasterSlaveDatabaseValidationService.class.php (439)	

-- OrbiterQueryDbConnectionStringStarService.class.php (467)	

-- OrbiterQueryDbLoadBalancerStarService.class.php (399)	

-- OrbiterRestAuth.class.php (655)	

-- OrbiterServiceAttributes.class.php (132)	

-- OrbiterServiceLogger.class.php (234)	

-- OrbiterStarQueryService.class.php (530)	

-- OrbiterStarSimulatorService.php (489)	

Services developed:	

-- OrbiterCacheFileService.php	

-- OrbiterQueryDbConnectionStringStarService.php	

-- OrbiterQueryDbLoadBalancerStarService.php	

-- OrbiterQueryDBService.php	

-- OrbiterStarQueryService.php	

-- OrbiterStarSimulatorService.php	

Unit Test scripts developed:	

-- OrbiterAttributeParserStubTest.php	

-- OrbiterAttributeParserTest.php	

-- OrbiterServiceTestSuite.php	

-- OrbiterAutoLoaderTest.php	

-- OrbiterCacheManagerFileTest.php	

-- OrbiterCacheManagerTest.php	

-- OrbiterDatabaseConnectionMasterTest.php	

-- OrbiterDatabaseConnectionSlaveTest.php	

-- OrbiterDatabaseConnectionTest.php	

-- OrbiterDataProcessManagerTest.php	

-- OrbiterErrorHandlerEmailTest.php	

-- OrbiterErrorHandlerErrorDetailedTest.php	

-- OrbiterErrorHandlerLogTest.php	

-- OrbiterErrorHandlerNotifyTest.php	

-- OrbiterErrorHandlerSampleTest.php	

-- OrbiterErrorHandlerShowContentsOutputTest.php	

-- OrbiterMailerTest.php	

-- OrbiterQueryDbLoadBalancerStarServiceTest.php	

-- OrbiterRestAuthTest.php	

-- Services_JSONTest.php	

CWS4DB Continuous
Integration

PROTECTED CRADA INFORMATION BNL-101061-2013

CWS4DB API
Documentation

STAR Commander Implementation

Future Directions

•  Integrate On-Demand Application
Resources (O-DAR) within the
Open Science Grid.

•  This is a new type of OSG virtual
facility that can be used for cycle
scavenging usage on hardware
that is idle or migrated out of a
production environment and might
not even have OSG stack installed.

•  It can represent a lightweight
method of deploying OSG worker
nodes and building more capacity
for scientific application usage.

•  Will support NP, HEP, Neutron
Science, etc.

Orbiter Federation SOA via ReSTful
Services

•  Orbiter Infrastructure serves capabilities via ReSTful web
services

•  Services are standards-based and are scalable, reusable,
and extensible

•  Robust security standards
using access keys and
private-key authentication

•  Reusable to ensure
consistent and reliable
Quality of Service

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Multitier Portal Architecture
(MPA)

•  Framework for delivering capabilities to thin- and thick-
clients using the Orbiter Federation ReSTful SOA

•  Flexible and re-usable architecture for developing
capabilities for thin web clients and thick local clients

•  Comprised of four tiers:
•  Orbiter Federation SOA

•  Thin-Client Applets
•  Orbiter Pilot

•  Thin-Client Portlets
•  Orbiter Commander

•  Thick-Client Applications
•  Orbiter Collective

•  Thick-Client Eclipse IDE

Orbiter Pilot – Thin Client

•  Built on top of the Orbiter Federation
SOA

•  Tier II of the Orbiter Multitier Portal
Architecture

•  Accessible to users with accounts and
internet access (via a web browser)

•  Build upon the services provided by
the Orbiter SOA infrastructure

•  Capabilities are seamlessly integrated
using these well-defined ReSTful web
services

Orbiter Commander – Thick Client

•  Build upon the services
provided by the Orbiter
Federation SOA infrastructure

•  Allows users to run complex
simulations or computationally-
intensive tasks on their local
machines, relieving Quality of
Service concerns on web
service providers

•  Built on top of the Orbiter Federation SOA
•  Integrates Orbiter Pilot
•  Tier III of the Orbiter Multitier Portal Architecture
•  Run locally on user work stations or personal computers
•  Uses Eclipse RCP (Rich Client Platform) to deliver a robust and

powerful GUI to the end user, also allows Commander to integrate
with other local resources like e-mail, the file system, and local
applications.

Orbiter Commander – Thick Client
(continued)

•  Atomic capabilities are provided as modules that can be
installed as needed from a central module repository

•  The Orbiter Federation ReSTful SOA provides robust access to
diverse capabilities, such as:
•  Multi-threaded streaming downloads of

repository files
•  Live status monitoring of the beam
•  Slideshows of instrument application

screenshots
•  Organization of modules into “Suites”

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Collective
 (future capabilities)

•  Modules will be continuously added to Commander to provide
new capabilities, including:
•  A collaboratory providing live chat and data sharing

capabilities
•  Opportunistic file slicing to support the retrieval and

management of very large data sets
•  Real-time and offline scientific data visualization capabilities
•  Integration with other open-source tools such as data

analysis and workflow management for computational, data
movement, and visualization jobs

•  Support for 3rd party module contributions as well as user
integrated applications (MPA Tier IV Orbiter Collective)

Orbiter Federation SOA:
Python Client Service Access Example

#!/usr/bin/python	

import os, sys, base64, hmac, commands, time	

from hashlib import sha1 as sha	

from urllib import urlencode	

from urllib import urlopen	

from urllib import quote_plus	

myhome = os.environ.get('HOME')	

os.environ['TZ']='GMT'	

time.tzset()	

idfile = open(myhome + "/.orbiter/my.id")	

ACCESS_KEY = idfile.read().strip()	

idfile.close()	

keyfile = open(myhome + "/.orbiter/user.key")	

PRIVATE_KEY = keyfile.read()	

keyfile.close()	

URI = sys.argv[1]	

EXPIRES = str(int(time.mktime(time.localtime(time.time()+60))))	

str = URI + '/OrbiterAccessKeyId/' + ACCESS_KEY + '/Expires/' + EXPIRES	

SIGNATURE = base64.b64encode(hmac.new(PRIVATE_KEY, str, sha).digest()).strip()	

print urlopen(str + '/Signature/' + SIGNATURE, params).read()	

Related Publications
•  Lynch, V. E., Cobb, J. W., Green, M. L., Kohl, J. A., Miller, S. D., Ren, S., Smith, B.,

Vazhkudai, S. S.; “Experience with Remote Job Execution”, NOBUGS 2008 Conference,
Australian Nuclear Science and Technology Organization (ANSTO), Sydney, Australia, 3-5
November 2008 in proceedings.

•  Green, Mark L.; Alexander, David A.; Pundaleeka, Roopa; Matykiewicz, James. "Automatic
Certificate Based Account Generation and Secure AJAX Calls in a Grid Portal", Grid
Computing Environments Workshop, 2008. GCE’08 Volume , Issue , 12-16 Nov. 2008 Page
(s):1 - 8 DOI 10.1109/GCE.2008.4738444

•  Green, Mark L, Miller, Stephen D, Vazhkudai, Sudharshan S, Trater, James R; “Doing Your
Science While You’re in Orbit”, International Conference on Neutron Scattering 2009,
Knoxville, TN, 3-7 May 2009. Submitted to Journal of Physics Conference Series.

•  Miller, Stephen D., Herwig, Kenneth W., Ren, Shelly, Vazhkudai, Sudharshan S., Jemian,
Pete, Luitz, Steffen, Salnikov, Andrei A., Gaponenko, Igor, Proffen, Thomas, Lewis, Paul,
Green, Mark L.; “Data Management and Science at DOE BES User Facilities - Past, Present,
and Future”, SciDAC 2009, San Diego, CA, 14-18 June 2009.

•  Green, Mark L. and Miller, Stephen D. (2007) “Multitier Portal Architecture for Thin- and Thick-
client Neutron Scattering Experiment Support.” Grid Computing Environments (GCE)
workshop, Nov. 11-12, 2007, Reno, NV, http://casci.rit.edu/proceedings/gce2007 .

•  Green, Mark L., Alexander, David, Pundaleeka, Roopa, and Matykiewicz, James (2008)
“Automatic Certificate Based Account Generation and Secure AJAX Calls in a Grid Portal.”
Grid Computing Environments Workshop, 2008. GCE '08, Nov. 12-16, 2008, pages 1 – 8,
Austin, TX

Related Posters
•  Green, Mark L., Miller, Stephen D., Ren, Shelly X., Peterson, Peter F.; “Scalable Web Services

for Experiment Repository Virtual File System Access”, NOBUGS 2008 Conference, Australian
Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia, 3-5 November
2008.

•  Green, Mark L., Miller, Stephen D., Cobb, John W., Trater, Jim R.; “Enlightened Cybersecurity
to Enable Collaborative Research Using Virtual Organizations”, NOBUGS 2008 Conference,
Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia, 3-5
November 2008.

•  Lynch, V. E., Cobb, J. W., Green, M. L., Kohl, J. A., Miller, S. D., Ren, S., Smith, B., Vazhkudai,
S. S.; “Experience with Remote Job Execution”, NOBUGS 2008 Conference, Australian Nuclear
Science and Technology Organisation (ANSTO), Sydney, Australia, 3-5 November 2008.

•  Miller, S.D., Kohl, J.A., Vazhkudai, S.S., Green, M.L.; “NSSD Neutron Science Portal
architecture”, NOBUGS 2008 Conference, Australian Nuclear Science and Technology
Organisation (ANSTO), Sydney, Australia, 3-5 November 2008.

•  Green, Mark L, Miller, Stephen D, Vazhkudai, Sudharshan S, Trater, James R; “Doing Your
Science While You’re in Orbit”, International Conference on Neutron Scattering 2009 (ICNS
2009), Knoxville, TN, 3-7 May 2009.

•  Miller, Stephen D., Herwig, Kenneth W., Ren, Shelly, Vazhkudai, Sudharshan S., Jemian, Pete,
Luitz, Steffen, Salnikov, Andrei A., Gaponenko, Igor, Proffen, Thomas, Lewis, Paul, Green,
Mark L.; “Data Management and Science at DOE BES User Facilities - Past, Present, and
Future”, SciDAC 2009, San Diego, CA, 14-18 June 2009.

PROTECTED CRADA INFORMATION BNL-101061-2013

Related Presentations

•  Green, Mark L. and Miller, Stephen D.; “Orbiter Service Oriented Architecture at SNS”, DANSE
Developer Meeting, CalTech, Pasadena, CA, 24-27 August 2008.

•  Green, Mark L; “A Multi-tiered Portal Architecture Overview: Emphasizing the Orbiter Thick-
client Tier”, NOBUGS 2008 Conference, Australian Nuclear Science and Technology
Organisation (ANSTO), Sydney, Australia, 3-5 November 2008.

•  Green, Mark L.; “A Service Oriented Architecture for the SNS”, DANSE Developer Meeting,
CalTech, Pasadena, CA, 15 December 2008.

•  Green, Mark L. and Miller, Stephen D.; “Demonstration of the Orbiter Service Oriented
Architecture at SNS”, DANSE Developer Meeting, CalTech, Pasadena, CA, 25-29 January
2009.

•  Miller, S.D. and Green, Mark L.; “Toward Federated Services and Infrastructure for SNS
Researchers”, Composing Collaboratories Meeting, Chicago, IL, 24-26 February 2009.

•  Green, Mark L.and Lauret, Jerome; “STAR & Virtualization, looking beyond: Integrating
Scientific, Grid, and Cloud Computing Infrastructures”, Open Science Grid All Hands Meeting,
Virtual Technology Workshop, LIGO Livingston Observatory, Louisiana, 2-5 March 2009.

•  Miller, S.D. and Green, Mark L.; “Current and Future Data Intensive Computing at DOE BES
User Facilities”, Workshop on Enabling Data-Intensive Computing: from Systems to
Applications, Pittsburgh, PA, 30-31 July 2009.

Sponsored Workshop

•  Green, Mark L.; “Orbiter Workshop for DANSE Project Integration with SNS”, Oak Ridge
National Laboratory, Spallation Neutron Source, JICS Auditorium, Oak Ridge, TN, 30
April 2009 – 1 May 2009.

For More Information
Contact:"

Mark L. Green, Vice President, Systems Integration Group"

716-204-8690"

mlgreen@txcorp.com"

http://www.txcorp.com"

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Commander: A Flexible Application
Framework for Service-Based Scientific Computing

Environments
Catherine L. Ruby and Mark L. Green

Systems Integration Group
Tech-X Corporation

Williamsville, New York 14221
Email: clruby@txcorp.com, mlgreen@txcorp.com

Stephen D. Miller
Spallation Neutron Source
Oak Ridge National Lab

Oak Ridge, Tennessee 37831-6475
Email: millersd@ornl.gov

Abstract—Gateway computing environments face several chal-
lenges in providing robust, scalable, and sustainable capabilities
to a wide range of users. Principles of encapsulation and cohesion
have been applied in emerging trends of application framework
development, where modular designs and abstraction layers allow
these systems to remain flexible and agile as requirements evolve
over time.

Orbiter Commander is a modular and extensible applica-
tion framework that leverages the Orbiter Federation Service
Oriented Architecture to deliver fast and secure capabilities
in an Eclipse RCP desktop application. Commander provides
suites of modules that can be seamlessly delivered to end users
on multiple platforms, enabling rapid component development
through a flexible design and well-defined extension points. This
paper presents our collaboration with the Spallation Neutron
Source Neutron Experiment and Theory Hub (NExTHUB) and
the Solenoidal Tracker at the at the RHIC (STAR) experiment,
two suites of capabilities tailored to serve the needs of users
at Oak Ridge National Laboratory and Brookhaven National
Laboratory.

Index Terms—Gateway Computing Environments, Graphical
User Interfaces, Application frameworks, Scalability, Reusability,
Client-server architectures, Integrated Development Environ-
ments, SOA.

I. INTRODUCTION

Best practices in software engineering have trended toward
the development of application frameworks as systems grow
in size and complexity. That is, principles of cohesion and
encapsulation from Object Oriented Programming (OOP) have
been leveraged to produce problem-solving environments that
promote the reuse of a method of solving a problem, rather
than the reuse of specific solutions. Application frameworks
organize their capabilities in well-defined abstraction layers
and provide points for extending functionality for future devel-
opment. These structured frameworks strive to reduce software
costs by minimizing design, development, and testing time.

Framework-based development is becoming increasingly
common in industry today. The success of Apple’s iPhone
Developer Program [1] is an example of the popularity and
commercial viability of this model. Apple’s flexible API is
used to provide a wide range of applications, allowing the

users of Apple’s hardware to customize their devices for their
individual use. Google’s Android [2] uses a similar model.
By allowing modular content to be produced at-will by third-
party developers, Apple and Google can focus their efforts on
maintaining their infrastructure while ensuring that the user-
visible capabilities are driven by popular demand.

Application frameworks are becoming increasingly com-
mon among gateway computing environments as well. These
environments must address several challenges as they inte-
grate disparate capabilities and technologies across distributed
systems and deliver these capabilities to a wide variety of
users across many scientific disciplines. These environments
must also deliver these services securely while producing
scalable and maintainable implementations. Framework-based
development mitigates many of these challenges by promoting
component reuse and abstraction layers in order to remain
agile in response to ever-changing requirements. Initiatives
such as the Open Grid Computing Environments (OGCE) [3]
and the GridSphere Project [4] use these methodologies to
produce frameworks for gateway computing environments [5].

This paper presents Orbiter Commander, an Eclipse Rich
Client Platform (RCP) [6] desktop application framework.
Commander provides a robust and highly customizable user
interface built on the Orbiter Federation Service Oriented
Architecture (SOA) [7], [8], while also providing the flexibility
for offline computing and integration with other local applica-
tions. The following section discusses the Orbiter Federation
SOA and how it provides robust services to support Com-
mander. Section 3 discusses the Multitier Portal Architecture
(MPA) [9], the architecture that serves as the foundation of
the Commander framework. Section 4 describes the design of
the Commander framework and its modular capabilities that
support flexibility and rapid component development. Sections
5 and 6 present Commander’s NExTHUB and STAR Suites,
two sets of capabilities that support science at Oak Ridge
National Lab and Brookhaven National Lab. Section 7 includes
related work, and section 8 presents conclusions and future
directions.

PROTECTED CRADA INFORMATION BNL-101061-2013

II. ORBITER FEDERATION SOA

Commander is built on a three-tier client-server architecture
consisting of a Data Tier, Logic Tier, and Presentation Tier.
These tiers support scalability and flexibility by partitioning
system responsibilities and providing abstraction layers with
well-defined interfaces [10]. The Data and Logic Tiers are
represented by Orbiter Federation, a Service Oriented Ar-
chitecture (SOA) that provides functionality through remote
services.

Orbiter’s MySQL [11] database uses master/slave replica-
tion to ensure fault-tolerance and reliability. This database
holds the basic functional data for Orbiter, including service
logs, user records, and user certificates. Using its database Or-
biter provides federated user access and identity management,
as well as data for additional functionality such as virtual file
management and resource monitoring.

Orbiter services are implemented as Representational State
Transfer (RESTful) [12] web services that deliver functionality
through a well-defined API. These services employ robust
security standards including SSL [13] and signed requests that
ensure client identities, the integrity of their RESTful calls, and
the privacy of their transmissions. An overview of the Orbiter
Federation SOA is featured in Figure 1.

At the time of this writing, Orbiter provides 27 services
implemented as 66 PHP [14] classes that connect to the Data
Tier to provide functionality to their clients. Service calls to
Orbiter Federation SOA use the following format:

https://{ServiceProvider}/{ResourceAddress}/{Attributes}
/{ID}/{ExpirationTime}/{Signature}

ServiceProvider:The service provider that hosts the Orbiter
Federation SOA services.
ResourceAddress: The service endpoint, implemented as a
PHP service stub and underlying object oriented implementa-
tion.
Attributes: The arguments to the service, using “/” separators.

Fig. 1. Orbiter SOA Overview

ID: The requestor’s Orbiter Access Key ID. This unique
identifier binds a service request to a registered Orbiter user.
ExpirationTime: The expiration time for the service request
in GMT epoch time (seconds).
Signature: The digital signature of the request.

The last three elements of an Orbiter service request are
what ensure the security of Orbiter service transactions. Users
are provided with an RSA [15] private key upon registering
with the system, which is used to digitally sign their requests1.
Signatures are calculated on the request’s canonical string
resource identifier, which includes the hostname, resource
address, attributes, Orbiter access key identifier, and expiration
time. The signature is appended to the end to complete the call.
Each Orbiter RESTful POST operation is signed in a similar
manner ensuring the POST data integrity.

This method of signing Orbiter service requests ensures the
identity of the client as well as the integrity of the data. Orbiter
Federation services use the RSA private key bound to the given
Orbiter access key id to re-sign the request, comparing the
provided signature with the calculated one. If these signatures
don’t match then Orbiter rejects the call outright, and will
also reject a call that arrives more than 60 seconds2 after the
client-provided expiration time. Because the full service call
including the timestamp is included in both the client-side and
server-side calculation of the signature, a malicious third party
cannot alter or replay a captured message as an authorized
user.

These security measures, along with the use of SSL for
secure communications, has allowed the Orbiter Federation
SOA to pass the Oak Ridge National Lab security audit for
usage and deployment at their site. These measures address 8
of the 9 top security threats facing web services as identified by
Web Services Interoperability Organization [17], [18], which
include:

Message alteration: Attackers cannot alter an Orbiter re-
quest without breaking the RSA SHA hash signature. Orbiter
will reject a request that does not match canonical string signed
resource identifier for the specified Orbiter access key ID.

Loss of confidentiality: The SSL protocol ensures that
Orbiter service transactions are handled privately and provides
transport-level encryption.

Falsified messages: Secure Orbiter services cannot be
reached without a signed canonical string resource identifier
that matches the signature for the specified Orbiter Federation
SOA resource address.

Man in the middle: The SSL protocol prevents an attacker
from reviewing requests and responses send securely between
the Orbiter Federation SOA web services and their clients.

Principal spoofing: The Orbiter infrastructure is the only
provider of valid Orbiter access key identifiers and RSA
private keys that are authorized to use Orbiter Federation SOA
secure web services.

Forging claims: Attackers cannot create valid Orbiter Fed-

1Signatures are produced using HMAC SHA [16] encoding.
2This value is configurable on the client side and has per-request granularity.

PROTECTED CRADA INFORMATION BNL-101061-2013

eration SOA service requests without obtaining an Orbiter ac-
cess key identifier and valid RSA private key from the Orbiter
Federation SOA authentication/authorization infrastructure.

Replay of message: Attackers cannot repeat a RESTful
request to secure Orbiter Federation services, as subsequent
identical requests will be rejected. Attackers cannot alter
the user-provided expiration time without breaking the RSA
signature.

Replay of message parts: An Orbiter RESTful service
request is not complete without a valid signature that is applied
to all other message parts. Attackers cannot construct a new
request from any part of a previous request without altering
the service request canonical string resource identifier and
generating a valid signature.

Denial of service: The denial of service propensity is
greatly reduced by the listed security measures in place at the
current time within the Orbiter Federation SOA. Furthermore,
more specific measures are planned which will ban specific
offending IP addresses to further reduce the threat.

The Orbiter Federation SOA is able to provide these security
measures without a significant impact on quality of service
or turnaround time. An “empty” service with full validation,
authorization, and connection to the underlying data layer has
been timed at 1x10−6 seconds. The average Orbiter Federation
full service call has been observed to take roughly 2x10−2

seconds to complete. The Orbiter Virtual File System (VFS),
built on Orbiter Federation services, has fielded 31.8 million
of these secure service requests since February of 2010.

The flexible and secure infrastructure of the Orbiter Feder-
ation SOA allows it to provide robust Software-as-a-Service
(SaaS) capabilities to its clients. Orbiter is capable of providing
complex objects, dynamic charts, raw data, and data files,
forming a solid foundation of valuable resources upon which
end-user interfaces can be built. These services enable the
Multitier Portal Architecture, a layered approach to building
scalable and robust end-user applications. This architecture is
discussed in the next section.

III. MULTITIER PORTAL ARCHITECTURE

The Multitier Portal Architecture (MPA) implements the
Presentation Tier of Orbiter’s three-tier client-server architec-
ture. The MPA addresses challenges in providing scalable and
sophisticated user interfaces by using the Orbiter Federation
SOA to build increasingly complex and customizable appli-
cations. This layered approach maximizes the reuse of the
developed infrastructure and services in successive tiers. An
overview of the MPA is included in Figure 2.

Tier I of the MPA is implemented by the Orbiter Federation
Service Oriented Architecture and thin-client applets that
utilize the portal server for file transfers, visualization caching,
and file meta-data transfers. This browser-based thin-client
applet allows lightweight user access to Orbiter Federation
services.

Orbiter Pilot implements tier II of this architecture, provid-
ing a thin-client and portlet layer of the MPA for accessing
Orbiter services. Pilot provides a number of capabilities such

!"#$%&'%($)"*#$%+#,#$-./0%1(2%

!"#$%&3'%!4"56%78"#0*%($)"*#$%7/88#5.9#%

!"#$%&&&'%!4"56%78"#0*%($)"*#$%7/::-0,#$%

!"#$%&&'%!4"0%78"#0*%($)"*#$%;"8/*%

1<1%=-9->)-?#,%

2@@8#*%;/$*-8%1#$98#*?%

1#$9"5#?%

;/$*8#*?%

;/$*8#*?%

A/5-8%

2@@8"5-./0?%

B#:/*#%

1#$9"5#?%

A/5-8%

C-*-%7-54#%

D0*#$@$"?#%

C#9#8/@:#0*%

D:)#,,#,%E%

C#9"5#%

C#9#8/@:#0*%
B"54%

78"#0*%

;8-F/$:%

2@@8"5-./0%

+$-:#G/$6?%
A-0HI-H#%

&CD%

Fig. 2. Multitier Portal Architecture

as a dashboard for reviewing overall system usage and services
for virtual file system browsing and downloads. A screenshot
of the Orbiter Pilot dashboard is featured in Figure 3.

Orbiter Commander implements tier III of this architecture
by providing a sophisticated desktop application to end-users.
Like in the lower tiers of the MPA Commander utilizes the
Orbiter Federation SOA to provide services to end users, while
providing the capability for offline computing and integration
with other local desktop applications. Commander implements
its capabilities as modular components that produce a highly
customizable plug-and-play end-user application.

The flexible and modular framework provided by Orbiter
Commander and the underlying Orbiter Federation SOA en-
ables tier IV. This tier, the Orbiter Collective, is a collaboratory
for sharing information and data and for applying Orbiter
capabilities in new ways. That is, Commander’s growing
toolkit and well-defined extension points allow for the rapid
development of new Commander capabilities either in-house

Fig. 3. Orbiter Pilot Dashboard

!"##$%&'()*+&$,')-.,')

!"##$%&'()
/"&01')

!"##$%&'()
/"&01')

!"##$%&'()
/"&01')

-'20(')3'-4)

Commander
!"##$%&'()
/"&01')

!"##$%&'()
/"&01')

!"##$%&'()
/"&01')

50,"#$62)$%&)*7'(89%.6$,'&)*+&$,'7)

Fig. 4. Orbiter Commander Framework Overview

or alternatively by third-party developers. In addition, tools
to facilitate integrating the flexible and easy-to-use Orbiter
Federation services into a variety of applications, such as
workflow managers, will allow Orbiter capabilities to be acces-
sible to a wide range of users. This collection of sophisticated
Federation services and Commander modules will facilitate
an ever-growing set of capabilities that will make the Orbiter
infrastructure highly attractive to a broad range of potential
users.

Orbiter Commander, and its flexible architecture that en-
ables the Orbiter Collective, is discussed in the following
section.

IV. COMMANDER FRAMEWORK

Commander is a thick-client Java [19] desktop application
supported by the Orbiter Federation SOA and its underlying
Data Tier. It is built on the Eclipse Rich Client Platform (RCP),
an architecture that allows a robust and powerful Graphical
User Interface (GUI) to be developed much more rapidly
than through traditional Swing [20] libraries. Eclipse RCP
is built on the Eclipse Equinox runtime, an implementation
of the OSGi specification [21] for modular Java applications.
Eclipse RCP’s embedded product branding, user help system,
and Standard Widget Toolkit (SWT) [22] provide for a so-
phisticated interface and a rich overall user experience, and the
underlying OSGi standard allows for the fruits of development
initiatives to be interoperable and easily integrated into other
applications.

Commander’s capabilities are implemented as discreet func-
tional components called modules. A module is an OSGi-
compliant bundle in the form of an Eclipse plug-in that inherits

functionality from the Commander application. Modules en-
capsulate the implementation of a specific functional compo-
nent and are completely independent from other Commander
modules. Related capabilities are grouped together in suites
that fulfill the needs of a particular project or initiative.

The Commander framework, on the other hand, takes re-
sponsibility for only the most basic capabilities of the appli-
cation, such as providing the main application window and
launching and managing individual modules at runtime, while
making no assumptions about the behavior of a particular
module. Commander defines a set of plug-in extension points
for defining Commander-compliant suites and modules. Super-
classes that perform much of the basic module functionality
enhance these extension points, and a growing set of utilities
and visual widgets provide a solid base for rapidly develop-
ing sophisticated Commander modules. An overview of this
framework is included in Figure 4.

The flexibility introduced by this design allows Comman-
der to adopt a plug-and-play paradigm that yields a highly
customizable product. That is, modules can be dynamically
introduced into the Commander application without requiring
the core application to be adjusted, or even rebuilt, to handle
them. Their functional independence allows users to choose
which capabilities they will integrate to enhance their applica-
tion, yielding a product that can be easily customized to suit
individual requirements. The Commander interface and a few
of its modules are shown in Figures 5 and 6.

Commander’s implementation as a desktop application al-
lows it achieve the best of both worlds in terms of online and
offline computing. The Orbiter Federation SOA on its Logic
Tier ensures secure web service interaction and allows users

PROTECTED CRADA INFORMATION BNL-101061-2013

!
Fig. 5. Commander’s Rich Interface via Eclipse RCP

Fig. 6. Commander Modules and Suites

to fully leverage the resources available via the Orbiter infras-
tructure. However, because Commander is accessed locally,
offline capabilities can be provided when networks are poor
or unavailable, such as while users are traveling or working
remotely on slow connections. That is, service calls can be
cached for when the network becomes available again, and
Commander may also poll commonly used services to built
a usable system state that can be referred to in the event
that connectivity is lost. In addition, computationally- or data-
intensive capabilities can be provided locally such that users
can continue their work offline. These are areas of future work.

In addition to these benefits, as a desktop application
Commander is also able to more easily interact with other
applications and functionality in the user’s local environment.
For example, future Commander capabilities could allow users
to access their e-mail, local files, or local applications and
integrate those capabilities with other Commander modules.

Whereas web-based gateways are lightweight and instantly
deliverable, a core challenge of providing a robust desktop
application lies in distributing the application on multiple plat-
forms and keeping it updated as new revisions are produced.
The Eclipse framework, however, provides tools that address
these issues and allow Commander to be easily updated and
managed by end-users. By leveraging the Eclipse Equinox p2

!
Fig. 7. Commander Modules and the Equinox p2 Provisioning System

provisioning system, Commander modules can be posted to
an external site where updated or newly developed capabil-
ities can be seamlessly pushed out to end-users. From this
interface, featured in Figure 7, users can find new versions
of their installed capabilities and also discover new modules
that would assist with their projects. This feature, combined
with Eclipse’s cross-platform compatibility support through its
Delta Pack3, leads to a significant reduction in the cost and
effort associated with delivering Commander’s capabilities to
end-users.

The generalized design of the core Commander frame-
work and seamless cross-platform distribution also supports
the rapid development of new capabilities. Commander-
compatible suites and modules can be generated simply by
extending the core Commander plug-in at its pre-defined
extension points, which the Eclipse IDE uses to automati-
cally generate classes that can be loaded by the Commander
framework. Module stubs for completely new functionality can
be created in minutes, and finished modules need only be
added to the established update site in order to be instantly
distributable to all Commander users. This decoupled and
distributed provisioning model enables the Orbiter Collective,
an ever-growing set of Commander capabilities developed
both in-house and by third-party providers. Developers will
be able leverage Commander’s extension points and toolkit
to develop and distribute new Commander modules to end-
users. In many of the Commander capabilities presented in
this in this paper it was observed that new modules could be
conceptualized, designed, developed, and deployed in a matter
of days, demonstrating the flexibility and power of this model.

Enabling the rapid development and dissemination of new
capabilities ensures that Commander will remain agile as new
requirements are presented. Furthermore, the ability to quickly
produce valuable new functionality helps facilitate widespread

3Currently Linux, Mac OS X, Windows, Solaris, AIX, and HP-UX are
supported.

PROTECTED CRADA INFORMATION BNL-101061-2013

community adoption. Two such suites of capabilities, NEx-
THUB and STAR, are discussed in the following sections.

V. THE COMMANDER NEXTHUB SUITE

The Spallation Neutron Source (SNS) [23] located at Oak
Ridge National Lab (ORNL) is an accelerator-based neutron
source that supports several scientific domains such as ma-
terial sciences, structural biology, and superconductivity. At
this one-of-a-kind $1.4 billion facility a world-class suite of
instruments is being developed to facilitate science in this wide
range of disciplines.

Conceptually similar to but preceding the Orbiter Pilot web
interface, SNS had developed a Neutron Sciences web based
portal to support the data and computing needs of its users.
This portal leverages a job and data management infrastructure
custom produced to utilize resources available to the facility
including both intra- and extra-ORNL computing resources.
Though still in production use, this portal has also enabled
solicitation of requirements for a next generation research
support cyber-environment. In an evolutionary process, the
concept of a more robust environment conceived to better
support a broader base for collaboration coupled with better
facilitation to computing, data, and software application re-
sources, the concept of the Neutron Experiment and Theory
Hub (NExTHUB) has emerged from the SNS scientists. The
goal of NExTHUB is to facilitate higher impact science
while shortening the publication lifecycle via cyber-enabled
collaborative science and publication tools and environments.
In principle, NExTHUB would be readily extensible to support
other data producing user facilities particularly other neutron
scattering and light source user facilities.

Though still in the conception phase, NExTHUB itself
would be a multi-tiered, multi-faceted SOA system within
ORNL comprised of supporting infrastructure and resources
orchestrated to provide services and access to resources.
Utilizing this SOA approach enables an open arena to broadly
facilitate communities of developers to produce service con-
suming applications and tools suited to their interests and
needs while at the same time complying with ORNL cyber-
security policies incorporating per-user, per-service granularity
for user authentication, authorization, and access to resources.
To this end, Commander is developing the NExTHUB (Neu-
tron Experiment and Theory Hub) Suite, a set of modules
designed to integrate with the work which has been done and is
still underway at SNS. This suite, currently consisting of a File
Download Manager, Beam Status Monitor, and several other
modules, brings Orbiter functionality directly to the desktops
of end-users.

Fig. 8. Commander’s Activation Page

NExTHUB users begin by activating Commander. The
activation process enables secure Orbiter Federation RESTful
service communications by binding the Commander instance
to their Orbiter access key identifier and private key in-
formation. Until users activate Commander by using their
ORNL XCAMS/UCAMS [24] login information to securely
download their Orbiter credentials, Commander will restrict
the use of its modules. A screenshot of this state is featured
in Figure 8.

The File Download Manager is a module that facilitates
real-time remote file browsing as well as rapid multi-threaded
downloads. These files are served through the Orbiter Virtual
File System (VFS), which houses scientific data files across in-
struments at several neutron sciences facilities including SNS,
HFIR [25], LENS [26], Lujan [27], and IPNS. At the time
of this writing, the Orbiter VFS supports 956 user accounts
with over 808,525 directories and 2,695,387 repository files
totaling over 22.33 TB.

The File Download Manager uses RESTful calls to Orbiter
Federation services to build a file directory structure for
the Commander user. These directories are organized in a
hierarchical tree similar to what would be expected in a typical
operating system visual file browser. Directories show their
total sizes and numbers of files, reporting this live from the
Orbiter VFS.

Users can download their remote files directly to their local
systems by using the file cart provided by the module. Users
point and click to add files and directories to their carts, and
can review the contents of their carts to ensure that they are
getting only the files they want for their systems. Users may
download up to 20 GB of VFS files at a time, where this limit
is server-side configurable on a per-user basis.

Users can initiate their downloads through their carts once
they have selected all of their files. Users may choose to
receive their files as a zipped archive, or alternatively have
the module automatically decompress them and write them

Fig. 9. Commander’s File Browser and Download Cart

PROTECTED CRADA INFORMATION BNL-101061-2013

to the local system in the same hierarchical data structure
used on the local repository. They may also designate the top-
level directory where files should be written. A screenshot of
the File Download Manager and the Download Cart dialog is
shown in Figure 9.

The download interface of the File Download Manager also
allows the user to specify the network speed for the transmis-
sion. This speed should correlate to the relative performance
of the user’s current network, and dictates the performance of
the download service; i.e., the number of download threads to
initiate. Future work will also use this metric to optimize file
compression for the transfer. That is, the Orbiter Federation
service will compress a larger percentage of VFS files for
slower networks, while saving time at the service level by
streaming uncompressed files to users on faster connections.

The network speed can either be specified directly by the
user, or it can be calculated automatically. The File Download
Manager can estimate the current network speed by timing
the act of calling an Orbiter service that returns a requested
number of bytes and comparing it to the maximum bandwidth
observed from the Orbiter VFS. Allowing the network speed to
vary for each individual download request using this heuristic
method permits the module’s performance to be tailored
to a user’s environment at any given time, whether on a
professional-quality network, at home, or while traveling when
the network may be slow.

The multi-threaded download capability of this module
allows large amounts of data to be retrieved quite rapidly from
the remote VFS; this has been observed to be an order of
magnitude faster than traditional single-threaded downloads.
Figure 10 features a multi-threaded download in progress
where the download threads are run as separate background
processes, allowing the user to continue using Commander
without waiting for the download to complete. When the
download threads are finished, the user can browse local
file directories directly through Commander, reviewing the
downloaded files and opening them on his or her local system.

The Beam Status Monitor is a Commander module that
tracks the current status of the neutron beam at SNS. This
module receives live data via calls to the Orbiter Federation
SOA and retrieves not only the most recent beam status but

Fig. 10. Commander’s Multi-Threaded File Download

!
Fig. 11. Accessing Live Beam Status and Historical Data

!
Fig. 12. Accessing Pilot Functionality

also historical charts illustrating the beam status at any given
time. This module automatically handles making periodic
updates to this view to deliver the most up-to-date information
to the user in Figure 11.

Commander provides other capabilities that facilitate work
done at SNS as well. Commander’s Portal module brings users
to Orbiter Pilot, allowing them to access its functionality from
within the application. Because Pilot is loaded directly into
Commander itself, future work can add additional functional-
ity that integrates Pilot’s capabilities with other Commander
modules. This module is shown in Figure 12. Commander also
provides a module that shows the historical use of the Orbiter
VFS geographically on an embedded interactive Google map
[28], shown in Figure 13.

This suite of capabilities provides considerable value, where
users can browse their remote repositories, download files
to their local systems, review live and historical beam sta-

PROTECTED CRADA INFORMATION BNL-101061-2013

!
Fig. 13. Orbiter VFS Historical Information

tus information, and access Orbiter Pilot and interactive
geographically-arranged historical usage information. These
capabilities, in addition to future work planned for this suite,
bring Orbiter VFS capabilities seamlessly to end-users.

VI. THE COMMANDER STAR SUITE

The Solenoidal Tracker at the RHIC (STAR) [29] exper-
iment studies quark-gluon plasma (QGP), a state of matter
believed to exist at sufficiently high energy densities [30].
This experiment, at the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory, conducts simultaneous stud-
ies using several types of specialized detectors. The experiment
is composed of 52 institutions from 12 countries, with a total
of 529 collaborators. To facilitate this experiment, Commander
is developing the STAR Suite, a set of modules to support
the development of a customizable set of Orbiter Federation
web services for efficient access to arbitrary and distributed
relational Nuclear Physics (NP) databases.

The STAR Resource Monitor module helps users track
the live status of STAR databases. Using Orbiter Federation
RESTful web services, this module lists available resources
and displays an interactive Google map displaying detailed
resource information, such as bytes sent and received, available
memory, numbers of users and processes, and other valuable
information. This module also provides real-time charts and
tables presenting this information, allowing users to choose the
best presentation in order to understand the states of available
STAR NP database resources. A screenshot of this capability
is featured in Figure 14.

Commander also provides a STAR Simulator module for
running queries against available NP database resources. Users
direct the module to a local STAR query file and specify
the resource to run the queries against. The queries, their
results from the query database, and their total times are then
displayed. Figure 15 displays the STAR Simulator and the
results of several queries.

!
Fig. 14. Capturing Live STAR Resource Statistics

Together these modules add value to the STAR web ser-
vice development initiative. Using STAR Resource Monitor,
resources can be chosen from the monitor and used in the
Simulator module, allowing users to systematically test the
performance of the available STAR NP databases. These
capabilities facilitate the development of these services, which
in turn will ultimately benefit collaborators at the STAR
experiment.

VII. RELATED WORK

The Orbiter Federation web services are related to several
industry initiatives involved in developing SOA solutions and
portal technologies. WSO2, for example, produces enterprise
middleware as componentized products, allowing their ser-
vices to be customized for the architectures it is adopted
by [31]. IBM’s WebSphere encompasses application infras-
tructures and portal solutions for SOA environments [32],

!
Fig. 15. Commander’s STAR Simulator Module

PROTECTED CRADA INFORMATION BNL-101061-2013

providing a similar foundation to what supports the Orbiter
Pilot. Orbiter Federation’s method for providing signed and
secure web service transactions can be compared to the model
used by Amazon Web Services (AWS) [33]. This robust se-
curity method allows Orbiter Federation to provide a scalable
service-based platform, comparable to the enterprise efforts of
Oracle [34] or Microsoft’s Azure [35].

Eclipse RCP applications are being continuously developed
to solve a wide variety of problems. Eclipse RCP Eclipse
Integrated Development Environment (IDE) itself, and has
been adopted by many open source and commercial applica-
tions across several disciplines, including endeavors by major
organizations such as Apache and NASA. Used to manage
Dutch railway schedules, perform DNA sequence scanning,
and analyze web performance, to name a few examples,
these use-cases demonstrate that Eclipse RCP is a robust and
enterprise-quality platform that is suitable for a wide range
of applications. The flexible OSGi specification, upon which
the Eclipse Equinox runtime is built, has been adopted by
several organizations including Apache and Concierge, which
produces an OSGi-compliant framework implementation for
mobile and embedded devices [36], [37].

The Commander framework as a whole unifies the power
of the Orbiter Federation service-based platform with the
rapid application development hooks provided by Eclipse
RCP. By leveraging the secure Orbiter Federation services the
Commander application is able to streamline the process of
connecting users to the wide variety of Orbiter services and
capabilities. From managing user credentials to automatically
signing and handling Orbiter Federation service requests and
responses, users are provided with a seamless application
that bridges the gap between web-based capabilities and local
system resources. That is, Commander serves as a live thick-
client gateway to Orbiter infrastructure, providing access to
the remote resources and services that Orbiter offers while
allowing users to leverage their local resources as well, such as
local GPUs, editors, and viewers. Future work on Commander
will provide additional fault tolerance for spotty network
accessibility or periods of offline work, by providing the
ability to queue service requests for the next time the network
becomes available. This will offer a significant advantage over
standard browser-based thin-client gateways.

The NExTHUB and STAR Commander suites presented
in this paper are proofs-of-concept for the Orbiter Collective
layer, which strives to provide a rapid development environ-
ment for new Commander capabilities. The core Commander
framework provides simple hooks for authenticating to and
using Orbiter Federation services, and basic functionality can
be rapidly extended to produce highly customized suites of
tools for a wide variety of uses. Whether developed in-house or
eventually by third-party users, this model for organic growth
requires a stable and flexible core framework which Com-
mander provides by leveraging Orbiter Federation services and
Eclipse RCP. Like the Apple and Android development models
mentioned in the introduction of this paper, this Collective
approach allows Commander’s capabilities to be driven by

popular demand and facilitates the widespread community
adoption of the core Orbiter gateway infrastructure by ensuring
that new capabilities can be rapidly tailored for a wide range
of potential uses.

VIII. CONCLUSION

The NExTHUB and STAR Suites both add value to their
supporting initiatives, where Commander is capable of fa-
cilitating the work done at SNS as well as with the STAR
experiment. Using the robust and secure web services offered
by the Orbiter Federation SOA, and by implementing tiers III
and IV of the Multitier Portal Architecture, Commander is
able to provide flexible and sophisticated functionality to its
users. This includes facilitating the rapid download of scien-
tific data files, live delivery of important data and statistics,
and simulation capabilities that will ultimately benefit these
programs.

Future work on Commander will incorporate live chat
capabilities, integration with workflow management tools, and
several tailored capabilities for NExTHUB and STAR. Addi-
tional suites such as a set of tomography modules for Rapid
Image Processing (RIP) are planned as well. Commander’s
well-defined set of extension points and expanding library
of utilities and widgets will facilitate the Orbiter Collective’s
rapid development of these new capabilities, and the Equinox
p2 provisioning system provided by the Eclipse framework
will allow for the seamless delivery of new modules both by
in-house and by third party developers in the future.

Commander’s structured framework mitigates the common
issues associated with developing and sustaining complex
scientific environment capabilities. Commander leverages the
fast and secure Orbiter Federation RESTful web services to
provide a sophisticated desktop application while enabling
offline computing capabilities and integration with other local
applications. Commander’s ability to grow organically with
new suites and modules will facilitate community adoption
and the continuing relevance of its capabilities. Furthermore,
its customizable interface and plug-and-play delivery model
makes the Commander framework and its modules attractive
to the widest range of potential users. These capabilities
allow Orbiter Commander to present a robust, scalable, and
sustainable scientific gateway solution.

ACKNOWLEDGMENT

We would particularly like to acknowledge Dr. Mark E.
Hagen at the Spallation Neutron Source for his input and
guidance on the Neutron Experiment and Theory Hub.

This work is supported by the Neutron Scattering Science
Division Analysis Software Development (NSSD-ASD), Spal-
lation Neutron Source Contract #: 4000057260, Virtual In-
strumentation Experiment Optimization for High-Throughout
Scientific Analysis (Orbiter) Phase I and II DOE BES SBIR
Grant #: DE-FG02-08ER85000, and CWS4DB: A Customiz-
able Web Service for Efficient Access to Distributed Nuclear
Physics Relational Databases Phase I and II DOE BES SBIR
Grant #: DE-FG02-07ER84757.

PROTECTED CRADA INFORMATION BNL-101061-2013

REFERENCES

[1] Apple iphone developer program. [Online]. Available:
http://developer.apple.com/programs/iphone/

[2] Android developers. [Online]. Available:
http://developer.android.com/index.html

[3] Open grid computing environment (OGCE). [Online]. Available:
http://www.collab-ogce.org/ogce/

[4] Gridsphere portal framework. [Online]. Available:
http://www.gridsphere.org/gridsphere/gridsphere

[5] J. Alameda, M. Christie, G. Fox, J. Futrelle, D. Gannon, M. Hategan,
G. Kandaswamy, G. von Laszewski, M. A. Nacar, M. Pierce, E. Roberts,
C. Severance, and M. Thomas, “The open grid computing environments
collaboration: Portlets and services for science gateways.” Concurrency
and Computation, vol. 19, no. 6, pp. 921–942, April 2007.

[6] Eclipse rich client platform. [Online]. Available:
http://www.eclipse.org/rcp/

[7] S. Jones and M. Morris, “A methodology for service architectures,”
OASIS Draft, October 2005. [Online]. Available: http://www.oasis-
open.org/committees/download.php/15071/

[8] Orbiter virtual file system service oriented architecture interfaces.
[Online]. Available: https://orbiter.sns.gov

[9] M. L. Green and S. D. Miller, “Multitier portal architecture for thin-
and thick-client neutron scattering experiment support,” M. Pierce, Ed.
International Workshop on Grid Computing Environments (GCE), Nov.
11-12 2007.

[10] W. W. Eckerson, “Three tier client/server architecture: Achieving scal-
ability, performance, and efficiency in client server applications,” Open
Information Systems, vol. 10, 1995.

[11] MySQL: The world’s most popular open source database. [Online].
Available: http://www.mysql.com/

[12] R. T. Fielding, “Architectural styles and design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000. [Online]. Available: http://www.ics.uci.edu/ field-
ing/pubs/dissertation/top.htm

[13] P. C. K. Alan O. Freier, Philip Karlton, “The SSL protocol - version
3.0,” Internet Draft, Transport Layer Security Working Group, November
1996.

[14] Php: Hypertext preprocessor. [Online]. Available: http://www.php.net/
[15] B. Kaliski, “PKCS #1: RSA encryption version 1.5,” March 1998,

network Working Group, RSA Laboratories East. [Online]. Available:
http://tools.ietf.org/html/rfc2313

[16] Keying Hash Functions for Message Authentication, vol. 1109/1996.
Advances in Cryptology - Crypto ’96, 1996.

[17] A. Singhal, T. Winograd, and K. Scarfone, “Guide to secure
web services: Recommendations of the national institute of
standards and technology,” NIST, U.S. Department of Commerce
Special Publication 800-95, August 2007. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-95/SP800-95.pdf

[18] Web services interoperability organization. [Online]. Available:
http://www.ws-i.org/

[19] Java. [Online]. Available: http://www.java.com/en/
[20] A swing architecture overview. [Online]. Available:

http://java.sun.com/products/jfc/tsc/articles/architecture/
[21] OSGi alliance. [Online]. Available:

http://www.osgi.org/Main/HomePage
[22] SWT: The standard widget toolkit. [Online]. Available:

http://www.eclipse.org/swt/
[23] Spallation neutron source. [Online]. Available: http://www.sns.gov
[24] Open resource collaboration. [Online]. Available:

http://www.ornl.gov/xcams/xcamsfaq.htm
[25] High flux isotope reactor: Overview. [Online]. Available:

http://neutrons.ornl.gov/facilities/HFIR/
[26] LENS: The low energy neutron source. [Online]. Available:

http://www.indiana.edu/ lens/index.html
[27] Los Alamos National Laboratory - materials science at LANSCE.

[Online]. Available: http://lansce.lanl.gov/lujan/index.shtml
[28] Google maps API family. [Online]. Available:

http://code.google.com/apis/maps/index.html
[29] The STAR experiment at the relativistic heavy ion collider, Brookhaven

National Lab. [Online]. Available: http://www.star.bnl.gov/
[30] The STAR experiment at the relativistic heavy ion collider,

Brookhaven National Lab: The physics of star. [Online]. Available:
http://www.star.bnl.gov/central/physics/

[31] WSO2. [Online]. Available: http://wso2.com/
[32] IBM websphere software. [Online]. Available: http://www-

01.ibm.com/software/websphere/
[33] Amazon web services. [Online]. Available: http://aws.amazon.com/
[34] Oracle cloud computing. [Online]. Available:

http://www.oracle.com/us/technologies/cloud/index.htm
[35] Windows azure. [Online]. Available:

http://www.microsoft.com/windowsazure/
[36] Eclipse rich client platform (RCP) applications. [Online]. Available:

http://www.eclipse.org/community/rcp.php
[37] J. McAffer, P. Vanderlei, and S. Archer, OSGi and Equinox: Creating

Highly Modular Java Systems. Addison-Wesley Publishing Company,
2010.

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Commander

Catherine L. Ruby, Mark L. Green
Systems Integration Group, Tech-X Corporation

clruby@txcorp.com, mlgreen@txcorp.com

A Flexible Application Framework for Service-
Based Scientific Computing Environments

Stephen D. Miller
Spallation Neutron Source, Oak Ridge National Lab

millersd@ornl.gov

GCE10 – November 14, 2010

Application Frameworks

•  Application Frameworks define how to solve
common problems, not solutions themselves
–  Using well placed abstraction layers
–  Defining points for extending functionality

•  Notable Gateway Computing Environments
using this methodology:
–  Open Grid Computing Environments (OGCE)
–  GridSphere
–  WSO2

Other Framework Examples

•  Apple’s iPhone
•  Google’s Android

Stable and extensible
frameworks permit third-party
development of new
capabilities, assuring relevance
and widespread community
adoption

Multitier Portal Architecture

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Federation Services

•  RESTful web services implemented in PHP offer
extremely rapid turnaround

•  Services validate user identities as well as request
integrity, securing the underlying data and capabilities

•  Underlying MySQL database uses master/slave
database replication to ensure fault tolerance and
reliability

Since February 2010…
-  31.8M service requests were logged by Orbiter Virtual
File System
-  9.2M cataloging/monitoring/QoS tasks were performed

Orbiter Virtual File System

956 user accounts,
2.7M files,
22.33TB of data
31.8M service requests
since 02-2010

•  Catalogs and provides access to scientific files from SNS,
HFIR, LENS, LUJAN, and IPNS

•  Orbiter Federation web services facilitate querying for
directories, files, and pulling these resources down from their
remote storage areas

•  User access is controlled using the authentication and
validation mechanisms in the secure Orbiter services

Secure Authenticated Services

•  Orbiter Access Key ID declares user identity
•  Expiration Time ensures request lifetime/validity
•  RSA Private Key Signature ensures data integrity

Similar to the Amazon AWS Security Model

https://{ServiceProvider}/{ResourceAddress}/{Attributes}	

 /{ID}/{ExpirationTime}/{Signature}	

Secure Authenticated Services (cont.)

•  Protects against several well-known
attacks
–  Loss of Confidentiality (SSL)
–  Message alteration (signature)
–  Falsified messages (access key + signature)
–  Replay of Message (timestamp)

Service turnaround for a no-op with full validation
and authorization – 1x10-6 seconds

Generally observed full service responses –
~2x10-2 seconds

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Federation Platform

Data, Logic, and Presentation

Data Tier

Logic Tier

Presentation Tier – Pilot, Commander, Collective

MySQL Database, Master/Slave Replication

REST, SSL, Authenticated services
Monitoring/QoS

Orbiter Pilot

•  Multitier Portal Architecture Tier II
•  Thin-Client browser-based application
•  Access to Orbiter

VFS file repositories
•  Dashboards, QoS

metrics, and charting
tools for data
collected by the
Orbiter infrastructure

•  Driven by Orbiter
Federation services

Orbiter Commander Orbiter Commander (cont.)

•  Multitier Portal Architecture Tier III
•  Thick-Client RCP Application
•  Built on Orbiter Federation Services, providing

live gateway capabilities
•  Modular design for plug-and-play capabilities
•  Well-defined extension points for code-reuse

and future development
•  Highly customizable interface

Orbiter Commander (cont.)

•  Eclipse RCP
–  Mature Integrated Development Environment
–  Simplified Standard Widget Toolkit
–  Automatic handling of core GUI

implementation
•  OSGi specification

–  Modular application “bundles”
–  Decouples application components into

individually loaded packages

Commander Architecture

Commander User Identity
Management

•  Commander requires users to activate, prompting them to input their
information

•  An Orbiter Federation service accepts their credentials and
generates any necessary account information

•  Orbiter access key and RSA private key information is downloaded
securely for the Commander user

•  Commander uses these Orbiter parameters to securely perform all
subsequent Federation service transactions

Why a Thick-Client?

•  Integration with local resources/
applications

•  Possibility for:
–  Fault-tolerance for spotty network connections
–  Offline mode for planned network outages

(travel, etc)
–  Queued/background processes for

maintaining up-to-date views – enhanced
multitasking

PROTECTED CRADA INFORMATION BNL-101061-2013

Suites of Modules

•  Capabilities, or modules, are organized in
branded suites, each addressing the
requirements of a particular problem or domain

NExTHUB Suite

•  Work supporting our efforts with the Neutron
Experiment Theory Hub, at the Spallation
Neutron Source, Oak Ridge National
Laboratory

•  Diverse capabilities from remote file retrieval to
live status monitoring

•  Rapidly developed using the foundation of the
Commander framework and the Orbiter
Federation services

NExTHUB Suite (cont.)

 	

•  Live minute-by-minute
updates of the current
status of the beam as
well as historical data

•  Usage statistics served by the
Orbiter Federation services

NExTHUB Suite (cont.)

•  Cart-based file download paradigm
•  Dynamically set per-user limit

provided from Orbiter Federation
Services (normally 20GB per cart)

•  Multi-threaded download as a
background process

•  On-demand seamless access to
remote Orbiter VFS files

•  File permissions based on
Federated Orbiter identities

•  22.33 TB of data, 2.7M repository
files

PROTECTED CRADA INFORMATION BNL-101061-2013

STAR Suite

•  Modules supporting our work with
members of the STAR experiment

•  Simulate STAR database queries
against enabled remote resources

•  Review load and other Monitoring/
QoS metrics on STAR database
query endpoints

Orbiter Collective

•  Multitier Portal Architecture Tier IV
•  Orbiter Commander provides Eclipse

extension points for:
–  New suites
–  New modules
–  Orbiter Federation authenticated clients
–  User activation methods

•  Developers can quickly leverage these to
create Commander-compliant modules

Orbiter Collective (cont.)

•  Eclipse IDE provides the development environment for
extensions to the Commander framework

•  Eclipse p2 provisioning system allows third-party content to
be directly consumed by Commander users – no reinstall
required

Orbiter Collective (cont.)

•  Organic growth of new
functionality

•  Agile development based on
evolving requirements – focus
on what to build not how

•  Ensures continuing use and
community adoption,
extending the lifetime of the
effort

PROTECTED CRADA INFORMATION BNL-101061-2013

•  Multitier Portal Architecture creates a layered
approach for building increasingly complex user
interfaces

•  Orbiter Federation services provide fast and secure
access to scientific data and resources

•  Orbiter Pilot uses these service to deliver a thin client
portal – a browser-based gateway

•  Orbiter Commander delivers these services as end-
user capabilities in a rich and customizable set of
interfaces – a thick-client gateway

Conclusions

•  Commander’s modular design and well-defined
extension points enable the Orbiter Collective, a
method for third-party development of Commander
capabilities

•  Orbiter Collective allows the Orbiter infrastructure be
easily customized and adapted to the needs of a
large and diverse scientific user community

Conclusions (cont.)

Thank you for your attention! For More Information
Mark L. Green"
Systems Integration Group"
Tech-X Corporation, Buffalo Office"
Telephone: 716-204-8686"

Email: orbiter@txcorp.com"
URL: https://orbiter.txcorp.com"

PROTECTED CRADA INFORMATION BNL-101061-2013

CWS4DB: A Customizable Web Service
for Efficient Access to Distributedfor Efficient Access to Distributed

Nuclear Physics Relational Databases
FY 2008 SBIR Phase II Proposal Award Number: DE-FG02-07ER84757FY 2008 SBIR Phase II Proposal Award Number: DE FG02 07ER84757

Dr. Mark L. Green, PI
Tech-X Corporation, Buffalo Office

H d t B ld CO

p ,
Systems Integration Group

Headquarters Boulder, CO
Buffalo, NY

Tech-X Orbiter ProjectTech-X Orbiter Project

• Orbiter is an end-to-end framework
delivering fast and secure solutions throughdelivering fast and secure solutions through
both thin-client web access and thick-client
desktop application suites and modules. These
applications leverage the information-sharing

biliti f O bit i idi f l dcapabilities of Orbiter in providing powerful and
personalized web-accessible components.

• Service Oriented Architectures (SOAs) have
been proven to be a popular design for buildingbeen proven to be a popular design for building
reliable and scalable large-scale software
systems, borrowing from earlier Object
Oriented Programming (OOP) techniques of
encapsulation, cohesion, and the use of
abstraction layers behind well-defined public
APIs. Orbiter Federation services, built upon
industry standards, offer fast and secureindustry standards, offer fast and secure
access to a wide range of capabilities. https://orbiter.txcorp.com

Orbiter Multitier Portal Architecture
(MPA)

• Through the Multitier Portal Architecture (MPA) Orbiter Federation services are
delivered directly to end-users via a variety of rich interactive interfaces. The MPA
allows increasingly sophisticated capabilities to be rapidly developed to suit a wide
range of user requirements and the foundation provided by Orbiter Federationrange of user requirements, and the foundation provided by Orbiter Federation
enables these capabilities to be delivered swiftly and securely to end-users.

• Framework for delivering capabilities
to thin- and thick-clients using theto thin and thick clients using the
Orbiter RESTful SOA

• Flexible and re-usable architecture
for developing capabilities for thinfor developing capabilities for thin
web clients and thick local clients

• Comprised of four tiers:
• Tier I: Orbiter Federation SOA

• Low-level RESTful services
• Tier II: Thin-Client Orbiter Pilot

• Light weight client access
• Tier III: Thick-Client Orbiter CommanderTier III: Thick Client Orbiter Commander

• Fully capable installed application
• Tier IV: Thick-Client Orbiter Collective

• IDE for Orbiter development

https://orbiter.txcorp.com

Tech-X Orbiter ProjectTech-X Orbiter Project

• Federation provides a Service Oriented Architecture (SOA) of web p ()
services, delivering powerful, lightweight, secure, and scalable
capabilities.

• Pilot delivers Federation web services through web-accessible thin-
li t Th t d t l li t d li O bit biliticlients. These gateway and portal clients deliver Orbiter capabilities

through easy-to-use web interfaces.
• Commander is a rich cross-platform desktop application that

provides access to Federation services while allowing Orbiterprovides access to Federation services while allowing Orbiter
systems to interact directly with local compute resources.

• Collective opens the door to advanced collaboration across a wide
range of associations, facilities, and institutions. Orbiter meets the
needs of these organizations through the development of integrated
cross-platform applications that enable the full value of third party
products and services.

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Federation – SOAOrbiter Federation – SOA
• Tier I of the Orbiter Multitier Portal

ArchitectureArchitecture
• Orbiter services are implemented as

Representational State Transfer (RESTful)
web services that deliver functionalityweb services that deliver functionality
through a well-defined API.

• These services employ robust security p y y
standards including SSL and signed requests
that ensure client identities, the integrity of their
RESTful service calls, and the privacy of their
transmissions.

• Orbiter Web Services use SSL encryption,
access key identifiers, timestamps, and private
key signatures, ensuring the privacy,
authorization, and request integrity of all
interactions.

Tech-X Orbiter ProjectTech-X Orbiter Project

• Orbiter Pilot, Orbiter Commander, and the Orbiter Collective
demonstrate how access to Orbiter Federation resources and
services can be provided through reliable, scalable, and interactive
scientific gateways.
It fl ibl l tf d kt l ti t th ith• Its flexible cross-platform desktop solutions present the user with
a rich and customizable interface to data, information, computational
resources, and enterprise application bases.

• Orbiter solutions are inherently scalable where Federation PilotOrbiter solutions are inherently scalable, where Federation, Pilot,
Commander, and Collective each build modular capabilities that are
focused on particular needs.

• Orbiter solutions have been routinely used for the management and
retrieval of large amounts of data and information.

CWS4DB Project

A customizable Web Service for Efficient Access to Distributed Nuclear
Physics Relational Databases

DOE NP Phase I and II – Manouchehr Farkhondeh

Tech-X: Mark L. Green (PI), Catherine L. Ruby, Sean Burley, Krishna Kantam,
Srilakshmi Ramireddy

Need: As the size of NP data grows and the collaborative nature of HENP experiments
increases, the ability to access di erently organized relational databases remotely,
e ciently, and yet in a user-friendly and interoperable manner is becoming very
important.

Partners: Jerome Lauret, Dmitry Arkhipkin (STAR project at BNL), Kate Keahey
(Nimbus project at ANL), Doug Olson (Open Science Grid), Alexandre Vaniachine
(ATLAS project ANL/CERN)

DOE Beneficiaries: Nuclear and high energy physics communities, national
laboratories, and collaborative projects

Commercial Beneficiaries: Companies requiring efficient web service access to
distributed relational databases with high-level database and user APIs

Problem Identification
• The importance of this project comes from the fact that a large fraction of

the ever-growing data generated by Nuclear Physics (NP) experiments is
stored in relational databases. For example:

– The BNL Relativistic Heavy Ion Collider (RHIC) supports STAR (Solenoidal Tracker at the at
the RHIC) which composed of 52 institutions from 12 countries, with a total of 529
collaborators;

– relational databases (such as Condition databases, Calibration databases, and Geometry
d t b) h il d i th STAR i tdatabases) are heavily used in the STAR experiment;

– while accessing data in such databases is convenient and available for local users who are
familiar with a particular database, the situation becomes more complicated when the
databases are distributed and heterogeneous.

• Tech X therefore proposed a system to• Tech-X therefore proposed a system to
overcome the outlined challenges by bridging
relational databases with high-level APIs
through Web services.

– In particular, the distributed and heterogeneous nature
of the databases will be addressed by creating Web
services in the Orbiter Federation Service Oriented
Architecture (SOA), which provides mechanisms
coordinating access to diversified data resourcescoordinating access to diversified data resources
through REST (Representational State Transfer)
services, caching, authentication, and authorization.

PROTECTED CRADA INFORMATION BNL-101061-2013

CWS4DB Technical Objectivesj
• Tech-X proposes to develop a customizable Web service for efficient

access to distributed NP databases. The proposed system will consist of:
– a generic Web service for accessing arbitrary distributed relational databases,
– a reference client implemented at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven

National Laboratory (BNL), for the Solenoidal Tracker at the at the RHIC (STAR) experiment,
and

– a tool for creation of the high-level and domain-specific clients required by particular
applicationsapplications.

• The Phase II objectives include:
– Take into account what was learned from the research in Phase I and extend the CWS4DB

prototype into a production-quality, load-balanced, auto-caching, grid-enabled, fault-tolerant,
d d d tand on-demand system.

– Use a flexible work plan involving a separate
piece of technical functionality that can be
implemented in a way that can be exercised
in the STAR computing environment, yetin the STAR computing environment, yet
developed in a general way for application’s
from other NP projects.

– The ultimate goal is to produce a set of
software tools and services that can be
easily adapted by the NP application
developer.

CWS4DB TasksCWS4DB Tasks

• Task 1: Determine CWS4DB System and Load Balancing Additional
Requirements and Properties (Tech-X & BNL)Requirements and Properties (Tech X & BNL)

– Extend the Phase I developed requirements and properties and continue prototype work with
our partners.

• Task 2: Design and Implement Tiered Deployment Capabilities (Tech-X)
D l ti d d l t b d t l f th CWS4DB t– Develop a tiered deployment based protocol for the CWS4DB system.

• Task 3: Design and Implement Auto-Caching Infrastructure (Tech-X & BNL)
– Provide a sophisticated auto-caching mechanism in order to increase the effective system

performance based on work with our partners.

• Task 4: Enable Multi-Virtual Organization Role-Based Capabilities (Tech-X)
– Develop the CWS4DB infrastructure required for user-friendly management and caching

capabilities.

• Task 5: Develop Dynamic On Demand Data Resource Access (Tech X)• Task 5: Develop Dynamic On-Demand Data Resource Access (Tech-X)
– This on-demand service provides a STAR MySQL database instance using the Amazon EC2

deployments.

CWS4DB Tasks ContinuedCWS4DB Tasks Continued

• Task 6: Develop Fault Resilient Data Resource Pathways (Tech-X)
– Eliminated a single point of failure for the STAR C++ API bound codes database queryEliminated a single point of failure for the STAR C++ API bound codes database query

requests.

• Task 7: Develop a Prototype On-Demand Data Resource Node (Tech-X &
BNL)

P t t d th d l t f d d d t d t t th d i d t– Prototyped the deployment of a on-demand data resource node to meet the dynamic data
demands of the STAR collaboration.

• Task 8: Prototype Pre-Cache Capabilities for Production Job Workflow
(Tech-X & BNL)

– Pathway for an authenticated and authorized user upon configuration of the CWS4DB
system to execute the customizable site specific test suite for pre-caching production job
queries is complete.

• Task 9: Develop a Customizable Site Specific Test Suite (Tech-X)p p ()
– In order to deliver a high quality of service infrastructure a customizable and site specific test

suite is required to validate and verify the performance and data delivery capabilities of the
CWS4DB system.

CWS4DB TasksCWS4DB Tasks

• Task 1: Determine CWS4DB System and Load Balancing Additional
Requirements and Properties (Tech-X & BNL)Requirements and Properties (Tech X & BNL)

– Extend the Phase I developed requirements and properties and continue prototype work with
our partners.

• Task 2: Design and Implement Tiered Deployment Capabilities (Tech-X)
D l ti d d l t b d t l f th CWS4DB t– Develop a tiered deployment based protocol for the CWS4DB system.

• Task 3: Design and Implement Auto-Caching Infrastructure (Tech-X & BNL)
– Provide a sophisticated auto-caching mechanism in order to increase the effective system

performance based on work with our partners.

• Task 4: Enable Multi-Virtual Organization Role-Based Capabilities (Tech-X)
– Develop the CWS4DB infrastructure required for user-friendly management and caching

capabilities.

• Task 5: Develop Dynamic On Demand Data Resource Access (Tech X)• Task 5: Develop Dynamic On-Demand Data Resource Access (Tech-X)
– This on-demand service provides a STAR MySQL database instance using the Amazon EC2

deployments.

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Federation – SOAOrbiter Federation – SOA

https://{ServiceProvider}/{ResourceAddress}/{Attributes}https://{ServiceProvider}/{ResourceAddress}/{Attributes}
/{ID}/{ExpirationTime}/{Signature}

• Orbiter Access Key {ID} declares user identity
• {Expiration Time} ensures request lifetime/validity
• RSA Private Key {Signature} ensures data integrity

Similar to the Amazon AWS Security Model

CWS4DB Tasks ContinuedCWS4DB Tasks Continued

• Task 6: Develop Fault Resilient Data Resource Pathways (Tech-X)
– Eliminated a single point of failure for the STAR C++ API bound codes database queryEliminated a single point of failure for the STAR C++ API bound codes database query

requests.

• Task 7: Develop a Prototype On-Demand Data Resource Node (Tech-X &
BNL)

P t t d th d l t f d d d t d t t th d i d t– Prototyped the deployment of a on-demand data resource node to meet the dynamic data
demands of the STAR collaboration.

• Task 8: Prototype Pre-Cache Capabilities for Production Job Workflow
(Tech-X & BNL)

– Pathway for an authenticated and authorized user upon configuration of the CWS4DB
system to execute the customizable site specific test suite for pre-caching production job
queries is complete.

• Task 9: Develop a Customizable Site Specific Test Suite (Tech-X)p p ()
– In order to deliver a high quality of service infrastructure a customizable and site specific test

suite is required to validate and verify the performance and data delivery capabilities of the
CWS4DB system.

CWS4DB Summary

File Name : txc02.ccr.buffalo.edu.config.inc.php

// ******************************* STAR specific config **************************************
/**/**
* @var STRING ORBITERCACHEFILELOCATION Cache file location.
*/
define('ORBITERCACHEFILELOCATION', '/tmp/cache');
/**
* @var STRING ORBITERHASHTYPE Orbiter Hash type@ yp
*/
define('ORBITERHASHTYPE', 'sha1');
/**
* @var integer ORBITERQUERYCONNECTIONSTRINGS Number of Orbiter Query Connection strings.
*/
d fi ('O Q CO C O S GS' 2)define('ORBITERQUERYCONNECTIONSTRINGS', 2);
/**
* @var boolean ORBITERUSEQUERYDB Defines whether to use Orbiter Query DB.
*/
define('ORBITERUSEQUERYDB', true);
/**/
* @var integer ORBITERQUERYDBSERVICEADDRESS Orbiter Query DB Load balancer service address.
*/
define('ORBITERQUERYDBSERVICEADDRESS', 'http://txc02.ccr.buffalo.edu/orbiter/'.ORBITERVERSION.'/service/webservice');
/**
* @var string ORBITERSQLFILELOCATION Orbiter Sql file location to run the pre-cache for new resource.@ g Q q p
*/
define('ORBITERSQLFILELOCATION', '/tmp/sqlfiles/auau200_log.txt');

PROTECTED CRADA INFORMATION BNL-101061-2013

CWS4DB TasksCWS4DB Tasks

• Task 3: Design and Implement Auto-Caching Infrastructure (Tech-X & BNL)
– Provide a sophisticated auto-caching mechanism in order to increase the effective systemProvide a sophisticated auto caching mechanism in order to increase the effective system

performance based on work with our partners.

• Task 4: Enable Multi-Virtual Organization Role-Based Capabilities (Tech-X)
– Develop the CWS4DB infrastructure required for user-friendly management and caching

capabilitiescapabilities.

• Task 7: Develop a Prototype On-Demand Data Resource Node (Tech-X &
BNL)

– Prototyped the deployment of a on-demand data resource node to meet the dynamic data
demands of the STAR collaboration.

• Task 8: Prototype Pre-Cache Capabilities for Production Job Workflow
(Tech-X & BNL)

– Pathway for an authenticated and authorized user upon configuration of the CWS4DBPathway for an authenticated and authorized user upon configuration of the CWS4DB
system to execute the customizable site specific test suite for pre-caching production job
queries is complete.

CWS4DB D t b QCWS4DB Database Query
Caching and Optimization

• Network bandwidth is important and
depends on the last mile normally

• Database server load is minimal
• Investigate the database service

payload size
• Wrote a custom ReSTful PHP

database service with a JSON
(JavaScript Object Notation) payload
to compare with the XML payload

CWS4DB Database Query Caching and
O ti i tiOptimization

• Log performance data forLog performance data for
each SQL operation

• Calculate and log JSON and
XML payload sizep y

• On average over a dataset the
equivalent JSON payload is q p y
8.8 – 10.1 times smaller

• In general an order of
magnitude lower bandwidth
loading is required with the
JSON PHP service

CWS4DB Summary
File Name : star.pp500.full.sql

https://cyber.txcorp.com/orbiter/service/star/OrbiterStarSimulatorService.php
/cache/off/
/format/XML/
/h /l l//host/local/
/file//tmp/testfiles/star.pp500.full.sql/
/address/http://64.240.154.24/orbiter/service/star/

R lResult:

Number of trials averaged: 1
Total number of queries: 6549
T l i f i 38 926 201 bTotal size of queries: 38,926,201 bytes
Total query time: 76.9 seconds
Total query rate: 85.1 query/second.

PROTECTED CRADA INFORMATION BNL-101061-2013

CWS4DB Summary
CWS4DB Tasks ContinuedCWS4DB Tasks Continued

• Task 6: Develop Fault Resilient Data Resource Pathways (Tech-X)
– Eliminated a single point of failure for the STAR C++ API bound codes database queryEliminated a single point of failure for the STAR C++ API bound codes database query

requests.

• Task 7: Develop a Prototype On-Demand Data Resource Node (Tech-X &
BNL)

P t t d th d l t f d d d t d t t th d i d t– Prototyped the deployment of a on-demand data resource node to meet the dynamic data
demands of the STAR collaboration.

• Task 8: Prototype Pre-Cache Capabilities for Production Job Workflow
(Tech-X & BNL)

– Pathway for an authenticated and authorized user upon configuration of the CWS4DB
system to execute the customizable site specific test suite for pre-caching production job
queries is complete.

• Task 9: Develop a Customizable Site Specific Test Suite (Tech-X)p p ()
– In order to deliver a high quality of service infrastructure a customizable and site specific test

suite is required to validate and verify the performance and data delivery capabilities of the
CWS4DB system.

CWS4DB Summary
Project SummaryProject Summary

PHP Code:
• 92 classes
• 642

functions/met
hods

• 10200 lines
API:
• Includes

source code
links
Usage• Usage

• Dynamically
updated

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Federation SOA:
Python Client Service Access Example

#!/usr/bin/python
import os, sys, base64, hmac, commands, timep , y , , , ,
from hashlib import sha1 as sha
from urllib import urlencode
from urllib import urlopen
from urllib import quote_plus Scripts and libraries

l il bl fmyhome = os.environ.get('HOME')
os.environ['TZ']='GMT'
time.tzset()

idfile = open(myhome + "/.orbiter/my.id")
ACCESS KEY = idfile read() strip()

are also available for:
C/C++, CURL, Java,
Python, PHP that can
access the Orbiter FederationACCESS_KEY = idfile.read().strip()

idfile.close()
keyfile = open(myhome + "/.orbiter/user.key")
PRIVATE_KEY = keyfile.read()
keyfile.close()

access the Orbiter Federation.

URI = sys.argv[1]
EXPIRES = str(int(time.mktime(time.localtime(time.time()+60))))
str = URI + '/OrbiterAccessKeyId/' + ACCESS_KEY + '/Expires/' + EXPIRES
SIGNATURE = base64.b64encode(hmac.new(PRIVATE_KEY, str, sha).digest()).strip()
print urlopen(str + '/Signature/' + SIGNATURE, params).read()

Orbiter Federation – SOAOrbiter Federation – SOA
• Orbiter Federation addresses security threats facing web services as

identified by Web Services Interoperability Organization which include:identified by Web Services Interoperability Organization which include:

– Message alteration: Attackers cannot alter an Orbiter request without breaking the
RSA SHA hash signature. Orbiter will reject a request that does not match canonical
string signed resource identifier for the specified Orbiter access key ID.

– Loss of confidentiality: The SSL protocol ensures that Orbiter service transactions
are handled privately and provides transport-level encryption.

– Falsified messages: Secure Orbiter services cannot be reached without a signedFalsified messages: Secure Orbiter services cannot be reached without a signed
canonical string resource identifier that matches the signature for the specified Orbiter
Federation SOA resource address.

– Man in the middle: The SSL protocol prevents an attacker from reviewing requests
and responses send securely between the Orbiter Federation SOA web services andand responses send securely between the Orbiter Federation SOA web services and
their clients.

– Principal spoofing: The Orbiter infrastructure is the only provider of valid Orbiter
access key identifiers and RSA private keys that are authorized to use Orbiter
F d ti SOA b iFederation SOA secure web services.

Orbiter Federation – SOAOrbiter Federation – SOA
• Orbiter Federation addresses security threats continued:

– Forging claims: Attackers cannot create valid Orbiter Federation SOA service
requests without obtaining an Orbiter access key identifier and valid RSA private key
from the Orbiter Federation SOA authentication/authorization infrastructure.

– Replay of message: Attackers cannot repeat a RESTful request to secure Orbiter
Federation services, as subsequent identical requests will be rejected. Attackers
cannot alter the user-provided expiration time without breaking the RSA signature.

– Replay of message parts: An Orbiter RESTful service request is not complete p y g p q p
without a valid signature that is applied to all other message parts. Attackers cannot
construct a new request from any part of a previous request without altering the
service request canonical string resource identifier and generating a valid signature.

– Denial of service*: The denial of service propensity is greatly reduced by the listedDenial of service : The denial of service propensity is greatly reduced by the listed
security measures in place at the current time within the Orbiter Federation SOA.
Furthermore, more specific measures are planned which will ban specific offending IP
addresses to further reduce the threat. *Distributed Denial of Service (DDOS) attacks,
however, are extremely difficult to defend against utilizing known security measures.however, are extremely difficult to defend against utilizing known security measures.

Orbiter Commander – Thick Client
• Tier III of the Orbiter Multitier Portal Architecture
• Orbiter Commander is a Application Framework where a:

Application Framework defines how to solve common problems not solutions– Application Framework defines how to solve common problems, not solutions
themselves

• Using well placed abstraction layers
• Defining points for extending functionality

Utilizes Eclipse Rich Client Platform for generating multi platform• Utilizes Eclipse Rich Client Platform for generating multi-platform
applications

– Mature Integrated Development Environment
– Simplified Standard Widget Toolkit– Simplified Standard Widget Toolkit
– Automatic handling of core GUI implementation

• Built on Orbiter Federation Services
• Modular design for plug and play• Modular design for plug-and-play

capabilities
• Well-defined extension points for

code-reuse and future development
• Highly customizable interface

PROTECTED CRADA INFORMATION BNL-101061-2013

STAR Commander Implementation Commander Explorer Implementation

Orbiter Commander – Thick Client
(continued)

• Atomic capabilities are provided as modules that can be
installed as needed from a central module repository

• The Orbiter Federation RESTful SOA provides robust access to
diverse capabilities, such as:
• Multi-threaded streaming downloads of

repository files
• Live status monitoring of the beam
• Slideshows of instrument application

screenshots
• Organization of modules into “Suites”

For More Information

C t tContact:

Mark L. Green, Vice President of Systems Integration

716-204-8690

mlgreen@txcorp.com

htt // bit thttps://orbiter.txcorp.com

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

3.2 Research Project Website

We have produced a website on the Orbiter project which details our research progress
and capabilities. This site is available at https://orbiter.txcorp.com, and is attached in the
following pages.

103

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

SEARCH

ORBITER

About the Project

Orbiter Federation Services

Orbiter Pilot

Orbiter Commander

Orbiter Collective

Release Schedule

Orbiter Federation Services
Orbiter services are implemented as Representational
State Transfer (RESTful) web services that deliver
functionality through a well-defined API. These
services employ robust security standards including
SSL and signed requests that ensure cl ient identit ies,

the integrity of their RESTful service calls, and the privacy of their
transmissions.

Secure Services

Orbiter Web Services use SSL encryption, access key identif iers, t imestamps, and private key signatures,
ensuring the privacy , authorization, and request integrity of al l interactions. These security measures
have allowed the Orbiter Federation SOA to pass a DOE National Laboratory security audit for usage and
deployment at their site. These measures completely address 8 of the 9 top security threats facing web
services as identif ied by Web Services Interoperabil i ty Organization which include:

Message alteration: Attackers cannot alter an Orbiter request without breaking the RSA SHA hash
signature. Orbiter wil l reject a request that does not match canonical string signed resource
identif ier for the specif ied Orbiter access key ID.

Loss of confidentiality: The SSL protocol ensures that Orbiter service transactions are handled
privately and provides transport-level encryption.

Falsified messages: Secure Orbiter services cannot be reached without a signed canonical string
resource identif ier that matches the signature for the specif ied Orbiter Federation SOA resource
address.

Man in the middle: The SSL protocol prevents an attacker from reviewing requests and responses
send securely between the Orbiter Federation SOA web services and their cl ients.

Principal spoofing: The Orbiter infrastructure is the only provider of valid Orbiter access key
identif iers and RSA private keys that are authorized to use Orbiter Federation SOA secure web
services.

Forging claims: Attackers cannot create valid Orbiter Federation SOA service requests without
obtaining an Orbiter access key identif ier and valid RSA private key from the Orbiter Federation
SOA authentication/authorization infrastructure.

Replay of message: Attackers cannot repeat a RESTful request to secure Orbiter Federation
services, as subsequent identical requests wil l be rejected. Attackers cannot alter the user-provided
expiration t ime without breaking the RSA signature.

Replay of message parts: An Orbiter RESTful service request is not complete without a valid
signature that is applied to all other message parts. Attackers cannot construct a new request from
any part of a previous request without altering the service request canonical string resource
identif ier and generating a valid signature.

Denial of service*: The denial of service propensity is greatly reduced by the l isted security
measures in place at the current t ime within the Orbiter Federation SOA. Furthermore, more specif ic
measures are planned which wil l ban specif ic offending IP addresses to further reduce the threat.
*Distributed Denial of Service (DDOS) attacks, however, are extremely diff icult to defend against
uti l izing known security measures.

Scalable Infrastructure

The Orbiter Federation SOA is able to provide these security measures without a signif icant impact on
quality of service or turnaround time. A noop ("no operation") service with ful l validation, authorization,

and connection to the underlying data layer has been timed at 1x10-6 seconds. The average Orbiter

PRODUCTS SERVICES CORPORATE RESEARCH DOWNLOADS

PROTECTED CRADA INFORMATION BNL-101061-2013

Federation full service request has been observed to take roughly 2x10-2 seconds to complete, depending
on the request. The Orbiter Virtual File System (VFS), built on Orbiter Federation services, has f ielded
over 50 mil l ion of these secure service requests since February of 2010.

The flexible and secure infrastructure of the Orbiter Federation SOA allows it to provide robust Software-
as-a-Service (SaaS) capabil i t ies to its cl ients. Orbiter is capable of providing complex objects, dynamic
charts, raw data, and data f i les, forming a solid foundation of valuable resources upon which end-user
interfaces can be built.

Above: The Orbiter Federation Virtual File System combines a series of Web Services and thin- and
thick-client interfaces to support experiment data at a DOE National Laboratory. As this graph indicates,

VFS usage has swelled over the years to support more than 3.7 million files totall ing over 51
Terabytes of data , and fielding millions of secure service requests.

Federation SOA in Action

Orbiter Federation Web Services are already being used to support a number of init iatives at the Tech-X
Corporation, enabling thin- and thick-client interfaces that support a number of users. Highlights include:

Orbiter Virtual File System

The Orbiter Virtual File System (VFS) supports facil i ty
and experiment repository data access for the DOE
National Laboratory. The Orbiter VFS provides
services that enable (a) summary dashboards and
Quality of Service (QoS) metrics, (b) data repository
NeXus fi le ful l text search capabil i t ies, (c) ful ly
functional role-based fi le browser, (d) user/group
defined metadata for data repository f i les, (e) user,
group, repository, and web 2.0-based global
posit ioning with addit ional service capabil i t ies.

Learn more...

PROTECTED CRADA INFORMATION BNL-101061-2013

For project details, please contact Orbiter PI,
Mark L. Green.

Orbiter Bilder Dashboard

Orbiter Federation services support Bilder, an internal
LCF-applicable unix-oriented package management
system. These services enable the Orbiter Pilot Bilder
Dashboard and the Orbiter Commander BilderBench,
which use current and historical cross-platform build
information to provide a number of different
capabil i t ies that support Tech-X users.

PRODUCTS | SERVICES | CORPORATE | RESEARCH | DOWNLOAD © 2005-2011 Tech-X Corporation

Privacy Policy | Legal Statement | Service & Support | Career Opportunities | Contact Us

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

SEARCH

ORBITER

About the Project

Orbiter Federation Services

Orbiter Pilot

Orbiter Commander

Orbiter Collective

Release Schedule

Orbiter Collective
The Orbiter Collective is the fourth t ier of the Orbiter
infrastructure, pull ing together the Federation SOA,
thin-client Pilot and thick-client Commander Application
Framework to provide a set of tools for customizing a
wide variety of end-user interfaces. The Orbiter

Collective allows anyone to be the developer, providing a platform exposing
Orbiter capabil i t ies as plug-and-play components.

Secure Services at Your Fingertips

The experienced developer has been able to leverage the Orbiter Federation SOA from the beginning,
using the standards-based implementation of i ts web services. WSDL 2.0 support defines Orbiter web
service parameters, al lowing service capabil i t ies to be automatically consumed and used within other
applications. Client-configurable response formats are enabled through the simple RESTful web service
interface, al lowing responses to be consumed as XML, JSON, and other custom formats.

Using secure Web Service signatures is as easy as signing up for an Orbiter account. Bindings for
creating signed service requests are already available in Java , BeanShell, Perl, Python, C++,
JavaScript, and PHP, and this set continues to grow. Contact us to f ind out how we can get you started
using secure Orbiter Federation services and applications today.

Pilot Your Dashboard

The thin-client Orbiter Pilot is already using Orbiter Federation web services to seamlessly deliver its
underlying capabil i t ies to the end-user. Web-based forms, the tradit ional means of providing interactive
and configurable web interfaces, have provided a wide range of powerful interfaces for Pilot uers.

Our next step moves beyond the form , delivering infinite possibil i t ies through a ful ly configurable web
application platform. Exposing Orbiter Federation services as pluggable web components, we can allow on-
click customization of service calls that can be saved as drag-and-drop interface widgets. Users wil l be
able to create their ful ly customized dashboard interface in minutes, permitt ing even the most
inexperienced users to consume Orbiter services as soon as they are created.

Command Your Application

The thick-client Orbiter Commander is already using Orbiter Federation web services to deliver its wide
range of modules to the end-user. By leveraging the Eclipse Rich Client Platform (RCP) and Eclipse's p2
provisioning system Commander is able to deliver seamlessly updateable modules through a point-and-
click interface. Users can add new capabil i t ies to their Commander instance as they are published to the
designated Commander update site.

Our next step puts the user in the driver's seat , al lowing users to create their own modules directly
using Orbiter Federation web services. The flexible Commander Application Framework wil l al low users to
browse available services and incorporate them directly into their installation, al lowing them to generate
new interfaces and modules on-the-fly with a simple step-by-step configuration process.

The Collective in Action

We have already begun laying the groundwork for the Orbiter Collective, with several examples of this

PRODUCTS SERVICES CORPORATE RESEARCH DOWNLOADS

PROTECTED CRADA INFORMATION BNL-101061-2013

already in-use on a number of Tech-X init iatives. Highlights include:

Orbiter Federation Explorer

Commander provides the Orbiter Federation
Explorer, a module which wil l display all available
Orbiter Federation SOA providers and services.
Selecting a service wil l automatically retrieve its
service documentation, API, WSDL 2.0 and parameter
schema. Users can interact with these services
directly using a dynamically-generated testing
interface. We have begun laying the groundwork for
an export feature, al lowing the user to export a
dynamically-created service stub in the language
binding of their choosing.

Pilot Service Explorer

Current init iatives on the Orbiter project are
enhancing the capabil i t ies of the Orbiter Pilot
interface to allow Orbiter Federation service browsing
through a web interface, similar to what is provided
through Commander. This represents the first steps in
developing a ful ly user-customizable mashup
interface, where users wil l be able to save configured
service calls and add them to their dashboards.
Future work wil l enable rich drag-and-drop
functionality, al lowing users to create new dashboard
widgets in minutes.

Workflow Management Integration

Scientif ic Workflow Management Systems have
become popular as point-and-click tools for designing
complex workflows and in silico experiments. Systems
like the open source Taverna suite provide simple
ways of hooking together various remote and local
processes to create repeatable workflows. We have
already proven that we can integrate Orbiter
Federation secure web services into a Taverna
scientif ic workflow. Future work wil l involve
streamlining this process and making the Orbiter
Federation SOA even more accessible to other
popular workflow managers.

PROTECTED CRADA INFORMATION BNL-101061-2013

For project details, please contact Orbiter PI,
Mark L. Green.

PRODUCTS | SERVICES | CORPORATE | RESEARCH | DOWNLOAD © 2005-2011 Tech-X Corporation

Privacy Policy | Legal Statement | Service & Support | Career Opportunities | Contact Us

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

3.3 Product Sheet

We have produced a product sheet detailing the capabilities of the Orbiter project which
was developed in conjunction with this effort. We have attached the product sheet in the
following pages.

121

PROTECTED CRADA INFORMATION BNL-101061-2013

TECH-X CORPORATION

ORBITER
Federation - Pilot - Commander - Collective

Integrated	
 Solutions:	
 Orbiter	
 provides	
 a	
 powerful	
 and	
 7lexible	

application	
 framework,	
 from	
 versatile	
 user	
 interfaces	
 to	
 a	

sophisticated	
 and	
 secure	
 Service	
 Oriented	
 Architecture.	

Federation	
 provides	
 a	
 robust	
 and	
 scalable	
 Service	
 Oriented	
 Architecture	
 of	
 RESTful	

web	
 services,	
 delivering	
 powerful	
 capabilities	
 via	
 lightweight	
 service	
 calls.

Pilot	
 delivers	
 Federation	
 services	
 through	
 a	
 thin	
 web	
 client.	
 This	
 portal,	
 accessible	

from	
 any	
 web	
 browser,	
 offers	
 Orbiter	
 capabilities	
 in	
 an	
 easy-­to-­use	
 web	
 interface.

Commander	
 is	
 a	
 desktop	
 application	
 that	
 provides	
 access	
 to	
 Federation	
 services	

while	
 allowing	
 Orbiter	
 capabilities	
 to	
 integrate	
 directly	
 with	
 local	
 resources.

Collective	
 opens	
 the	
 door	
 to	
 Orbiter	
 integration	
 with	
 other	
 third	
 party	
 capabilities,	

laying	
 the	
 groundwork	
 for	
 advanced	
 collaboration	
 across	
 a	
 wide	
 range	
 of	

technologies.

ORBITER	
 is	
 an	
 end-­‐to-­‐end	
 framework	
 delivering	
 fast	
 and	
 secure	

solutions	
 as	
 both	
 thin-­‐client	
 web	
 and	
 thick-­‐client	
 desktop	

applications.	
 Combining	
 sophisticated	
 end-­‐user	
 applications	
 with	
 a	

robust	
 Service	
 Oriented	
 Architecture,	
 ORBITER	
 provides	
 a	
 versatile	

set	
 of	
 solutions	
 to	
 a	
 variety	
 of	
 problems.	
 Through	
 its	
 four	
 layers,	

Federation,	
 Pilot,	
 Commander,	
 and	
 Collective,	
 ORBITER	
 represents	
 a	

Flexible	
 and	
 highly	
 customizable	
 framework	
 for	
 rapidly	
 developing	

robust	
 solutions.	

Federation	
 services	
 build	
 on	
 industry	

standards	
 to	
 deliver	
 fast	
 and	
 secure	

capabilities	
 to	
 end-­‐user	
 applications.	
 These	

easy-­‐to-­‐use	
 services	
 encapsulate	
 the	
 business	

logic	
 of	
 complex	
 applications,	
 serving	
 as	
 a	

powerful	
 engine	
 for	
 end-­‐user	
 applications.	

Orbiter’s	
 Pilot	
 and	
 Commander	
 offer	
 a	
 variety	

of	
 rich	
 end-­‐user	
 interfaces,	
 leveraging	
 the	

capabilities	
 of	
 the	
 underlying	
 Federation	

layer	
 to	
 build	
 sophisticated	
 and	
 highly	
 tailor-­‐
able	
 applications.	
 Collective?

PROTECTED CRADA INFORMATION BNL-101061-2013

TECH-X CORPORATION
5621 ARAPAHOE AVE, SUITE A | BOULDER, CO 80303
TEL: +1 303 448 0727 | FAX: +1 303 448 7756
SALES@TXCORP.COM | https://orbiter.txcorp.com/facets/orbiter

ORBITER

Orbiter	
 is	
 a	
 registered	
 trademark	
 of	
 Tech-­‐X	
 Corporation.	
 Tech-­‐X	
 is	
 a	
 registered	

trademark	
 of	
 Tech-­‐X	
 Corporation.	
 All	
 other	
 trademarks	
 are	
 the	
 property	
 of	
 their	

respective	
 owners.

Supports	
 Multiple	
 Platforms	
 and	
 Standard	
 Hardware
Orbiter’s	
 Service	
 Oriented	
 Architecture	
 and	
 Orbiter	
 Pilot	
 run	
 on	
 ???.	
 Orbiter’s	

Pilot	
 web	
 portal	
 is	
 accessible	
 via	
 any	
 web	
 browser,	
 and	
 Orbiter’s	
 Commander	

desktop	
 application	
 is	
 supported	
 on	
 Linux,	
 Mac	
 OS	
 X,	
 Windows,	
 Solaris,	
 AIX,	

and	
 HP-­‐UX.

About	
 Tech-­X	
 Corporation
At	
 Tech-­‐X,	
 we	
 address	
 speciKic	
 research	
 questions	
 in	
 science	
 and	
 engineering	
 by	
 applying	
 our	
 expertise	
 in	
 high-­‐performance	
 computing,	

modeling	
 and	
 data	
 analysis,	
 physics,	
 grid	
 computing,	
 and	
 HPC	
 infrastructure	
 (visualization,	
 remote	
 data	
 access).	
 Software	
 solutions	

developed	
 as	
 part	
 of	
 our	
 research	
 efforts	
 also	
 support	
 industries	
 such	
 as	
 aerospace	
 and	
 semiconductor	
 manufacturing.

Versatile	
 Solutions
Orbiter	
 is	
 capable	
 of	
 providing	
 a	
 wide	
 variety	
 of	
 solutions,	
 from	
 Kile	

management	
 applications	
 to	
 monitoring	
 and	
 information	
 gathering	

services.	
 Sophisticated	
 dashboards	
 and	
 end-­‐user	
 interfaces	
 can	
 easily	
 be	

customized	
 for	
 a	
 wide	
 variety	
 of	
 solutions.

Consulting	
 Services
Tech-­‐X	
 Corporation	
 offers	
 product	
 training	
 and	
 application	
 consulting	
 to	

help	
 you	
 leverage	
 your	
 investment	
 in	
 Orbiter	
 as	
 quickly	
 as	
 possible.	
 	
 We	

offer	
 full	
 application	
 development	
 to	
 tailor	
 Orbiter’s	
 Pilot	
 and	

Commander	
 clients	
 to	
 your	
 speciKic	
 needs.

Scalability
Orbiter	
 solutions	
 are	
 inherently	
 scalable,	
 where	
 Federation,	
 Pilot,	
 Commander,	
 and	
 Collective	
 each	
 build	
 modular	
 capabilities	
 that	
 are	

focused	
 on	
 particular	
 needs.	
 Orbiter	
 solutions	
 have	
 been	
 applied	
 in	
 a	
 number	
 of	
 situations	
 that	
 require	
 the	
 management	
 and	
 retrieval	
 of	

large	
 amounts	
 of	
 information.	

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

3.4 Project Whitepaper

We have produced an internal company whitepaper detailing the capabilities of the Orbiter
project which was developed in conjunction with this effort. We have attached this whitepa-
per in the following pages.

124

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

CWS4DB: A CUSTOMIZABLE WEB SERVICE FOR EFFICIENT
ACCESS TO DISTRIBUTED NUCLEAR PHYSICS RELATIONAL

DATABASES

May 26, 2011

Contents

1 Executive Summary 2

2 CWS4DB Architecture 3

3 Orbiter Integrated Solution 4

3.1 Orbiter Federation . 4

3.2 Orbiter Multitier Portal Architecture . 5

3.3 Orbiter Security Model . 6

4 Key Challenges & Technical Capabilities 7

5 Conclusion 10

6 About Tech-X Corporation 10

References 11

This project is funded by Phase I and II DOE BES SBIR Grant :
DE-FG02-07ER84757

Keywords: Customizable Web Service, Distributed Relational Database, Nuclear Physics, Code
Generation, OGSA-DAI, Globus Grid Middleware, On-Demand Resource, Application

Framework, Scalability, Reusability, Client-server Architectures, SOA

http://orbiter.txcorp.com
orbiter@txcorp.com

1

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

1 Executive Summary

An increasing fraction of the data generated in Nuclear Physics (NP) experiments are managed in
distributed and relational databases. As the size of this data grows and the collaborative nature of
NP experiments increases, the ability to access differently organized relational databases remotely,
efficiently and yet in a user-friendly and interoperable manner is becoming very important. Tech-
X has developed a customizable Web service, CWS4DB (Customizable Web Service for Efficient
Access to Distributed Nuclear Physics Relational Databases), for efficient access to distributed NP
databases and NP analysis jobs in ROOT framework by implementing a high-level client emu-
lating the STAR C++ API. This system comprises a generic Web service for accessing arbitrary
distributed relational databases, a reference client for the Solenoidal Tracker at RHIC (STAR) at
Brookhaven National Lab (BNL) and a tool for the creation of high-level and domain-specific
clients. Web services are open standards-based, modular, distributed, dynamics web applications
that are self described, published, located, or invoked over the internet. The STAR experiment
studies quark-gluon plasma (QGP)[1], state of matter believed to exist at sufficiently high energy
densities[2]. This experiment, at BNL, conducts simultaneous studies using several types of spe-
cialized detectors. These Web services are able to address the distributed and heterogeneous nature
of the databases by building the Web services on top of OGSA-DAI which provided mechanisms
for the coordination of various data resources. The problem of providing high-level quires for
many different NP applications has been overcome by generating a customized interface on top of
the vendor relational database connector APIs for the Web service client.

Each component of the CWS4DB design involved a separate piece of technical functionality that is
implemented in way that can be exercised in the STAR computing environment, yet developed in
a general way for application to other NP projects. CWS4DB has provided a set of software tools
and services that can be easily adapted by the NP application developer. The abstraction of the
details of the database query languages is invaluable to making collaborative efforts possible for
US physicist in remote experiments in Europe which in turn will allow NP scientist to concentrate
more on science. By providing efficient and fast service for application programmers where they
do not need to know where the actual data resides is a great benefit to computational scientist.

Relational databases are widely used in many scientific and commercial applications, therefore, by
building a generic bridge between distributed relational databases and high-end users CWS4DB
will allow for more efficient and productive work. Many scientific applications running on the
Grid need to access data from distributed and heterogeneous relational databases. These appli-
cations can directly benefit various elements of CWS4DB. As distributed computing based on
Service Oriented Architecture becomes more mainstream, the techniques and advances made by
CWS4DB will be applicable directly to business and engineering fields where a commercial mar-
ket for ”computing on demand” and where users wish to access their databases more efficiently
already exists.

http://orbiter.txcorp.com
orbiter@txcorp.com

2

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

2 CWS4DB Architecture

Figure 1: CWS4DB Architecture Diagram

The CWS4DB system architecture, shown in Figure 1 was developed from the successful comple-
tion of our previous investigations and input from our Nuclear Physics collaborators who provided
co-ordination of the discussions between the sites and the experiments. The CWS4DB system
is now a production-quality, load-balanced, auto-caching, grid-enabled, fault-tolerant, on-demand
system. It will use the Globus Grid middleware and implement the Web service in Java. As a ref-
erence implementation, Tech-X has developed a prototype high-level client emulating the STAR
C++ API to use in the NP analysis jobs in ROOT framework.

The CWS4DB web services are built top of OGSA-DAI to take advantage of its support for ac-
cessing the distributed and heterogeneous databases as well as the community development. The
OGSA-DAI data resources shown at the top of this figure are configured via the CWS4DB User In-
terface (UI). The CWS4DB MySQL specific or generic SQL provide user code bindings and have
the capability of generating Web Service query requests to the Data Resource Node CWS4DB ser-
vice. The proposed query auto-caching capability described later is denoted in the above Figure 1
as the queryCache, this is where the cached query results are stored on the Execution Node while
the Data Resource Node are where the main CWS4DB Web Services reside. The CWS4DB Load
Balancing Infrastructure stores the data resource node statistics in a local database or file and also
transmits them to the centralized Master Load Balancing Host.

http://orbiter.txcorp.com
orbiter@txcorp.com

3

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

3 Orbiter Integrated Solution

Orbiter is a modular and extensible end-to-end application framework capable of delivering fast
and secure solutions through both thin-client web access and thick-client desktop application suites
and modules. Application frameworks organize their capabilities in well-defined abstraction layers
and provide points for extending functionality for future development. Orbiter solutions are scal-
able and they include Federation, Pilot, Commander and Collective where each can build modular
capabilities that are focused on individual requirements. Orbiter Commander provides a robust and
highly customizable user interface built on the Orbiter Federation Service Oriented Architecture.
Orbiter is built upon many industry standers and frameworks such as: Representational State Trans-
fer (REST), Web Services Description Language (WSDL), Extensible Markup Language (XML),
OSGi R4 core framework specification, and Eclipse Rich Client Platform (RCP).

3.1 Orbiter Federation

Orbiter Federation provides a Service Oriented Architecture (SOA)[3][4] of web services which
delivers powerful, lightweight, secure and scalable capabilities. Federation is the data and logic
tiers that provide remote functionality. Federation is used to encapsulate much of the lifecycle and
infrastructure associated with an Orbiter service implementation, enabling the more streamlined
development of all of the Orbiter services. This component allows services to define their prop-
erties and business logic in a more straightforward manner, allowing the Orbiter services to be
more maintainable and stable as the infrastructure continues to grow. An overview of the Orbiter
Federation is shown below in Figure 2

Figure 2: Orbiter Federation SOA Overview

http://orbiter.txcorp.com
orbiter@txcorp.com

4

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

The Orbiter Commander Federation Explorer module provides an interactive interface for brows-
ing and testing Orbiter web services. An Orbiter web service interface was created that returns the
base stations, network nodes, and available services for an Orbiter host endpoint. This tool permits
Orbiter administrators to interact directly with the Orbiter web services for development and test-
ing purposes. After an Orbiter base station or network node is selected, a list of all Orbiter SOA
web services is provided, in groups by package names. Selecting a service will display its service
Application Programming Interface (API), Web Service Description Language (WSDL) definition,
and a schema, generated by the service itself to describe its capabilities and parameters. Orbiter
services are implemented as RESTful web services[5] that deliver this functionality through a well
defined API.

3.2 Orbiter Multitier Portal Architecture

The Multitier Portal Architecture (MPA)[6] implements the presentation tier of Orbiter’s three-tier
client-server architecture. The MPA provides scalable and sophisticated user interfaces by using
the Orbiter Federation SOA to build increasingly complex and customizable applications. This
layered approach maximizes the reuse of the developed infrastructure and services in successive
tiers. Tier I is implemented by the Orbiter Federation SOA and thin-client applets that utilize the
portal server for file transfers, visualization caching, and file meta-data transfers. Orbiter Pilot
implements tier II of this architecture, providing a thin-client and portlet layer of the MPA for
accessing Orbiter services. Orbiter Commander implements tier III of this architecture by provid-
ing a desktop application to end-users. Commander utilizes the Orbiter SOA to provide services
to end-users, while providing the capability for offline computing and integration with other lo-
cal desktop applications. Tier IV, the Orbiter Collective, is enabled by the flexible and modular
framework provided by Orbiter Commander and the underlying Orbiter SOA. Orbiter Collective is
a collaboratory for exchanging information and data and for applying Orbiter capabilities in new
ways. An overview of the MPA architecture is shown below in Figure 3

http://orbiter.txcorp.com
orbiter@txcorp.com

5

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

Figure 3: Multitier Protal Architecture

3.3 Orbiter Security Model

The flexible and secure infrastructure of the Orbiter Federation SOA allows it to provide robust
Software-as-a-Service (SaaS) capabilities to its clients. The security measures taken have allowed
the Orbiter Federation SOA to pass the Oak Ridge National Lab security audit for usage and
deployment to their site. These measures address 8 of the 9 top security threats facing web services
as identified by the Web Services Interoperability Organization.[7][8] These include:

Message alteration: Attackers cannot alter an Orbiter request without breaking the RSA SHA
hash signature. Orbiter will reject a request that does not match canonical string signed resource
identifier for the specified Orbiter access key ID.

Loss of confidentiality: The SSL protocol ensures that Orbiter service transactions are handled
privately and provides transport-level encryption.

Falsified messages: Secure Orbiter services cannot be reached without a signed canonical string
resource identifier that matches the signature for the specified Orbiter Federation SOA resource
address.

Man in the middle: The SSL protocol prevents an attacker from reviewing requests and responses
send securely between the Orbiter Federation SOA web services and their clients.

Principal spoofing: The Orbiter infrastructure is the only provider of valid Orbiter access key
identifiers and RSA private keys that are authorized to use Orbiter Federation SOA secure web

http://orbiter.txcorp.com
orbiter@txcorp.com

6

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

services.

Forging claims: Attackers cannot create valid Orbiter Federation SOA service requests without
obtaining an Orbiter access key identifier and valid RSA private key from the Orbiter Federation
SOA authentication/authorization infrastructure.

Replay of message: Attackers cannot repeat a RESTful request to secure Orbiter Federation ser-
vices, as subsequent identical requests will be rejected. Attackers cannot alter the user-provided
expiration time without breaking the RSA signature.

Replay of message parts: An Orbiter RESTful service request is not complete without a valid
signature that is applied to all other message parts. Attackers cannot construct a new request
from any part of a previous request without altering the service request canonical string resource
identifier and generating a valid signature.

Denial of service: The denial of service propensity is greatly reduced by the listed security mea-
sures in place at the current time within the Orbiter Federation SOA. Furthermore, more specific
measures are planned which will ban specific offending IP addresses to further reduce the threat.

4 Key Challenges & Technical Capabilities

By working closely with our STAR BNL collaborators in understanding the database access pat-
terns generated for the typical STAR root4star user and production jobs, Tech-X has determined
that a query aggregation algorithm would not be appropriate. This is due to the fact that an average
root4star job will generate ˜500K database queries, with the resulting data size of a typical query
being ˜120 bytes.

The OGSA-DAI infrastructure has some significant limitations in utilizing SOAP messaging ex-
clusively. We have identified that a RESTful interface for the CWS4DB infrastructure and Data
Services will provide faster accesses by a factor of 2. Furthermore, by optimizing the interface
object definitions with JSON instead of XML will provide a significant boost in performance with
a significant reduction in the required network bandwidth.

A tiered deployment based protocol has also been developed for CWS4DB system due to the the
possibility of remote servers that may have limited internet bandwidth and/or high latency issues.
This was facilitated by implementing RESTful web services that use an easy and user-friendly
configuration files to provide a high quality of service to support the tiered deployment based on
the remote server configurations, internet band width, user needs and system capabilities. The
RESTful service architecture allowed for more the streamlined development of Orbiter Services,
and Orbiter infrastructure versioning was adopted to promote a flexible stable system of releases.

The STAR resource Monitor module helps users track live status of STAR databases. Using Orbiter
Federation RESTful web services, this module lists available resources and displays an interactive

http://orbiter.txcorp.com
orbiter@txcorp.com

7

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

Google map displaying detailed resource information. This module also provides real-time charts
and tables presenting this information, allowing users to choose the best presentation in order to
understand the states of available STAR NP database resources. Once this data is available via
an Orbiter web service, this tool will be able to give users up-to-the-minute information on the
performance of STAR resources. An example of this interactive map is shown in Figure 4

	
 Figure 4: Real-Time STAR Resource Statistics

Commander also provides a STAR Simulator module for running queries against available NP
database resources. Using this module users may run a STAR input file against any host, specifying
the output format, whether or not to perform the query (or a no-op operation), use the query cache,
or to use validation, allowing this service to be tested wherever it is deployed. Service round-
trip timings can be displayed to benchmark the services between resources as well, providing a
powerful tool for interacting with the STAR query service. Together these modules add value to
the STAR web service development initiative. Using STAR resources Monitor, resources can be
chosen from the monitor and used in the Simulator module, allowing users to systematically test
the performance of the available STAR NP databases.

http://orbiter.txcorp.com
orbiter@txcorp.com

8

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

	
 Figure 5: Orbiter Federation STAR Simulator

The Orbiter Commander Python Interpreter module allows users to interact with their command-
line python installation on their local machines. By configuring Commander to use the path to an
existing python installation, this module is capable of executing single or multi-line Python scripts
entered via a command prompt, or can execute existing Python scripts that are loaded from an
external file. The Commander Python Interpreter module can be used to execute a Python script
that tests an Orbiter web service with a service URI specified as a command-line argument.

We have developed a developed a Query service to provide a two level auto-caching algorithm
to increase the effective system performance. This was done by caching the query results on
proxy servers at different levels of network and then making them available for other servers in the
network. When a request comes in and if the query result was not found in cached files list on this
requested server and is available in one of the proxy servers in the network, the cache file will be
retrieved rather than making a call to the database server. The function of a proxy server that caches
query result on the servers hard disk so that the result can be quickly retrieved by the same or a
different user the next time that query is requested. The proxy cache eases bandwidth requirements
and reduces delays that are inherent in a heavily trafficked, Internet-connected network.

The authentication and authorization for multiple Virtual Organizations (VOs) is essential for de-
livering a high quality of service with user-friendly management capabilities. We employed the
standard GSI security, authentication, and authorization methods available within the Globus in-
frastructure for CWS4DB. Only an authenticated and authorized user can set vo (virtual organi-
zation name) and role (his role in the organization) for Multi-VO Role-Based caching. When a
query request is made with vo and role, first the service will look for any cached files in the cache
folder created for the specific Virtual Organization and the cache file will be retrieved rather than

http://orbiter.txcorp.com
orbiter@txcorp.com

9

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

making a call to the database server. An authenticated and authorized user has the ability to get,
list, delete and recreate the Multi-VO Role-Based cache by using OrbiterCacheFileService and by
passing virtual organization name and role.

Dynamic On-Demand Data Resource Access will provide a STAR MySQL database instance using
the Virtual Workspaces infrastructure, Sun Grid Utility Computing resources for use with Grid
deployments. This on-demand service will implement Virtual Workspace infrastructure (Nimbus)
developed at Argonne National Laboratory. This database can then be integrated with CWS4DB
data resource nodes as a data resource for providing additional load balancing capabilities. An
authorized user can add a new db resource to the list by using the Query DB Connection String
Service and the load balancer sets the ranking based on weighted score and make it available to
use by the query service and other services. That way every time a new database resource node is
added to the virtual work stations on demand it will be made available for all the services to use.

We have implemented 3 levels of fault resilient mechanism in our services. Our query service
uses Load Balancer to get the top three high ranked active database resources available to make a
connection. If the first resource fails to connect for some reason it will try connect second and third
resources and keeps them as an array of available data resources for querying. When the database
query fails at one of the resources it will try the other resources available in the database resources
array. The service will trigger an error only if all the fault resilient mechanisms are failed. The
number of database resources can be changed and can be set in the requesting query service to
make it more fault resilient system when more db resources are available for use.

5 Conclusion

CWS4DB was created and developed with the intention of aiding in the management and analysis
of massive, distributed and heterogeneous Neutron Physics databases created by the work done
at the STAR experiment. Using the robust, secure and customizable web services offered by the
Orbiter Federation SOA to access distributed relational databases and utilize the STAR C++ API
which has been integrated with root4star, CWS4DB is able to allow NP and HEP users to focus on
science and other critical tasks rather than on database maintenance. Orbiter and Orbiter Comman-
der also provides a sophisticated desktop application while enabling offline computing capabilities
and integration with other local applications. Future work for CWS4DB could include extending
this service to different scientific and commercial applications which will take advantage of the
generic bridge between distributed and heterogeneous relational databases and high-end users.

6 About Tech-X Corporation

At Tech-X, we address specific research questions in science and engineering by applying our
expertise in high-performance computing, modeling and data analysis, physics, grid computing,

http://orbiter.txcorp.com
orbiter@txcorp.com

10

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
http://www.txcorp.com

CWS4DB: A Customizable Web Service for Efficient Access to
Distributed Nuclear Physics Relational Databases

and HPC infrastructure (visualization, remote data access). Software solutions developed as part
of our research efforts also support industries such as aerospace and semiconductor manufacturing.

The Systems Integration Group at Tech-X Corporation has a wealth of experience in tailoring
integrated solutions to individual needs. Orbiter Virtualization has been in use for several years
with tremendous success, and Orbiter Federation services, Pilot browser client and Commander
desktop application are designed to be easily customized to fit your needs. We offer full application
development to tailor Orbiter solutions to your specific needs.

Sean Burley (sburley@txcorp.com) is a software developer and an Orbiter developer at Tech-X Corporation.

Tech-X Corporation
5621 Arapahoe Ave. Suite A

Boulder, CO 80303

http://orbiter.txcorp.com
orbiter@txcorp.com

References

[1] “The star experiment at the relativistic heavy ion collider, brookhaven national lab, [online].”
http://www.star.bnl.gov/, 2011.

[2] “The star experiment at the relativistic heavy ion collider, brookhave national lab: The physics of a star, [online].”
http://www.star.bnl.gov/central/physics/, 2011.

[3] “A methodology for service architectures oasis draft.” http://www.oasis-
open.org/committees/download.php/15071, 2005.

[4] “Orbiter virtual file system service oriented architecure interfaces.” https://orbiter.sns.gov.

[5] U. o. C. I. R.T. Fielding, Ph.D. Dissertation, “Architectural styles and design of network-based software architec-
tures.” http://www.ics.uci.edu/fielding/pubs/dissertation/top.htm, 2000.

[6] M. Green and S. Miller, “Multitier portal architecture for thin and thick-client neutron scattering experiment
support.” M. Pierce, Ed. Internatiopnal Workshop on Grid Computing Enviroments (GCE), November 2007.

[7] A. S. T. Winograd and N. U. D. o. C. S. P. .-. K. Scarfone, “Guide to secure web servies: Recommendations of the
national institute of standards and technology.” http://csrc.nist.gov/publications/nistpubs/800-95/SP800-95.pdf,
Augest 2007.

[8] “Web services interoperabilty organization.” http://www.ws-i.org/.

http://orbiter.txcorp.com
orbiter@txcorp.com

11

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

4 Documentation

4.1 RESTful Service Documentation

The following pages include the full service documentation for every RESTful web service
developed for this effort.

136

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterConnectivityService

Description
Description | Vars | Methods (details)

This is the Orbiter Connectivity service class.

Brief example of use:

 Create an instance of OrbiterConnectivityService
 $objService = new OrbiterConnectivityService;

 --

 Service name
 OrbiterConnectivityService.php

 --

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'noop'
 description: 'Perform a NOOP service request to determine Orbiter connectivity'
 with the service provider.'
 required attributes: ''
 optional attributes: ''
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'
 defaultValue: ''
 allowableValues: 'api', 'noop'

 attribute: 'html'
 description: 'Generate HTML compliant output byt replacing escaped character and use
 appropriate tagging and line returns.'

PROTECTED CRADA INFORMATION BNL-101061-2013

 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'json'
 allowableValues: 'json', 'api', 'schema'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: Tech-X Corporation
license: BSD License

Located in /OrbiterFederation/classes/OrbiterConnectivityService.class.php (line 132)

OrbiterService
 |
 --OrbiterConnectivityService

Method Summary
Description | Vars | Methods (details)

 OrbiterConnectivityService __construct ()

 void __destruct ()

 void processAttributes ()

 void processOperations ()

 void processServiceRequest ()

Variables
Description | Vars (details) | Methods (details)

Inherited Variables

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents
 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod
 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

Methods
Description | Vars Methods (details)

 Constructor __construct (line 136)

Constructs a new OrbiterConnectivityService.class instance

OrbiterConnectivityService __construct ()

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 153)

Destructs the OrbiterConnectivityService.class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 processAttributes (line 159)

Process the service attributes

access: protected

void processAttributes ()

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 168)

Process the service operations

access: protected

void processOperations ()

Redefinition of:

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceRequest (line 244)

PROTECTED CRADA INFORMATION BNL-101061-2013

Process the service request based on the operation the user specified

 --
 Usage: No required attributes

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterConnectivityService.php/operation/api

 Response: Returns the api of the service in 'json' format

 [{"service":"{Service Name}","attributes":{"operation":{"default":"","restrictions":
 [List of Operations]},..List of attributes}, "operations":{"0":[],"operation1":{"GET":
 {"description":"{Operation Description}","restrictions":{"required":[List of required attributes],
 "optional":[List of optional attributes]}}},..List of Operations}}]

 Usage: with optional attribute 'format'

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterConnectivityService.php/operation/api/format/api

 Response: Returns the api of the service in 'api' format as

 array(
 'service'=>{ServiceName},
 'attributes'=>array(
 'operation'=>array(
 'default'=>{Default Value},
 'restrictions'=>array(
 List of Allowable Values
)
),.. List of attributes
),
 'operations'=>array(
 'operation1'=>array(
 'method type'=>array(
 'description'=>{operation description}
 'restrictions'=>array(
 'required'=>array(
 List of required attributes,
)
 'optional'=>array(
 List of optional attributes
)
)
)
), .. List of operations
)
)

 --

 Usage: No required attributes

 operation: 'noop'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterConnectivityService.php/operation/noop

 Response: Returns the response time of the service without any operation in seconds

 --

access: protected

void processServiceRequest ()

PROTECTED CRADA INFORMATION BNL-101061-2013

Redefinition of:

OrbiterService::processServiceRequest()
Abstract function for the business logic for the service request

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()
 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()
 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()
 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

Documentation generated on Thu, 01 Dec 2011 13:50:11 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterErrorHandlerMessageService

Description
Description | Vars | Methods (details)

This is an error handler message service class which adds a class or an error message, lists an error
message,lists all the error messages of a class lists message template and delete an error message.It also
lists the service API.

Brief example of use:

 // Create an instance of OrbiterErrorHandlerMessageService
 $objService = new OrbiterErrorHandlerMessageService();

 --

 Service name
 OrbiterErrorHandlerMessageService.php

 --

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'template'
 description: 'List message template.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'deleteError'
 description: 'Delete an error message.'
 required attributes: 'errorNumber'
 optional attributes: 'format'
 service method: 'GET'

 operation:'listErrors'
 description: 'List error messages of the class'
 required attributes: 'className'
 optional attributes: 'format'
 service method: 'GET'

 operation:'listError'
 description: 'List error message'
 required attributes: 'errorNumber'
 optional attributes: 'format'
 service method: 'GET'

 operation:'addClass'
 description: 'Add a class'
 required attributes: 'className'
 optional attributes: 'format'
 service method: 'GET'

 operation:'addError'
 description: 'Add an error message'
 required attributes: 'className', 'name', 'message'
 optional attributes: 'format'
 service method: 'GET'

PROTECTED CRADA INFORMATION BNL-101061-2013

 operation:'updateClass'
 description: 'Update a Class'
 required attributes: 'className', 'newClassName'
 optional attributes: 'format'
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'
 defaultValue: ''
 allowableValues: 'api', 'template', 'deleteError', 'listErrors', 'listError', 'addClass', 'addError', 'updateClass'

 attribute: 'className'
 description: 'Specify the class name.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'newClassName'
 description: 'Specify the new class name.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'name'
 description: 'Specify the name.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'message'
 description: 'Specify the message.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'errorNumber'
 description: 'Specify the error number.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'text'
 allowableValues: 'json', 'api', 'xml', 'text'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: http://www.txcorp.com/
license: BSD License

Located in /OrbiterFederation/classes/OrbiterErrorHandlerMessageService.class.php (line 189)

OrbiterService
 |
 --OrbiterErrorHandlerMessageService

Method Summary
Description | Vars | Methods (details)

 OrbiterErrorHandlerMessageService __construct ()

 void __destruct ()

PROTECTED CRADA INFORMATION BNL-101061-2013

 void processAttributes ()

 void processOperations ()

 void processServiceRequest ()

Variables
Description | Vars (details) | Methods (details)

Inherited Variables

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents
 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod
 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress
 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

Methods
Description | Vars Methods (details)

 Constructor __construct (line 194)

Constructs a new OrbiterErrorHandlerMessageService class instance

OrbiterErrorHandlerMessageService __construct ()

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 213)

Destructs a OrbiterErrorHandlerMessageService class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 processAttributes (line 220)

Process the service attributes

access: protected

void processAttributes ()

PROTECTED CRADA INFORMATION BNL-101061-2013

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 232)

Process the service operations

access: protected

void processOperations ()

Redefinition of:

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceRequest (line 494)

Process the service request based on the operation the user specified

exception: E_USER_ERROR Orbiter Error 100:1017 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1043 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1002 E_USER_ERROR Error finding last inserted error message
exception: E_USER_ERROR Orbiter Error 100:1044 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1042 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1041 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1046 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1047 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1048 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1045 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1198 E_USER_ERROR The error message must be defined in
the form of {class ID:error ID}
exception: E_USER_ERROR Orbiter Error 100:1826 E_USER_ERROR The specified error name is invalid
exception: E_USER_ERROR Orbiter Error 100:1827 E_USER_ERROR The specified class name must be added
before adding error
exception: E_USER_ERROR Orbiter Error 100:1871 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1872 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1824 E_USER_ERROR Error finding last inserted class name
exception: E_USER_ERROR Orbiter Error 100:1822 E_USER_ERROR The specified error number is invalid
exception: E_USER_ERROR Orbiter Error 100:1200 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 100:1199 E_USER_ERROR The error message must be defined in
the form of {class ID:error ID}
exception: E_USER_ERROR Orbiter Error 100:1820 E_USER_ERROR The specified class name is invalid
exception: E_USER_ERROR Orbiter Error 100:1874 E_USER_ERROR The specified className doesn't exist

void processServiceRequest ()

Redefinition of:

OrbiterService::processServiceRequest()
Abstract function for the business logic for the service request

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()
 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()
 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

Documentation generated on Thu, 01 Dec 2011 13:50:25 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterFederationExplorerService

Description
Description | Vars (details) | Methods (details)

This is the Orbiter Federation Explorer service class.

 Brief example of use:

 Create an instance of OrbiterFederationExplorerService
 $objService = new OrbiterFederationExplorerService;

 --

 Service name
 OrbiterFederationExplorerService.php

 --

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'baseStations'
 description: 'List the Orbiter Federation SOA baseStations.'
 required attributes: ''
 optional attributes: 'list'
 service method: 'GET'

 operation: 'updateServices'
 description: 'Update the Orbiter Federation SOA services from the file system.'
 required attributes: ''
 optional attributes: ''
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'
 defaultValue: ''

PROTECTED CRADA INFORMATION BNL-101061-2013

 allowableValues: 'api', 'baseStations', 'updateServices'

 attribute: 'html'
 description: 'Generate HTML compliant output byt replacing escaped character and use
 appropriate tagging and line returns.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'list'
 description: 'List the Orbiter packages and Services along with Orbiter baseStations.'
 defaultValue: ''
 allowableValues: 'services'

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'json'
 allowableValues: 'json', 'api', 'schema'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: Tech-X Corporation
license: BSD License

Located in /OrbiterFederation/classes/OrbiterFederationExplorerService.class.php (line 144)

OrbiterService
 |
 --OrbiterFederationExplorerService

Variable Summary
Description | Vars (details) | Methods (details)

 array $_serviceArray

Method Summary
Description | Vars (details) | Methods (details)

 OrbiterFederationExplorerService __construct ()

 void __destruct ()

 void flushDatabase ()

 void processAttributes ()

 void processOperations ()

 void processServiceRequest ()

 void updateDatabase ()

 void updateServices (string $directory)

Variables
Description | Vars (details) | Methods (details)

 array $_serviceArray (line 156)

var: package/service names.

PROTECTED CRADA INFORMATION BNL-101061-2013

access: protected

Inherited Variables

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents
 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod
 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress
 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

Methods
Description | Vars (details) Methods (details)

 Constructor __construct (line 160)

Constructs a new OrbiterFederationExplorerService.class instance

OrbiterFederationExplorerService __construct ()

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 177)

Destructs a OrbiterFederationExplorerService.class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 flushDatabase (line 534)

Flush the service database tables.The database is first flushed before updating the service database
tables

PROTECTED CRADA INFORMATION BNL-101061-2013

exception: E_USER_ERROR Orbiter Error 161:1914 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 161:1916 E_USER_ERROR Orbiter service access must be
defined
exception: E_USER_ERROR Orbiter Error 161:1917 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 161:1918 E_USER_ERROR Orbiter version must be defined
exception: E_USER_ERROR Orbiter Error 161:1919 E_USER_ERROR Database query error

void flushDatabase ()

 processAttributes (line 183)

Process the service attributes

access: protected

void processAttributes ()

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 192)

Process the service operations

access: protected

void processOperations ()

Redefinition of:

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceRequest (line 329)

Process the service request based on the operation the user specified

 --

 Usage: No required attributes

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterFederationExplorerService.php/operation/api

 Response: Returns the api of the service in 'json' format

 [{"service":"{Service Name}","attributes":{"operation":{"default":"","restrictions":
 [List of Operations]},..List of attributes}, "operations":{"0":[],"operation1":{"GET":
 {"description":"{Operation Description}","restrictions":{"required":[List of required attributes],
 "optional":[List of optional attributes]}}},..List of Operations}}]

 Usage: with optional attribute 'format'

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterFederationExplorerService.php/operation/api/format/api

 Response: Returns the api of the service in 'api' format as

PROTECTED CRADA INFORMATION BNL-101061-2013

 array(
 'service'=>{ServiceName},
 'attributes'=>array(
 'operation'=>array(
 'default'=>{Default Value},
 'restrictions'=>array(
 List of Allowable Values
)
),.. List of attributes
),
 'operations'=>array(
 'operation1'=>array(
 'method type'=>array(
 'description'=>{operation description}
 'restrictions'=>array(
 'required'=>array(
 List of required attributes,
)
 'optional'=>array(
 List of optional attributes
)
)
)
), .. List of operations
)
)

 --

 Usage: No required attributes

 operation: 'baseStations'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterFederationExplorerService.php/operation/baseStations

 Response: Lists the basestations of the Orbiter Federation SOA in the format as

 {"bid":"1","name":"Oak Ridge National Laboratory Spallation Neutron Source ","FQHN":
 "orbit.sns.gov", "database":"MASTER","database_id":"1","use_ssl":"1",
 "stamp":"2010-09-22 09:41:40"}

 where
 'bid' denotes basestation id
 'name' denotes basestation name
 'FQHN' denotes Fully Qualified Host Name of the service provider
 'database' denotes if it is master or slave
 'database_id' denotes the database id
 'use_ssl' denotes if ssl should be used to communicate with the basestation
 'stamp' denotes the timestamp including date and time

 Usage: with optional attribute 'format'

 operation: 'baseStations'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterFederationExplorerService.php/operation/baseStations/list/services

 Response: Lists the basestations of the Orbiter Federation SOA in the format as

 {"bid":"2","package":"webservice","service":"OrbiterPolicyManagerService.php",
 "version":"trunk","use_ssl":"1"}

 where
 'bid' denotes basestation id
 'package' denotes web service package
 'service' denotes the name of the service
 'version' denotes the version of the service

PROTECTED CRADA INFORMATION BNL-101061-2013

 'use_ssl' denotes if ssl should be used to communicate with the basestation

 --

 Usage: No required attributes

 operation: 'updateServices'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterFederationExplorerService.php/operation/updateServices

 Response: Updates the Orbiter Federation SOA services in the database from the file system

 Usage: with optional attribute 'format'

 operation: 'updateServices'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterFederationExplorerService.php/operation/updateServices/format/json

 Response: Updates the Orbiter Federation SOA services in the database from the file system

 --

exception: E_USER_ERROR Orbiter Error 161:1656 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 161:1909 E_USER_ERROR Not a valid directory
exception: E_USER_ERROR Orbiter Error 161:1657 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 161:1908 E_USER_ERROR Orbiter service directory location must
be defined
access: protected

void processServiceRequest ()

Redefinition of:

OrbiterService::processServiceRequest()
Abstract function for the business logic for the service request

 updateDatabase (line 444)

Updates the service database tables

exception: E_USER_ERROR Orbiter Error 161:1911 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 161:1912 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 161:1913 E_USER_ERROR Database query error

void updateDatabase ()

 updateServices (line 395)

Updates the services in the database after reading from the file system

exception: E_USER_ERROR Orbiter Error 161:1910 E_USER_ERROR Directory is not readable

void updateServices (string $directory)

string $directory: absolute services directory path

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()
 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()
 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

Documentation generated on Thu, 01 Dec 2011 13:50:27 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterMasterSlaveDatabaseValidationService

Description
Description | Vars | Methods (details)

This class compares the Orbiter Master database tables with the Slave database tables.

Brief example of use:

 // Create an instance of OrbiterMasterSlaveDatabaseValidationService
 $objService = new OrbiterMasterSlaveDatabaseValidationService();

 --

 Service name
 OrbiterMasterSlaveDatabaseValidationService.php

 --

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'replaceTable'
 description: 'Replace table.'
 required attributes: 'table', 'key'
 optional attributes: 'repair', 'checkError', 'format'
 service method: 'GET'

 operation:'validateTable'
 description: 'Validate table.'
 required attributes: 'table', 'key'
 optional attributes: 'repair', 'checkError', 'format'
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'
 defaultValue: ''
 allowableValues: 'api', 'replaceTable', 'validateTable'

PROTECTED CRADA INFORMATION BNL-101061-2013

 attribute: 'table'
 description: 'table name that needs to be replaced/repaired.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'key'
 description: 'table column key ID.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'repair'
 description: 'when true existing table will be droped and '_new' table will replace the droped table.'
 defaultValue: 'false'
 allowableValues: 'true', 'false'

 attribute: 'checkError'
 description: 'when true checks for the query errors when table is replaced/repaired.'
 defaultValue: 'false'
 allowableValues: 'true', 'false'

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'json'
 allowableValues: 'json', 'api', 'xml', 'text'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: http://www.txcorp.com/
license: BSD License

Located in /OrbiterFederation/classes/OrbiterMasterSlaveDatabaseValidationService.class.php (line 153)

OrbiterService
 |
 --OrbiterMasterSlaveDatabaseValidationService

Method Summary
Description | Vars | Methods (details)

 OrbiterMasterSlaveDatabaseValidationService __construct ()

 void __destruct ()

 void processAttributes ()

 void processOperations ()

 void processServiceRequest ()

Variables
Description | Vars (details) | Methods (details)

Inherited Variables

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod
 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress
 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

Methods
Description | Vars Methods (details)

 Constructor __construct (line 158)

Constructs a new OrbiterMasterSlaveDatabaseValidationService class instance

OrbiterMasterSlaveDatabaseValidationService __construct ()

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 177)

Destructs a OrbiterMasterSlaveDatabaseValidationService class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 processAttributes (line 184)

Process the service attributes

access: protected

void processAttributes ()

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 196)

Process the service operations

PROTECTED CRADA INFORMATION BNL-101061-2013

access: protected

void processOperations ()

Redefinition of:

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceRequest (line 321)

Processes the service request based on the operation the user specified

exception: E_USER_ERROR Orbiter Error 124:1249 E_USER_ERROR Cannot stop slave database replication
exception: E_USER_ERROR Orbiter Error 124:1250 E_USER_ERROR Cannot lock master database table
exception: E_USER_ERROR Orbiter Error 124:1209 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 124:1208 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 124:1207 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 124:1251 E_USER_ERROR Cannot select from master database
table
exception: E_USER_ERROR Orbiter Error 124:1252 E_USER_ERROR Cannot unlock master database table
exception: E_USER_ERROR Orbiter Error 124:1256 E_USER_ERROR Cannot rename _new slave database
table
exception: E_USER_ERROR Orbiter Error 124:1255 E_USER_ERROR Cannot drop slave database table
exception: E_USER_ERROR Orbiter Error 124:1254 E_USER_ERROR Cannot insert record into _new slave
database table
exception: E_USER_ERROR Orbiter Error 124:1253 E_USER_ERROR Cannot create _new slave database table
exception: E_USER_ERROR Orbiter Error 124:1257 E_USER_ERROR Cannot start slave database replication

void processServiceRequest ()

Redefinition of:

OrbiterService::processServiceRequest()
Abstract function for the business logic for the service request

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()
 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()
 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()
 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

PROTECTED CRADA INFORMATION BNL-101061-2013

Documentation generated on Thu, 01 Dec 2011 13:51:08 -0500 by phpDocumentor 1.4.3
PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterNoopService

Description
Description | Methods (details)

This is authenticated RESTful service class for testing.

Brief example of use:

 // Create an instance of OrbiterNoopService
 $objService = new OrbiterNoopService();

 // Process the service request
 $objService->processRequest();

author: Krishna R. Kantam <krishna@txcorp.com>
author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: http://www.txcorp.com/
license: BSD License

Located in /OrbiterFederation/classes/OrbiterNoopService.class.php (line 75)

Method Summary
Description | Methods (details)

 OrbiterNoopService __construct ()

 void authenticateServiceRequest ()

 void defineServiceAttributes ()

 void endLogServiceRequest ()

 void logServiceRequest ()

 void processRequest ()

 void processServiceAttributes ()

 void processServiceRequest ()

 void processServiceResponse ()

 void setDatabaseConnections ()

Methods
Description | Methods (details)

 Constructor __construct (line 125)

Constructs a new OrbiterDasLogPushService.class instance

OrbiterNoopService __construct ()

PROTECTED CRADA INFORMATION BNL-101061-2013

 authenticateServiceRequest (line 174)

This authenticateServiceRequest function authenticates the service request and returns the
user id.

void authenticateServiceRequest ()

 defineServiceAttributes (line 197)

Defines service attributes default values.

void defineServiceAttributes ()

 endLogServiceRequest (line 287)

Ends logging the service request.

void endLogServiceRequest ()

 logServiceRequest (line 189)

Logs the service request.

void logServiceRequest ()

 processRequest (line 135)

Processes the web service request

void processRequest ()

 processServiceAttributes (line 212)

Get the service attributes from the authenticated service request and process the service
attributes.

void processServiceAttributes ()

 processServiceRequest (line 231)

Process the service request.

void processServiceRequest ()

 processServiceResponse (line 250)

Output service response.

exception: E_USER_ERROR Orbiter Error 101:1009 E_USER_ERROR 'Service Attribute Format'
unknown format request

void processServiceResponse ()

PROTECTED CRADA INFORMATION BNL-101061-2013

 setDatabaseConnections (line 160)

Initializes database conections.

void setDatabaseConnections ()

Documentation generated on Thu, 01 Dec 2011 13:51:12 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterQueryDbConnectionStringService

Description
Description | Vars | Methods (details)

This service provides the user an ability to add, update, and delete the database connection string
information; so that the user can manage database resources on demand.

Brief example of use:

 Create an instance of OrbiterQueryDbConnectionStringService
 $objService = new OrbiterQueryDbConnectionStringService();

 --

 Service name
 OrbiterQueryDbConnectionStringService.php

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'insert'
 description: 'Insert the connection string'
 required attributes: 'conStr', 'type'
 optional attributes: 'rank', 'hostType'
 service method: 'GET'

 operation:'update'
 description: 'Update the connection string'
 required attributes: 'conStr', 'type'
 optional attributes: 'rank', 'status', 'hostType'
 service method: 'GET'

 operation:'delete'
 description: 'Delete the connection string'
 required attributes: 'conStr'
 optional attributes: ''
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'
 defaultValue: ''
 allowableValues: 'api', 'insert', 'update', 'delete'

 attribute: 'html'
 description: 'Generate HTML compliant output by replacing escaped character and use
 appropriate tagging and line returns.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'conStr'
 description: 'Database Connection String'
 defaultValue: ''
 allowableValues: ''

PROTECTED CRADA INFORMATION BNL-101061-2013

 attribute: 'type'
 description: 'Type of the database'
 defaultValue: 'star'
 allowableValues: ''

 attribute: 'hostType'
 description: 'Type of Host'
 defaultValue: 'local'
 allowableValues: 'local', 'remote'

 attribute: 'status'
 description: 'Status of the Connection String'
 defaultValue: '1'
 allowableValues: '1', '0'

 attribute: 'rank'
 description: 'Database Rank'
 defaultValue: '0'
 allowableValues: ''

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'json'
 allowableValues: 'json', 'api', 'xml', 'text', 'custom'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Krishna R. Kantam <krishna@txcorp.com>
author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: http://www.txcorp.com/
license: BSD License

Located in /OrbiterFederation/classes/OrbiterQueryDbConnectionStringService.class.php (line 171)

OrbiterService
 |
 --OrbiterQueryDbConnectionStringService

Method Summary
Description | Vars | Methods (details)

 OrbiterQueryDbConnectionStringService __construct ()

 void __destruct ()

 bool deleteConstr ()

 bool insertConstr ()

 void processAttributes ()

 void processOperations ()

 void processServiceRequest ()

 bool updateConstr ()

Variables
Description | Vars (details) | Methods (details)

Inherited Variables

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents
 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress
 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

Methods
Description | Vars Methods (details)

 Constructor __construct (line 176)

Constructs a new OrbiterQueryDbConnectionStringService.class instance

OrbiterQueryDbConnectionStringService __construct ()

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 193)

Destructs a OrbiterQueryDbConnectionStringService class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 deleteConstr (line 469)

Deletes the connection string from db_constr table.

return: returns TRUE on success and FALSE on failure
exception: E_USER_ERROR Orbiter Error 150:1523 E_USER_ERROR Database query error

bool deleteConstr ()

 insertConstr (line 422)

Inserts the connection string into db_conStr table.

return: returns TRUE on success and FALSE on failure
exception: E_USER_ERROR Orbiter Error 150:1520 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 150:1524 E_USER_ERROR Database Connection string already
exists in the table
exception: E_USER_ERROR Orbiter Error 150:1521 E_USER_ERROR Database query error

bool insertConstr ()

 processAttributes (line 200)

Process the service attributes

access: protected

void processAttributes ()

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 213)

Process the service operations

access: protected

void processOperations ()

Redefinition of:

PROTECTED CRADA INFORMATION BNL-101061-2013

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceRequest (line 384)

Processes the service request based on the operation the user specified

 --

 Usage: No required attributes

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbConnectionStringService.php/operation/api

 Response: Returns the api of the service in 'json' format

 [{"service":"{Service Name}","attributes":{"operation":{"default":"","restrictions":
 [List of Operations]},..List of attributes}, "operations":{"0":[],"operation1":{"GET":
 {"description":"{Operation Description}","restrictions":{"required":[List of required attributes],
 "optional":[List of optional attributes]}}},..List of Operations}}]

 Usage: with optional attribute 'format'

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbConnectionStringService.php/operation/api/format/api

 Response: Returns the api of the service in 'api' format as

 array(
 'service'=>{ServiceName},
 'attributes'=>array(
 'operation'=>array(
 'default'=>{Default Value},
 'restrictions'=>array(
 List of Allowable Values
)
),.. List of attributes
),
 'operations'=>array(
 'operation1'=>array(
 'method type'=>array(
 'description'=>{operation description}
 'restrictions'=>array(
 'required'=>array(
 List of required attributes,
)
 'optional'=>array(
 List of optional attributes
)
)
)
), .. List of operations
)
)

 --

 Usage: With required attributes 'type' and 'conStr'

 operation: 'insert'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbConnectionStringService.php/operation/insert/type/star/
 conStr/ORBITERDBQ1

 Response: Returns success message with connection string and database type added to the database

 Connection string inserted successfully

 Usage: With optional attribute 'rank'

 operation: 'insert'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbConnectionStringService.php/operation/insert/type/star/
 conStr/ORBITERDBQ1/rank/1

 Response: Returns success message with connection string, database and of the user specified DB rank added to the database

 Connection string inserted successfully

PROTECTED CRADA INFORMATION BNL-101061-2013

 Usage: With optional attribute 'hostType'

 operation: 'insert'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbConnectionStringService.php/operation/insert/type/star/
 conStr/ORBITERDBQ1/hostType/remotehost

 Response: Returns success message with connection string, database and of the user specified DB host type added to the database

 Connection string inserted successfully

 --

 Usage: With required attributes 'type' and 'conStr'

 operation: 'update'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbConnectionStringService.php/operation/update/type/star/
 conStr/ORBITERDBQ1

 Response: Returns the success message indicating that the specified database was updated

 Connection string inserted successfully

 Usage: With optional attributes 'status'

 operation: 'update'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OOrbiterQueryDbConnectionStringService.php/operation/insert/type/star/
 conStr/ORBITERDBQ1/status/1

 Response: Returns the success message indicating that the specified database was updated

 Connection string inserted successfully

 Usage: With optional attributes 'hostType'

 operation: 'update'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OOrbiterQueryDbConnectionStringService.php/operation/insert/type/star/
 conStr/ORBITERDBQ1/hostType/remotehost

 Response: Returns the success message indicating that the specified database was updated

 Connection string inserted successfully

 Usage: With optional attributes 'rank'

 operation: 'update'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OOrbiterQueryDbConnectionStringService.php/operation/insert/type/star/
 conStr/ORBITERDBQ1/rank/1

 Response: Returns the success message indicating that the specified database was updated

 Connection string inserted successfully

 --

 Usage: With required attributes 'conStr'

 operation: 'delete'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OOrbiterQueryDbConnectionStringService.php/operation/delete/
 conStr/ORBITERDBQ1

 Response: Returns the success message indicating that the specified database was deleted

 Connection string deleted successfully

 --

void processServiceRequest ()

Redefinition of:

OrbiterService::processServiceRequest()
Abstract function for the business logic for the service request

 updateConstr (line 451)

Updates the connnection string in db_constr table by setting the rank and status.

PROTECTED CRADA INFORMATION BNL-101061-2013

return: returns TRUE on success and FALSE on failure
exception: E_USER_ERROR Orbiter Error 150:1522 E_USER_ERROR Database query error

bool updateConstr ()

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()
 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()
 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()
 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

Documentation generated on Thu, 01 Dec 2011 13:51:51 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterQueryDbLoadBalancerService

Description
Description | Vars | Methods (details)

This service is responsible for load balancing the query and other databases. Also used for updating the
database rank and status. The Service response will return connection strings of the type specified by the
user based on the rank and status.

Brief example of use:

 Create an instance of OrbiterQueryDbLoadBalancerService
 $objService = new OrbiterQueryDbLoadBalancerService();

 --

 Service name
 OrbiterQueryDbLoadBalancerService.php

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'get'
 description: 'Get the connection strings'
 required attributes: 'endpoints', 'type'
 optional attributes: 'format'
 service method: 'GET'

 operation:'update'
 description: 'Update the connection string'
 required attributes: 'rank', 'conStr'
 optional attributes: 'status'
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'
 defaultValue: ''
 allowableValues: 'api', 'get', 'update'

 attribute: 'html'
 description: 'Generate HTML compliant output by replacing escaped character and use

PROTECTED CRADA INFORMATION BNL-101061-2013

 appropriate tagging and line returns.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'conStr'
 description: 'Database Connection String'
 defaultValue: ''
 allowableValues: ''

 attribute: 'type'
 description: 'Type of the database'
 defaultValue: ''
 allowableValues: ''

 attribute: 'endpoints'
 description: 'Number of connection strings to be retrieved'
 defaultValue: ''
 allowableValues: ''

 attribute: 'status'
 description: 'Status of the Connection String'
 defaultValue: '1'
 allowableValues: '1', '0'

 attribute: 'rank'
 description: 'Database Rank'
 defaultValue: ''
 allowableValues: ''

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'json'
 allowableValues: 'json', 'api', 'xml', 'text', 'custom'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: http://www.txcorp.com/
license: BSD License

Located in /OrbiterFederation/classes/OrbiterQueryDbLoadBalancerService.class.php (line 168)

OrbiterService
 |
 --OrbiterQueryDbLoadBalancerService

Method Summary
Description | Vars | Methods (details)

 OrbiterQueryDbLoadBalancerService __construct ()

 void __destruct ()

 array getConStrings ([integer $endPoints = null], [string $type = null])

 void processAttributes ()

 void processOperations ()

 void processServiceRequest ()

 bool updateConStr ()

Variables
Description | Vars (details) | Methods (details)

Inherited Variables

PROTECTED CRADA INFORMATION BNL-101061-2013

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents
 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod
 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress
 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

Methods
Description | Vars Methods (details)

 Constructor __construct (line 173)

Constructs a new OrbiterQueryDbLoadBalancerService.class instance

OrbiterQueryDbLoadBalancerService __construct ()

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 190)

Destructs a OrbiterQueryDbLoadBalancerService class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 getConStrings (line 376)

Gets the id and connection string information from db_constr table

return: Array of Connection Strings
exception: E_USER_ERROR Orbiter Error 151:1530 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 151:1531 E_USER_ERROR Missing the endpoints or the type

array getConStrings ([integer $endPoints = null], [string $type = null])

integer $endPoints: number of connection string to be returned
string $type: database type

 processAttributes (line 197)

PROTECTED CRADA INFORMATION BNL-101061-2013

Process the service attributes

access: protected

void processAttributes ()

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 210)

Process the service operations

access: protected

void processOperations ()

Redefinition of:

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceRequest (line 325)

Processes the service request based on the operation the user specified

 --

 Usage: No required attributes

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbLoadBalancerService.php/operation/api

 Response: Returns the api of the service in 'json' format

 [{"service":"{Service Name}","attributes":{"operation":{"default":"","restrictions":
 [List of Operations]},..List of attributes}, "operations":{"0":[],"operation1":{"GET":
 {"description":"{Operation Description}","restrictions":{"required":[List of required attributes],
 "optional":[List of optional attributes]}}},..List of Operations}}]

 Usage: with optional attribute 'format'

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbLoadBalancerService.php/operation/api/format/api

 Response: Returns the api of the service in 'api' format as

 array(
 'service'=>{ServiceName},
 'attributes'=>array(
 'operation'=>array(
 'default'=>{Default Value},
 'restrictions'=>array(
 List of Allowable Values
)
),.. List of attributes
),
 'operations'=>array(
 'operation1'=>array(
 'method type'=>array(
 'description'=>{operation description}
 'restrictions'=>array(
 'required'=>array(
 List of required attributes,
)

PROTECTED CRADA INFORMATION BNL-101061-2013

 'optional'=>array(
 List of optional attributes
)
)
)
), .. List of operations
)
)

 --

 Usage: With required attributes 'endpoints' and 'type'

 operation: 'get'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbLoadBalancerService.php/operation/get/endpoints/2/type/star

 Response: Returns the connection strings for the database type and number of endpoints

 {"1":"localhost|DB_USERNAME|DB_USERNAME_PASSWORD|DB_NAME"}

 Usage: With optional attribute 'format'

 operation: 'get'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbLoadBalancerService.php/operation/get/endpoints/2/type/star/format/text

 Response: Returns the connection strings for the database type and number of endpoints in plain text format

 [1] => localhost|DB_USERNAME|DB_USERNAME_PASSWORD|DB_NAME

 --

 Usage: With required attributes 'rank' and 'conStr'

 operation: 'update'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbLoadBalancerService.php/operation/update/rank/2/
 conStr/ORBITERDBQLOCAL

 Response: Returns the success message indicating that the databse was updated with the rank set by the user

 "Update was successful"

 Usage: With optional attributes 'status'
 operation: 'update'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryDbLoadBalancerService.php/operation/update/rank/2/
 conStr/ORBITERDBQLOCAL/status/1

 Response: Returns the success message indicating that the databse was updated with the rank set by the user

 --

void processServiceRequest ()

Redefinition of:

OrbiterService::processServiceRequest()
Abstract function for the business logic for the service request

 updateConStr (line 354)

Updates the db_constr table and sets the rank and status.

return: Return true on success and false on failure
exception: E_USER_ERROR Orbiter Error 151:1529 E_USER_ERROR Database query error

bool updateConStr ()

PROTECTED CRADA INFORMATION BNL-101061-2013

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()
 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()
 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()
 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

Documentation generated on Thu, 01 Dec 2011 13:51:52 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterQueryService

Description
Description | Vars (details) | Methods (details)

This is the STAR query service that is useful to connect and run queries against a query database. This
query service can cache the query result and validate against query result and return it when same sql
query comes in, instead of going to the database to get the result set.

Brief example of use:

 Create an instance of OrbiterQueryService
 $objService = new OrbiterQueryService();

 --

 Service name
 OrbiterQueryService.php

 --

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'get'
 description: 'Get the query result'
 required attributes: 'query', 'database'
 optional attributes: 'format', 'cache', 'vo', 'role', 'useEndPoints', 'validation'
 service method: 'GET'

 operation:'noop'
 description: 'Get the timing'
 required attributes: ''
 optional attributes: 'timing'
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'
 defaultValue: ''
 allowableValues: 'api', 'get', 'noop'

 attribute: 'html'
 description: 'Generate HTML compliant output by replacing escaped character and use
 appropriate tagging and line returns.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'query'
 description: 'Specify sql query with urlencode.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'database'
 description: 'Specify database name on which query can be run.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'timing'
 description: 'Specify whether to log response time in the service log.'
 defaultValue: 'off'
 allowableValues: 'on','off'

 attribute: 'cache'
 description: 'Specify whether to keep cache on.'

PROTECTED CRADA INFORMATION BNL-101061-2013

 defaultValue: 'on'
 allowableValues: 'on', 'off'

 attribute: 'validation'
 description: 'Compares the database response contents and the cache contents
 when set to "on"'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'vo'
 description: 'Virtual Organization Name'
 defaultValue: ''
 allowableValues: ''

 attribute: 'role'
 description: 'Role in the Virtual Organization'
 defaultValue: ''
 allowableValues: ''

 attribute: 'useEndpoints'
 description: 'Gets the number of connection strings from load balancer
 when set to more than 0'
 defaultValue: '0'
 allowableValues: ''

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'json'
 allowableValues: 'json', 'api', 'xml', 'text', 'custom'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Krishna R. Kantam <krishna@txcorp.com>
author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: http://www.txcorp.com/
license: BSD License

Located in /OrbiterFederation/classes/OrbiterQueryService.class.php (line 186)

OrbiterService
 |
 --OrbiterQueryService

Variable Summary
Description | Vars (details) | Methods (details)

 OrbiterDatabaseConnection $_dbQueryConn

Method Summary
Description | Vars (details) | Methods (details)

 OrbiterQueryService __construct ()

 void __destruct ()

 void endLogServiceRequest ()

 string getDirectoryStructure ()

 void processAttributes ()

 void processOperations ()

 void processServiceAttributes ()

 void processServiceRequest ()

 string validateContents (array $contents, array $query)

 boolean validateVoRole ()

Variables
Description | Vars (details) | Methods (details)

 OrbiterDatabaseConnection $_dbQueryConn (line 190)

var: Orbiter database connection object
access: protected

Inherited Variables

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod
 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress
 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

Methods
Description | Vars (details) Methods (details)

 Constructor __construct (line 211)

Constructs a new OrbiterQueryService.class instance

OrbiterQueryService __construct ()

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 232)

Destructs a OrbiterQueryService class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 endLogServiceRequest (line 647)

Ends logging the service request after sending the response status to service log.

access: protected

void endLogServiceRequest ()

Redefinition of:

OrbiterService::endLogServiceRequest()
Ends logging the service request.

 getDirectoryStructure (line 707)

Gets the Virtual Organization Directory structure.

return: Returns Virtual Organization Directory structure.
access: protected

string getDirectoryStructure ()

 processAttributes (line 239)

Process the service attributes

access: protected

void processAttributes ()

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 255)

Process the service operations

PROTECTED CRADA INFORMATION BNL-101061-2013

access: protected

void processOperations ()

Redefinition of:

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceAttributes (line 421)

Processes the service request based on the operation the user specified

 --
 Usage: No required attributes

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/api

 Response: Returns the api of the service in 'json' format

 [{"service":"{Service Name}","attributes":{"operation":{"default":"","restrictions":
 [List of Operations]},..List of attributes}, "operations":{"0":[],"operation1":{"GET":
 {"description":"{Operation Description}","restrictions":{"required":[List of required attributes],
 "optional":[List of optional attributes]}}},..List of Operations}}]

 Usage: with optional attribute 'format'

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/api/format/api

 Response: Returns the api of the service in 'api' format as

 array(
 'service'=>{ServiceName},
 'attributes'=>array(
 'operation'=>array(
 'default'=>{Default Value},
 'restrictions'=>array(
 List of Allowable Values
)
),.. List of attributes
),
 'operations'=>array(
 'operation1'=>array(
 'method type'=>array(
 'description'=>{operation description}
 'restrictions'=>array(
 'required'=>array(
 List of required attributes,
)
 'optional'=>array(
 List of optional attributes
)
)
)
), .. List of operations
)
)

 --

 Usage: No required attributes

 operation: 'noop'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/noop

 Response: Returns the response time of the service without any operation in seconds as

 [{"Response Time":0.0053920745849609}]

 Usage: With optional attribute 'timing'

 operation: 'noop'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/noop/timing/on

 Response: Returns the response time of the service without any operation in seconds as

 [{"Response Time":0.0053920745849609}]

 --

 Usage: With required attributes 'database' and 'query'

 operation: 'get'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/get/database/orbiter/

PROTECTED CRADA INFORMATION BNL-101061-2013

 query/SELECT%20file_type_id%20FROM%20file_type%20WHERE%201

 Response: Returns the query results made to the database specified

 [{"file_type_id":"1"}]

 Usage: With optional attribute 'format'

 operation: 'get'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/get/database/orbiter/
 query/SELECT%20file_type_id%20FROM%20file_type%20WHERE%201/format/xml

 Response: Returns the query results made to the database specified in xml format

 Usage: With optional attribute 'cache'

 operation: 'get'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/get/database/orbiter/
 query/SELECT%20file_type_id%20FROM%20file_type%20WHERE%201/cache/on

 Response: Returns the query results made to the database specified and caches them in the ORBITERCACHEFILELOCATION set in the configuration

 Usage: With optional attribute 'vo'

 operation: 'get'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/get/database/orbiter/
 query/SELECT%20file_type_id%20FROM%20file_type%20WHERE%201/vo/{vo}

 Response: Returns the query results made to the database specified and sets them to the Virtual Organization specified

 Usage: With optional attribute 'role'

 operation: 'get'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/get/database/orbiter/
 query/SELECT%20file_type_id%20FROM%20file_type%20WHERE%201/role/{role}

 Response: Returns the query results made to the database specified

 Usage: With optional attribute 'useEndpoints'

 operation: 'get'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/get/database/orbiter/
 query/SELECT%20file_type_id%20FROM%20file_type%20WHERE%201/useEndpoints/4

 Response: Returns the query results made to the database specified

 Usage: With optional attribute 'validation'

 operation: 'get'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterQueryService.php/operation/get/database/orbiter/
 query/SELECT%20file_type_id%20FROM%20file_type%20WHERE%201/validation/on

 Response: Returns the query results made to the database specified

 --

exception: E_USER_ERROR Orbiter Error 149:1534 E_USER_ERROR Post data has duplicate service attributes
in the URI
access: protected

void processServiceAttributes ()

Redefinition of:

OrbiterService::processServiceAttributes()
Get the service attributes from the authenticated service request and process the service attributes.

 processServiceRequest (line 492)

Processes the service request based on the operation the user specified

exception: E_USER_ERROR Orbiter Error 149:1511 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 149:1510 E_USER_ERROR Database query error
access: protected

void processServiceRequest ()

Redefinition of:

OrbiterService::processServiceRequest()
Abstract function for the business logic for the service request

PROTECTED CRADA INFORMATION BNL-101061-2013

 validateContents (line 679)

Compares the Data base response contents and the cache contents.

return: Returns a string message to the user.
exception: E_USER_ERROR Orbiter Error 149:1514 E_USER_ERROR Query and Contents has to be defined.
access: protected

string validateContents (array $contents, array $query)

array $contents: Array of contents from Database.
array $query: Database query which is canonical string.

 validateVoRole (line 719)

Validates the Virtual Oranization name and role to be alpha numberic.

return: Returns true/ triggers an error incase of an invalid input.
exception: E_USER_ERROR Orbiter Error 149:1615 E_USER_ERROR Virtual Organization name and role must
be valid.
access: protected

boolean validateVoRole ()

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()
 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()
 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()
 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

Documentation generated on Thu, 01 Dec 2011 13:51:54 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterResourcePreCacheService

Description
Description | Vars | Methods (details)

This service provides the user an ability to pre-cache Query Db sql queries when a new database
resource was added to resource table.

Brief example of use:

 // Create an instance of OrbiterResourcePreCacheService
 $objService = new OrbiterResourcePreCacheService();

 --

 Service name
 OrbiterResourcePreCacheService.php

 --

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'runPreCache'
 description: 'Run pre-caching for a given resource.'
 required attributes: 'resource'
 optional attributes: 'validatePreCache', 'format'
 service method: 'GET'

 operation:'flushPreCache'
 description: 'Delete the cached files.'
 required attributes: 'resource'
 optional attributes: 'format'
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'

PROTECTED CRADA INFORMATION BNL-101061-2013

 defaultValue: ''
 allowableValues: 'api', 'runPreCache', 'flushPreCache'

 attribute: 'validatePreCache'
 description: 'When 'on' the pre cache will be validated with query result.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'resource'
 description: 'Specify the resource.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'json'
 allowableValues: 'json', 'api', 'xml', 'text'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Krishna R. Kantam <krishna@txcorp.com>
author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: http://www.txcorp.com/
todo: Investigate appending to the contents array the messages that the service gives as a response
todo: Should OrbiterResourcePreCacheService use role and vo
todo: Investigate service attributes to allow for setting the configuration variables
ORBITERSQLFILELOCATION or ORBITERCACHELOCATION
todo: Investigate adding additional validatePreCache functionality
todo: -Consider adding error triggering if the return for validatePreCache is false
todo: -Consider making it its own operation
license: BSD License

Located in /OrbiterFederation/classes/OrbiterResourcePreCacheService.class.php (line 150)

OrbiterService
 |
 --OrbiterResourcePreCacheService

Method Summary
Description | Vars | Methods (details)

 OrbiterResourcePreCacheService __construct ()

 void __destruct ()

 bool flushPreCache ()

 bool isHashFile (string $filename, string $hashtype)

 void processAttributes ()

 void processOperations ()

 void processServiceRequest ()

 bool runPreCache ()

 string validateContents (array $contents, array $query)

Variables
Description | Vars (details) | Methods (details)

PROTECTED CRADA INFORMATION BNL-101061-2013

Inherited Variables

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents
 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod
 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress
 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

Methods
Description | Vars Methods (details)

 Constructor __construct (line 194)

Constructs a new OrbiterResourcePreCacheService class instance

exception: E_USER_ERROR Orbiter Error 159:1634 E_USER_ERROR Sql file location must be defined
exception: E_USER_ERROR Orbiter Error 159:1635 E_USER_ERROR Cache file location needs to be
defined
exception: E_USER_ERROR Orbiter Error 159:1636 E_USER_ERROR Hash type must be defined

OrbiterResourcePreCacheService __construct ()

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 239)

Destructs a OrbiterResourcePreCacheService class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 flushPreCache (line 537)

Flush the pre-cache for the given resource.

PROTECTED CRADA INFORMATION BNL-101061-2013

return: Returns true on success of flushing pre-cache
exception: E_USER_ERROR Orbiter Error 160:1647 E_USER_ERROR Cannot open directory to delete the
cache files
exception: E_USER_ERROR Orbiter Error 160:1648 E_USER_ERROR Not a valid directory to delete cache
files

bool flushPreCache ()

 isHashFile (line 566)

Checks if the file is hashed.

return: Returns true if the file is a hash file.
exception: E_USER_ERROR Orbiter Error 160:1649 E_USER_ERROR Unknown hash type request

bool isHashFile (string $filename, string $hashtype)

string $filename: Name of the cache file.
string $hashtype: Type of hash sha1/md5

 processAttributes (line 246)

Process the service attributes

access: protected

void processAttributes ()

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 256)

Process the service operations

access: protected

void processOperations ()

Redefinition of:

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceRequest (line 368)

Processes the service request based on the operation the user specified

 --

 Usage: No required attributes

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterResourcePreCacheService.php/operation/api

 Response: Returns the api of the service in 'json' format

 [{"service":"{Service Name}","attributes":{"operation":{"default":"","restrictions":

PROTECTED CRADA INFORMATION BNL-101061-2013

 [List of Operations]},..List of attributes}, "operations":{"0":[],"operation1":{"GET":
 {"description":"{Operation Description}","restrictions":{"required":[List of required attributes],
 "optional":[List of optional attributes]}}},..List of Operations}}]

 Usage: with optional attribute 'format'

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterResourcePreCacheService.php/operation/api/format/api

 Response: Returns the api of the service in 'api' format as

 array(
 'service'=>{ServiceName},
 'attributes'=>array(
 'operation'=>array(
 'default'=>{Default Value},
 'restrictions'=>array(
 List of Allowable Values
)
),.. List of attributes
),
 'operations'=>array(
 'operation1'=>array(
 'method type'=>array(
 'description'=>{operation description}
 'restrictions'=>array(
 'required'=>array(
 List of required attributes,
)
 'optional'=>array(
 List of optional attributes
)
)
)
), .. List of operations
)
)

 --

 Usage: With required attributes 'resource'

 operation: 'runPreCache'
 URI:/orbiter/ORBITERVERSION/service/webservice/OrbiterResourcePreCacheService.php/
 operation/runPreCache/resource/ORBITERDBQLOCAL

 Response: Returns success pre-cache message

 Sql query pre-cache was successful for precaching

 Usage: With optional attribute 'validatePreCache'

 operation: 'runPreCache'
 URI:/orbiter/ORBITERVERSION/service/webservice/OrbiterResourcePreCacheService.php/
 operation/runPreCache/resource/ORBITERDBQLOCAL/validatePreCache/on

 Response: Returns success message for precaching and validation of precache

 Sql query pre-cache was successful

 --

 Usage: With required attributes 'resource'

PROTECTED CRADA INFORMATION BNL-101061-2013

 operation: 'flushPreCache' ,
 URI:/orbiter/ORBITERVERSION/service/webservice/OrbiterResourcePreCacheService.php/
 operation/flushPreCache/resource/ORBITERDBQLOCAL

 Response: Returns success flush pre-cache message

 Sql query flushing pre-cache was successful

 Usage: With optional attribute 'format'

 operation: 'flushPreCache'
 URI:/orbiter/ORBITERVERSION/service/webservice/OrbiterResourcePreCacheService.php/
 operation/flushPreCache/resource/ORBITERDBQLOCAL/format/xml

 Response: Returns success flush pre-cache message in xml format similar to json format

 --

void processServiceRequest ()

Redefinition of:

OrbiterService::processServiceRequest()
Abstract function for the business logic for the service request

 runPreCache (line 404)

Get the sql queries from config location and run the pre-cache for the given resource.

return: Returns true on success of running pre-cache
exception: E_USER_ERROR Orbiter Error 160:1643 E_USER_ERROR Database query error
exception: E_USER_ERROR Orbiter Error 160:1642 E_USER_ERROR Improper use statement 'sql query'
exception: E_USER_ERROR Orbiter Error 160:1644 E_USER_ERROR Can't write to the cache file,
permission denied
exception: E_USER_ERROR Orbiter Error 160:1645 E_USER_ERROR The file is not readable or does not
exist 'Star file location'
exception: E_USER_ERROR Orbiter Error 160:1886 E_USER_ERROR Invalid resource name for connection
string
exception: E_USER_ERROR Orbiter Error 160:1887 E_USER_ERROR Resource location for connection
string must be defined

bool runPreCache ()

 validateContents (line 509)

Compares the Data base response contents and the cache contents.

return: Returns a string message to the user.
exception: E_USER_ERROR Orbiter Error 160:1646 E_USER_ERROR Query and contents have to be
defined

string validateContents (array $contents, array $query)

array $contents: Array of contents from Database.
array $query: Database query which is canonical string.

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()
 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()
 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

Documentation generated on Thu, 01 Dec 2011 13:51:58 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterSimulatorService

Description
Description | Vars (details) | Methods (details)

This is the STAR application simulator class.

Brief example of use:

 Create an instance of OrbiterSimulatorService
 $objService = new OrbiterSimulatorService();

 --

 Service name
 OrbiterSimulatorService.php

 --

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'runFile'
 description: 'Runs Star sql files.'
 required attributes: 'file'
 optional attributes: 'format', 'cache', 'noop', 'output', 'detail', 'debug', 'trails'
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'
 defaultValue: ''
 allowableValues: 'api', 'noop', 'runFile'

 attribute: 'html'
 description: 'Generate HTML compliant output byt replacing escaped character and use
 appropriate tagging and line returns.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

PROTECTED CRADA INFORMATION BNL-101061-2013

 attribute: 'file'
 description: 'Specify the absolute file name containing the STAR application database queries.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'database'
 description: 'Specify the database name for the query to run.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'debug'
 description: 'Output the query and response in addition to the normal statistics when "on".'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'cache'
 description: 'Set to "on" to cache the queries and use cached queries.'
 defaultValue: 'on'
 allowableValues: 'on', 'off'

 attribute: 'detail'
 description: 'Set to "on" to output the cumulative query timing.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'noop'
 description: 'Specify whether to log the service request.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'output'
 description: 'Set to output the trial queries and not perform them.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'address'
 description: 'Set to a valid Orbiter network node or basestation with a deployed service.'
 defaultValue: 'ORBITERQUERYDBSERVICEADDRESS'
 allowableValues: ''

 attribute: 'trials'
 description: 'Set the number of times to perform trial query set and report the average statistics.'
 defaultValue: '1'
 allowableValues: ''

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'json'
 allowableValues: 'json', 'api', 'xml', 'space'

 attribute: 'timing'
 description: 'Specify whether to log response time in the service log.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2010 Tech-X Corporation. All rights reserved.
link: http://www.txcorp.com/
license: BSD License

Located in /OrbiterFederation/classes/OrbiterSimulatorService.class.php (line 184)

PROTECTED CRADA INFORMATION BNL-101061-2013

OrbiterService
 |
 --OrbiterSimulatorService

Variable Summary
Description | Vars (details) | Methods (details)

 string $_query

Method Summary
Description | Vars (details) | Methods (details)

 OrbiterSimulatorService __construct ()

 void __destruct ()

 void endLogServiceRequest ()

 void processAttributes ()

 void processOperations ()

 void processServiceRequest ()

Variables
Description | Vars (details) | Methods (details)

 string $_query = array() (line 188)

var: query.
access: protected

Inherited Variables

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents
 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod
 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress
 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

PROTECTED CRADA INFORMATION BNL-101061-2013

Methods
Description | Vars (details) Methods (details)

 Constructor __construct (line 193)

Constructs a new OrbiterSimulatorService.class instance

OrbiterSimulatorService __construct ()

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 213)

Destructs the OrbiterSimulatorService class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 endLogServiceRequest (line 477)

Ends logging the service request after sending the response status to service log.

access: protected

void endLogServiceRequest ()

Redefinition of:

OrbiterService::endLogServiceRequest()
Ends logging the service request.

 processAttributes (line 220)

Process the service attributes

access: protected

void processAttributes ()

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 238)

Process the service operations

access: protected

void processOperations ()

Redefinition of:

PROTECTED CRADA INFORMATION BNL-101061-2013

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceRequest (line 375)

Processes the service request based on the operation the user specified

 --

 Usage: No required attributes

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterSimulatorService.php/operation/api

 Response: Returns the api of the service in 'json' format

 [{"service":"{Service Name}","attributes":{"operation":{"default":"","restrictions":
 [List of Operations]},..List of attributes}, "operations":{"0":[],"operation1":{"GET":
 {"description":"{Operation Description}","restrictions":{"required":[List of required attributes],
 "optional":[List of optional attributes]}}},..List of Operations}}]

 Usage: with optional attribute 'format'

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterSimulatorService.php/operation/api/format/api

 Response: Returns the api of the service in 'api' format as

 array(
 'service'=>{ServiceName},
 'attributes'=>array(
 'operation'=>array(
 'default'=>{Default Value},
 'restrictions'=>array(
 List of Allowable Values
)
),.. List of attributes
),
 'operations'=>array(
 'operation1'=>array(
 'method type'=>array(
 'description'=>{operation description}
 'restrictions'=>array(
 'required'=>array(
 List of required attributes,
)
 'optional'=>array(
 List of optional attributes
)
)
)
), .. List of operations
)
)

 --

 Usage: No required attributes

 operation: 'noop' ,
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterSimulatorService.php/operation/noop

PROTECTED CRADA INFORMATION BNL-101061-2013

 Response: Returns the time taken to process the service request in the format as

 [{"Response Time":0.0040218830108643}]

 Usage: with optional attribute 'format'

 operation: 'noop'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterSimulatorService.php/operation/noop/format/api

 Response: Returns the time taken to process the service request in the api format as

 --

 Usage: with required attribute 'file'

 operation: 'runFile' ,
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterSimulatorService.php/operation/runFile/file//tmp/star.100.sql

 Response: Returns the details of 'Number of trials averaged', 'Total number of queries',
 'Total size of queries' and 'Total query time' of the given star sql file in the format as

 [{"Number of trials averaged":1},{"Total number of queries":36},
 {"Total size of queries":17096},{"Total query time":3.1575040817261}]

 Usage: with optional attribute 'format'

 operation: 'runFile'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterSimulatorService.php/operation/runFile/file//tmp/star.100.sql/format/api

 Response: Returns the details of 'Number of trials averaged', 'Total number of queries',
 'Total size of queries' and 'Total query time' of the given star sql file in the api format as

 Array
 (
 [0] => Array
 (
 [Number of trials averaged] => 1
)
 [1] => Array
 (
 [Total number of queries] => 36
)
 [2] => Array
 (
 [Total size of queries] => 32769
)
 [3] => Array
 (
 [Total query time] => 2.6990029811859
)
)

 --

exception: E_USER_ERROR Orbiter Error 155:1618 E_USER_ERROR Improper use statement '{line}'
exception: E_USER_ERROR Orbiter Error 155:1619 E_USER_ERROR The file is not readable or does not
exist '{file}'

void processServiceRequest ()

Redefinition of:

OrbiterService::processServiceRequest()

PROTECTED CRADA INFORMATION BNL-101061-2013

Abstract function for the business logic for the service request

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()
 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()
 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()
 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

Documentation generated on Thu, 01 Dec 2011 13:52:16 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterVersionInformationService

Description
Description | Vars | Methods (details)

This is the Orbiter Connectivity service class.

Brief example of use:

 Create an instance of OrbiterVersionInformationService
 $objService = new OrbiterVersionInformationService;

 --

 Service name
 OrbiterVersionInformationService.php

 --

 Service Operation Definitions

 Summary Format
 operation:
 description:
 required attributes:
 optional attributes:
 service method:

 --

 operation:'api'
 description: 'List the service API.'
 required attributes: ''
 optional attributes: 'format'
 service method: 'GET'

 operation:'getVersionInfo'
 description: 'Retrieve and report the Orbiter Version information for all Orbiter versions known in orbiter_versions.'
 required attributes: ''
 optional attributes: 'versionName', 'versionNumber','format'
 service method: 'GET'

 operation:'getVersionLogo'
 description: 'Retrieve and report the Orbiter Version information for all Orbiter versions known in orbiter_versions.'
 required attributes: 'versionLogo'
 optional attributes: 'format','html','thumbs'
 service method: 'GET'

 --

 Service Attribute Definitions

 Summary Format
 attribute:
 description:
 defaultValue:
 allowableValues:

 --

 attribute: 'operation'
 description: 'Specify the type of operation service request required.'
 defaultValue: ''
 allowableValues: 'api', 'getVersionInfo', 'getVersionLogo'

 attribute: 'html'
 description: 'Generate HTML compliant output byt replacing escaped character and use
 appropriate tagging and line returns.'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'format'
 description: 'Specify the service response format.'
 defaultValue: 'json'
 allowableValues: 'json', 'api', 'schema'

 attribute: 'versionName'
 description: 'Specify the orbiter version name to report information on.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'versionNumber'
 description: 'Specify the orbiter version number to report information on.'
 defaultValue: ''
 allowableValues: ''

 attribute: 'versionLogo'
 description: 'logo attribute for the version number.'
 defaultValue: ''

PROTECTED CRADA INFORMATION BNL-101061-2013

 allowableValues: ''

 attribute: 'thumbs'
 description: 'when set to "on" the image thumbnail is returned'
 defaultValue: 'off'
 allowableValues: 'on', 'off'

 attribute: 'thumbsWidth'
 description: 'when set the thumbnail image widths are set to this number of pixels.'
 defaultValue: '64'
 allowableValues: '64'

 View the service schema at ServiceSchema

 View the service wsdl 2.0 at ServiceWSDL

author: Mark L. Green <mlgreen@txcorp.com>
version: Release: @package_version@
copyright: 2006-2011 Tech-X Corporation. All rights reserved.
link: Tech-X Corporation
license: BSD License

Located in /OrbiterFederation/classes/OrbiterVersionInformationService.class.php (line 163)

OrbiterService
 |
 --OrbiterVersionInformationService

Method Summary
Description | Vars | Methods (details)

 OrbiterVersionInformationService __construct ()

 void __destruct ()

 void getVersionInfo ()

 void getVersionLogo ()

 void normalImage (string $image)

 void processAttributes ()

 void processOperations ()

 void processServiceRequest ()

 void queryResults ($query)

 void thumbnail (string $image)

Variables
Description | Vars (details) | Methods (details)

Inherited Variables

Inherited from OrbiterService

 OrbiterService::$_auth
 OrbiterService::$_cnt
 OrbiterService::$_contents
 OrbiterService::$_count
 OrbiterService::$_dbMaster
 OrbiterService::$_dbSlave
 OrbiterService::$_definedAttr
 OrbiterService::$_errorHandler
 OrbiterService::$_logger
 OrbiterService::$_phpVariables
 OrbiterService::$_queryString
 OrbiterService::$_requestMethod
 OrbiterService::$_requestUri
 OrbiterService::$_scriptName
 OrbiterService::$_serviceAddress
 OrbiterService::$_serviceSchema
 OrbiterService::$_userId
 OrbiterService::$_userRole

Methods
Description | Vars Methods (details)

 Constructor __construct (line 171)

Constructs a new OrbiterVersionInformationService.class instance

OrbiterVersionInformationService __construct ()

PROTECTED CRADA INFORMATION BNL-101061-2013

Redefinition of:

OrbiterService::__construct()
Constructs a new OrbiterService abstract class instance

 Destructor __destruct (line 188)

Destructs the OrbiterVersionInformationService.class instance

void __destruct ()

Redefinition of:

OrbiterService::__destruct()
Destructs a OrbiterService abstract class instance

 getVersionInfo (line 400)

Creates the query string for the Orbiter Version inforamtion based on attributes used by operations

access: protected

void getVersionInfo ()

 getVersionLogo (line 439)

Creates the query string for the Orbiter Version logo based on attributes used by operations

exception: E_USER_ERROR Orbiter Error 185:1906 E_USER_ERROR Database query error
access: protected

void getVersionLogo ()

 normalImage (line 491)

Generate a normal sized image for the select image.

void normalImage (string $image)

string $image

 processAttributes (line 194)

Process the service attributes

access: protected

void processAttributes ()

Redefinition of:

OrbiterService::processAttributes()
Abstract function for setting the default attributes the service

 processOperations (line 207)

Process the service operations

access: protected

void processOperations ()

Redefinition of:

OrbiterService::processOperations()
Abstract function for setting the operations for the service

 processServiceRequest (line 381)

Processes the service request based on the operation the user specified

 --
 Usage: No required attributes

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterVersionInformationService.php/operation/api

 Response: Returns the api of the service in json format as

 array(
 'service'=>{ServiceName},
 'attributes'=>array(

PROTECTED CRADA INFORMATION BNL-101061-2013

 'operation'=>array(
 'default'=>{Default Value},
 'restrictions'=>array(
 List of Allowable Values
)
),.. List of attributes
),
 'operations'=>array(
 'operation1'=>array(
 'method type'=>array(
 'description'=>{operation description}
 'restrictions'=>array(
 'required'=>array(
 List of required attributes,
)
 'optional'=>array(
 List of optional attributes
)
)
)
), .. List of operations
)
)

 Usage: with optional attribute 'format'

 operation: 'api'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterVersionInformationService.php/operation/api/format/xml

 Response: Returns the api of the service in xml format similar to json

 --

 Usage: No required attributes

 operation: 'getVersionInfo'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterVersionInformationService.php/operation/getVersionInfo

 Response: Returns all of the version information for every release of Orbiter in the following format:

 [{"id":"1","name":"apollo","version":"1","image_Uri":"http:\/\/txc02.ccr.buffalo.edu\/orbiter\/sbdev\/service\
 /webservice\/OrbiterVersionInformationService.php\/operation\/getVersionLogo\/html\/on\/versionLogo\/1\/format\
 /text","thumb_Uri":"http:\/\/txc02.ccr.buffalo.edu\/orbiter\/sbdev\/service\/webservice\/OrbiterVersionInformationService.php\
 /operation\/getVersionLogo\/html\/off\/versionLogo\/1\/format\/text\/thumbs\/on","release":"2011-01-15 14:12:52"},

 where
 'id' denotes Orbiter version id
 'name' denotes Orbiter version name
 'version' denotes Orbiter version number
 'image_Uri' denotes Orbiter version Uri of release logo
 'thumb_Uri' denotes Orbiter version Uri of release logo in a smaller, thumbnail size
 'release' denotes Orbiter version release timestamp

 Usage: With optional attribute 'format'

 operation: 'getVersionInfo'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterVersionInformationService.php/operation/getVersionInfo/format/xml

 Response: Returns all of the version information for every release of Orbiter in xml format

 Usage: With optional attribute 'versionNumber'

 operation: 'getVersionInfo'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterVersionInformationService.php/operation/getVersionInfo/versionNumber/1

 Response: Returns all of the version information for every release of Orbiter in the following format:

 [{"id":"1","name":"apollo","version":"1","image_Uri":"http:\/\/txc02.ccr.buffalo.edu\/orbiter\/sbdev\/service\/webservice\
 /OrbiterVersionInformationService.php\/operation\/getVersionLogo\/html\/on\/versionLogo\/1\/format\/text","thumb_Uri":"http:\/
 \/txc02.ccr.buffalo.edu\/orbiter\/sbdev\/service\/webservice\/OrbiterVersionInformationService.php\/operation\/getVersionLogo\/
 html\/off\/versionLogo\/1\/format\/text\/thumbs\/on","release":"2011-01-15 14:12:52"}]

 where
 'id' denotes Orbiter version id
 'name' denotes Orbiter version name
 'version' denotes Orbiter version number
 'image_Uri' denotes Orbiter version Uri of release logo
 'thumb_Uri' denotes Orbiter version Uri of release logo in a smaller, thumbnail size
 'release' denotes Orbiter version release timestamp

 Usage: With optional attribute 'versionName'

 operation: 'getVersionInfo'
 URI:/orbiter/ORBITERVERSION/service/webservice/

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterVersionInformationService.php/operation/getVersionInfo/versionName/apollo

 Response: Returns all of the version information for every release of Orbiter in the following format:

 [{"id":"1","name":"apollo","version":"1","image_Uri":"http:\/\/txc02.ccr.buffalo.edu\/orbiter\/sbdev\/service\/webservice\
 /OrbiterVersionInformationService.php\/operation\/getVersionLogo\/html\/on\/versionLogo\/1\/format\/text","thumb_Uri":"http:\/
 \/txc02.ccr.buffalo.edu\/orbiter\/sbdev\/service\/webservice\/OrbiterVersionInformationService.php\/operation\/getVersionLogo\/
 html\/off\/versionLogo\/1\/format\/text\/thumbs\/on","release":"2011-01-15 14:12:52"}]

 where
 'id' denotes Orbiter version id
 'name' denotes Orbiter version name
 'version' denotes Orbiter version number
 'image_Uri' denotes Orbiter version Uri of release logo
 'thumb_Uri' denotes Orbiter version Uri of release logo in a smaller, thumbnail size
 'release' denotes Orbiter version release timestamp

 --

 Usage: With required attribute 'versionLogo'

 operation: 'getVersionLogo'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterVersionInformationService.php/operation/getVersionLogo/versionLogo/1

 Response: Returns the version logo binary image data for the release number specified by versionLogo.

 Usage: With optional attribute 'html'

 operation: 'getVersionLogo'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterVersionInformationService.php/operation/getVersionLogo/versionLogo/1/html/on/

 Response: Returns the URI of the image data for the release number specified by versionLogo in the format as

 " "

 Usage: With optional attributes 'html' and 'format'

 operation: 'getVersionLogo'
 URI:/orbiter/ORBITERVERSION/service/webservice/
 OrbiterVersionInformationService.php/operation/getVersionLogo/versionLogo/1/html/on/format/text

 Response: Returns the URI of the image data for the release number specified by versionLogo in a plain text format similar to json format

 --

access: protected

void processServiceRequest ()

Redefinition of:

OrbiterService::processServiceRequest()
Abstract function for the business logic for the service request

 queryResults (line 419)

Queries the database, fetches the assoc array and displays results

exception: E_USER_ERROR Orbiter Error 185:1905 E_USER_ERROR Database query error
access: protected

void queryResults ($query)

 $query

 thumbnail (line 470)

Generate a thumbnail image for the select image.

void thumbnail (string $image)

string $image

Inherited Methods

Inherited From OrbiterService

 OrbiterService::__construct()
 OrbiterService::authenticateServiceRequest()
 OrbiterService::checkAttributeValidity()
 OrbiterService::checkInterfaceRequest()

PROTECTED CRADA INFORMATION BNL-101061-2013

 OrbiterService::checkOperationValidity()
 OrbiterService::defineServiceAttributes()
 OrbiterService::defineServiceOperations()
 OrbiterService::doServiceRequest()
 OrbiterService::endLogServiceRequest()
 OrbiterService::getServiceAddress()
 OrbiterService::logServiceRequest()
 OrbiterService::processAttributes()
 OrbiterService::processOperations()
 OrbiterService::processServiceAttributes()
 OrbiterService::processServiceRequest()
 OrbiterService::processServiceResponse()
 OrbiterService::setDatabaseConnections()
 OrbiterService::setServiceAddress()
 OrbiterService::triggerError()
 OrbiterService::__destruct()

Documentation generated on Thu, 01 Dec 2011 13:52:32 -0500 by phpDocumentor 1.4.3

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

4.2 Commander Documentation

The following pages include the user help documentation for the Orbiter Commander CWS4DB
Suite modules.

200

PROTECTED CRADA INFORMATION BNL-101061-2013

Query Module Guide >

Query Module Guide
Query Module is an Orbiter Commander Module for querying and simulating queries to resource endpoints
of remote resources. Use this module to execute prepared queries to test the performance of resources.

Click on the downward arrow on the right of 'Query Module' to find the options of Run Query, Run
Simulator and Word Wrap.

The screen capture of 'Query Module' with its features is shown below

Clicking on the 'Run Query' option opens a 'Query Dialog' prompting you to specify the Query Host in
'Query Host:' text-box, whether SSL is used by checking the check-box 'SSL', Endpoints in text-box
'Endpoints:', Query Parameters VO in text-box 'VO:' and Role in text-box 'Role:', Query Input as Query
Text by selecting the radio-button 'Query Text:' and enter the query text in the space below the radio button
or Query Input File by selecting the radio-button 'Query Input File:' and entering the file name or browing
the file by clicking on the 'Browse:' button, choose output format for results from the drop-down 'Output
Format:' and whether to show timings of the results by checking the check-box 'Show Timings'. Click on
the 'OK' button to run the query once all the parameters are filled.

The screen capture of 'Query Dialog' is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

Clicking on the 'Run Simulator' option opens a 'Query Simulator' prompting you to specify the Query Input
File in the text-box 'Query Input File:' by entering the file name or browing the file by clicking on the
'Browse:' button, Query Host in 'Query Host:' text-box, whether SSL is used by checking the check-box
'SSL', Endpoints in text-box 'Endpoints:', Query Parameters VO in text-box 'VO:', Role in text-box 'Role:' ,
whether to run noop by checking the check-box 'Noop' , whether to use query cache by checking the check-
box 'Query Cache', whether to validate results by checking the check-box 'Validate Results', choose output
format for results from the drop-down 'Output Format:', whether to print results by checking the check-box
'Print Results' and whether to show timings of the results by checking the check-box 'Show Timings'. Click
on the 'OK' button to simulate the query once all the parameters are filled.

The screen capture of 'Query Simulator' is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

Clicking on the 'Word Wrap' option wraps the text that appears in the Simulator.

Clicking on the 'Cancel' button cancels the window.

PROTECTED CRADA INFORMATION BNL-101061-2013

Resource Monitor Guide >

Resource Monitor Module Guide
Resource Monitor is an Orbiter Commander Module for viewing the status of resources.

It displays the resource statistics in two different views as shown below

Map View: Maps the host location to the Google Map and pins it accordingly. When clicked on any of
these pinned locations, it displays the location (latitude/longitude) and database statistics like bytes received,
bytes sent, InnoDB Data Read, InnoDB Data Written, Connections, Slow Queries, Threads Connected,
Threads running and server statistics which include Number of Users, Loadaverage, Loadaverage5,
Loadaverage15, process, total memory, available memory and physical memory.

A screen capture of 'Map View' is shown below

Table View: Displays the resource statistics of status, latitude, longitude, IP Address, Aborted Clients,
Aborted Connects, Bytes Received, Bytes Sent, COM Insert, COM Select, COM Update, Connections,
InnoDB Data Read, InnoDB Data Written, Threads Cached, Threads Connected, Threads Created, Threads
Running, Slow Queries, Uptime, Number of Users, Load Average, Load Average(5), Load Average(15),
Number of Processes, Total Memory, Available Memory, Physical Memory, Number of Processors, Vendor
ID, CPU Family, Model Number, Model Name, CPU MHz, Cache Size, Timestamp, Timezone and Grid ID
for each host.

A screen capture of 'Table View' is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

Interoperability:
You can perform the functions of other installed modules like 'Run Query','Run Simulator' and 'Open SSH
Connection' from Resource Monitor by right-clicking on a host name if the modules are installed for you.
Refer to 'Query Module' guide to know more about 'Run Query','Run Simulator' features if it is installed for
you. Refer to 'Query SSH Module' guide to know more about 'Open SSH Connection' feature if it is installed
for you.

A screen capture of 'Resource Monitor' with features of Query Module and Query SSH Module being
displayed upon right-click on a host name is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

Query SSH Module Guide >

Query SSH Module Guide
Query SSH Module is an Orbiter Commander Module for initiating SSH connections to remote query
resources. It is similar of initiating a SSH connection from a terminal window.

Click on the downward arrow on the right of 'Query SSH Module' to find the options of Font and Style,
Connect, Disconnect, Open New Connection.

The screen capture of 'Query SSH Module' with its features is shown below

Clicking on the 'Connect' option opens a 'Connection Information' dialog prompting you to specify the host
in text-box 'Host:', port in text-box 'Port:', username in text-box 'Username:' and authentication method by
choosing the radio button 'Password' or SSH Key by choosing radio button 'SSH Key' and enter the SSH key
in text-box 'SSH Key File:' or browsing the file by clicking on the 'Browse' button. Click on the 'OK' button
to connect to the host once all the parameters are filled.

The screen capture of 'Connection Information' dialog with its features is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

A screen capture of 'Connection Information' dialog with SSH Key chosen as authentication method is
shown below

A screen capture of 'Query SSH Module' dialog when connected to the host is shown below

You can open a new SSH connection to a host by clicking on the 'Open New Connection' option upon
clicking the downward arrow on the right of 'Query SSH Module'.

The process is similar to connecting to a host which is explained above. A screen capture of 'Query SSH
Module' dialog when a new connection is opened is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

You can disconnect the Query SSH Module from the host by clicking on the 'Disconnect' option upon
clicking the downward arrow on the right of 'Query SSH Module'.

A screen capture of 'Query SSH Module' dialog when disconnected from the host is shown below

The Query SSH Module throws an error when it cannot connect to the host with the provided connection
information. A screen capture of 'Query SSH Module' dialog when it could not connect to the host is shown
below

PROTECTED CRADA INFORMATION BNL-101061-2013

Clicking on the 'Font and Style' option opens a 'Font and Style' dialog allowing you to modify the font, style
and size of the text in SSH interface.

A screen capture of 'Font and Style' dialog with its features is shown below

Clicking on the 'Cancel' button cancels the window.

PROTECTED CRADA INFORMATION BNL-101061-2013

Federation Explorer Guide >

Orbiter Federation Explorer Module Guide
Orbiter Federation Explorer is an Orbiter Commander Module for exploring the services provided by Orbiter
Federation.

It presents a service list for each of the chosen service provider from the 'Service Provider' drop-down list on
the left hand side. The services listed are grouped by version as shown in the screen capture below.

If an unreachable or temporarily unavailable provider is selected from the providers list in 'Service Provider'
drop-down it throws an error as shown in the following screen capture.

You can click on any of the services and view the Service Information consisting of Service Documentation,
Service API, Service WSDL and Service Schema on the right. You can also test a service by clicking on the
'Test Service' option which is found by clicking the 'downward arrow' icon on the upper right hand side.
Testing the service is explained in Testing a Service.

Service Documentation in Orbiter Commander displays details of service description, method summary,
variables including inherited, method description, method input parameters, method returns, service
attributes, service operations and triggered errors in 'Earthli' template. You can also drill down to source
code, inherited methods, parent classes in the hierarchy tree. A screen capture of 'Service Documentation' is
shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

Service API are a particular set of rules and specifications that can be followed to access and make use of
services and resources provided by the service. Service API in Orbiter Commander displays an array of
service attribute details, service operation details of the Service. A screen capture of 'Service API' is shown
below

Service WSDL stands for Web Services Description Language(WSDL). WSDL is an XML format for
describing network services as a set of endpoints operating on messages containing either document-oriented
or procedure-oriented information. The operations and messages are described abstractly, and then bound to
a concrete network protocol and message format to define an endpoint. Related concrete endpoints are
combined into abstract endpoints (services). WSDL is extensible to allow description of endpoints and their
messages regardless of what message formats or network protocols are used to communicate. A screen
capture of 'Service WSDL' is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

Service Schema is used to specify the structure of instance documents and the datatype of each
element/attribute. Schemas provide a means of defining the structure, content and semantics of elements in
the documents which can be shared between different types of computers and documents. Our service
schema provides detail about input attributes accepted by service operations. A screen capture of 'Service
Schema' is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

Federation Explorer Guide > Getting Started

Orbiter Federation Explorer Module Guide
Orbiter Federation Explorer lets you test a service by clicking on the 'Test Service' option which is found by
clicking the 'downward arrow' icon on the upper right hand side.

A screen capture of 'Test Service' option is shown below

It then opens a 'Test the web service' window , a screen capture of which is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

Orbiter Federation Testing dialog provides you with the following capabilities.

The service operations of each service are provided in different tabs as shown in the above screen capture

Required attributes are shown in Bold with a '*' suffix and optional attributes have a 'Use' check-box next
to it as shown in the following screen capture

The optional attributes uses the default value of the service attribute while testing the service if the 'Use'
check-box is unchecked

Check the 'Use' check-box and choose one of the acceptable values from the drop-down of an optional
attributes to test the service with the service attribute

Click on the 'Test' button to test the service with the chosen service attributes of an operation or default
attribute values if not chosen

It then displays the 'Service URL' and the result in the 'Result' area

Choose 'Show Header' radio button to view the header of the service

Choose 'Show Body' radio button to view the body of the result

Check the check-box 'Wrap' to wrap the result displayed

A screen capture of the 'Get' service operation for the service 'OrbiterQueryService' is tested is shown in the

PROTECTED CRADA INFORMATION BNL-101061-2013

following screen capture

A screen capture of the 'Result' wrapped when the service 'OrbiterQueryService' is tested with format as
'XML' is shown in the following screen capture

PROTECTED CRADA INFORMATION BNL-101061-2013

A screen capture of the header of the 'Result' wrapped when the service 'OrbiterQueryService' is tested is
shown in the following screen capture

PROTECTED CRADA INFORMATION BNL-101061-2013

Python Interpreter Guide >

Python Interpreter Module Guide
Python Interpreter is an Orbiter Commander Module for executing Python commands.

You can enter an expression and press 'Ctrl+Enter' to execute it.

A screen capture of the 'Python Interpreter' while executing commands is shown below

Alternatively, an existing Python Script can be executed by clicking on the 'Load Python Script' button
which opens a window to load the python script. Now you can select a python script by clicking on the
'Browse' button and provide any Command Line Arguments needed in the 'Command Line Arguments:' text
box and click 'OK' button to execute the script.

A screen capture of the 'Python Script Loader' before loading any script is shown below

PROTECTED CRADA INFORMATION BNL-101061-2013

For the sake of example, a sample python script is loaded in the 'Python Script Loader' as shown in the
following screen capture

Once the 'OK' button is pressed, the python script is executed in the 'Python Interpreter' as shown in the
following screen capture

PROTECTED CRADA INFORMATION BNL-101061-2013

The executed Python Script can be cleared by clicking on the 'Clear Screen' button on the upper right-hand
side.

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

4.3 Installation Guide

4.3.1 Introduction

This Installation Guide will explain how to install and configure CWS4DB STAR Web Ser-
vices and the pre-requisites.

4.3.2 The Pre-requisites

STAR services depend on other components, softwares and database servers to be installed
in order to run properly. From dependent applications or softwares to database servers,
frameworks and run-time environments, it is the installer’s job to make sure that the right
versions are installed before the main application is ready to run.

Installation Steps for Pre-requisites

Step 1 : Install and Configure Web Server
Step 2 : Install and Configure PHP 5.3
Step 3 : Install and Configure MySQL 5.5.11

Step 1: Install and Configure Web Server

Prior to installing the lighttpd web server, check to make sure the following packages have
been installed.

-OpenSSL is required for the transport layer encryption, thereby allowing the sites to be
accessed via https.
-Kerberos5 is a network authentication protocol. It is designed to provide strong authen-
tication for clientserver applications by using secret-key cryptography.
-zlib is required for mod compress for realtime, on-the-fly gzip compression for static content.
-PCRE library Perl Compatible Regular Expressions is a set of functions that implement
regular expression pattern matching using the same syntax and semantics as Perl 5.

./configure --prefix=/Users/userName/OrbiterNetworkNode

--with-openssl

--with-kerberos5

--with-ldap

--with-zlib

A list will appear in the terminal window. Make sure the following lines appear, as they are
important for PHP operation once lighted is installed:

220

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

mod_rewrite : enabled

mod_redirect : enabled

mod_ssi : enabled

mod_cgi : enabled

mod_fastcgi : enabled

mod_proxy : enabled

Next, finish with:

make && sudo make install

In order to configure the server, the configuration file must be in the right folder. This is
done by copying the config file from the documentation folder to /etc/lighttpd/ by entering
in the CLI:

sudo cp ./doc/lighttpd.conf /etc/lighttpd/lighttpd.conf

Open the file /etc/lighttpd/lighttpd.conf and uncomment the following lines if they are
commented out.

server.modules = (

"mod_rewrite",

"mod_setenv",

"mod_secdownload",

"mod_access",

"mod_auth",

"mod_status",

"mod_expire",

"mod_simple_vhost",

"mod_redirect",

"mod_fastcgi",

"mod_cgi",

"mod_compress",

"mod_userdir",

"mod_ssi",

"mod_accesslog")

Next, make the follow changes to the /etc/lighttpd/lighttpd.conf to match your server envi-
ronment. Also, to insure that the lighttp install can properly log and record errors, Create
the directory /var/log/lighttpd/ using the command :

221

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

sudo mkdir /var/log/lighttpd

Step 2: Install and Configure PHP 5.3

Prior to installing the web server, check to make sure the following packages have been
installed.

-bzip2 is also used for mod compress for static content delivery by clients who use bzip2
compression.
-GD library is required for the creation and manipulation of images in PHP.
-FreeType is a font rasterization library. It is used for rendering text on to bitmaps and
provides support for other font-related operations.
-libpng is the official PNG reference library. It supports almost all PNG features and is
extensible.
-ibjpeg is a free software library written for JPEG image compression
-GMP Library allows the user to work with arbitrary-length integers.
-gettext library implement an NLS (Native Language Support) API which can be used to
internationalize your PHP applications.

Extract the source archive and in the CLI execute :

./configure --prefix=/Users/userName/OrbiterNetworkNode/php5x

--mandir=/Users/sburley/OrbiterNetworkNode/share/man

--infodir=/Users/sburley/OrbiterNetworkNode/share/info

--with-zlib

--without-gdbm

--with-openssl

--enable-ftp

--enable-sockets

--without-pear

--disable-rpath

--enable-gd-native-ttf

--with-kerberos

--without-sqlite

--without-sqlite3

--disable-pdo

--with-openssl

--enable-xml

--with-ldap

--with-bz2

--with-gd

--enable-ftp

--enable-shmop

--enable-calendar

222

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

--with-curl

--disable-phar

--enable-sysvsem

--with-gettext

--with-gmp

--enable-phar

--with-sqlite

--with-sqlite3

--enable-pdo

--enable-mbstring

--enable-exif

--with-xsl

--with-zlib

--enable-magic-quotes

--with-pic

--enable-zip

--with-freetype-dir=/usr/bin

--with-jpeg-dir=/opt/local

--without-iconv --enable-wddx

--with-mysql

--with-sqlite

--with-sqlite3

--with-mysqli=mysqlnd

Next, finish with:

make

sudo make install

Note that the install directory ion this case is /Users/username/OrbiterNetworkNode/php5.
This will ensure that the native install of PHP will not be stepped on and that the server
can have both an Apache and lighttpd installation.

Finally, make sure that the php.ini installed on the system has the correct

Step 3: Install and Configure mySQL

mac OSX :

It is recommended, on a mac OSX system, not to compile and install MySQL ourselves, but
instead use the OS X MySQL package. Not only is the install much faster and easier, but
the package includes a startup item and a preference panel, and it is tuned by the MySQL
team for OS X.

223

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

This archive file contains a prebuilt version of MySQL corresponding to Mac OS X Server
version 10.6.8 SnowLeopard (10K540). In addition to the default MySQL installation on
Server, this archive also contains the MySQL client static libraries (i.e. libmysqlclient.a) and
associated C header files.

To install:

sudo tar -xzvf MySQL-55.root.tar.gz -C /

LINUX :

Although many linux distributions come with mySQL it is still prudent to upgrade to the
latest version. Linux distributions of mySQL are installed quickly using the RPM packages

rpm -ivh MySQL-server-community-5.1.25-0.rhel5.i386.rpm MySQL-client-community-5.1.25-0.rhel5.i386.rpm

4.3.3 Installation of Commander

Installing for Mac OS X (32 and 64 bit)

(1) Check your Java installation by opening a terminal window and running the following
commands:

~ which java

/usr/bin/java

~ java -version

java version "1.6.0_22"

Java(TM) SE Runtime Environment (build 1.6.0_22-b04-307-10M3261)

Java HotSpot(TM) Client VM (build 17.1-b03-307, mixed mode)

If you do not have Java installed or if the version is not at least 1.6, upgrade your system.

(2) You should match your system with the corresponding 32 or 64 bit Commander version.
You can determine which version is appropriate using the following command in a terminal
window:

uname -a

If the last argument returned by this command is ”i386” then use the 32 bit version, if it is
”i686” then use the 64 bit version.

224

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

(3) Download the zip file corresponding to your system architecture

(4) Unzip the file, this will result in a directory called OrbiterCommander. Move this direc-
tory to /Applications, or to another convenient installation area.

(5) Start Commander by double-clicking on the Commander.app file in the unzipped direc-
tory.

Installing for Linux (32 and 64 bit)

(1) Check your java installation by opening a terminal window and running the following
commands:

~ which java

/usr/bin/java

~java -version

java version "1.6.0_18"

OpenJDK Runtime Environment (IcedTea6 1.8) (fedora-41.b18.fc13-i386)

OpenJDK Client VM (build 14.0-b16, mixed mode)

If you do not have Java installed or if the version is not at least 1.6, upgrade your system by
downloading and installing Java from here

(2) Download the zip file corresponding to your system architecture

(3) Unzip the file, this will result in a directory called OrbiterCommander. Move this direc-
tory to a convenient installation area.

(4) Start Commander by double-clicking on the Commander executable in the unzipped
directory.

4.3.4 Installation

To install the STAR services, copy the ”orbiter” services folder into the system root directory
”/var/www/html”. Then to define the configuration settings go to the appropriate version
(ex: trunk) and configuration folder (Local: /var/www/html/orbiter/trunk/webroot/ Or-
biterFederation/configuration/conf/local AND Optional: /var/www/html/orbiter/trunk/webroot/
OrbiterFederation/configuration/conf/{server name.config.inc.php}) and define the below
configuration settings.

The Local Configuration settings are shown in Figure 51.

The Optional Configuration settings are shown in Figure 52.

225

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Figure 51: Orbiter STAR local configuration settings

1. ORBITERMASTER: Set the Master database connection constant.

2. ORBITERSLAVE: Set the Slave database connection constant.

3. SMTPPASSWORD: Set the smtp password.

Figure 52: Orbiter STAR configuration settings

1. ORBITERSERVICEACCESS: Transport level SSL security access (http:// | https://).

2. ORBITERDEFAULTDBPORT: Orbiter Database default port number.

3. ORBITERMAXURILENGTH: Set the maximum URI attribute length.

4. ORBITERERRORHANDLER: Set this to true use Orbiter Error handler in a service.

5. ORBITERDEBUGBACKTRACE: Set this true to the debug back trace for email and error handling.

6. ORBITERFATALERRORDIE: Set this true to DIE on a fatal error.

7. ORBITERERRORLOGFILE: Define a file for the error log.

8. ORBITERERRORTOEMAIL: Set email address to send error messages.

9. ORBITERCACHEFILELOCATION: Define the Cache file location.

10. ORBITERQUERYCONNECTIONSTRINGS: Define the returned number of STAR Query Connection strings.

11. ORBITERVERSION: Set this to the current Orbiter release version number.

12. ORBITERVERSIONFAMILY: Set this to the current Orbiter release version family.

4.3.5 How To Use STAR Services

Example Server Name: http://128.205.41.182 (http://txc02.ccr.buffalo.edu)

Example Base URI: http://128.205.41.182/orbiter/trunk/service/webservice/

Note: There was a significant time difference when we set the address to use https and DNS
name. A secure https with a URI ”https://txc02.ccr.buffalo.edu/orbiter/trunk/service/webservice/”
was taking more time to resolve the DNS name, and when we use the ”http” and IP address
(http://128.205.41.182/orbiter/trunk/service/webservice/), it’s taking 6-7 times less time to
process the service request.

Orbiter Star Query Service

This is the STAR query service that is useful to connect and run queries against a query
database. This query service can cache the query result and validate against query result
and returns the cache file when the same sql query comes in, instead of going to the database
to get the result set.

Brief example of use:

http://128.205.41.182/orbiter/trunk/service/webservice/OrbiterQueryService.php

/operation/get/format/json/database/Calibrations_svt/query/Select+%2A+from+

Nodes+where+Nodes.name%3D%27Hybrid_02%27+AND+Nodes.versionKey

%3D%27default%27

Response:

226

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

[{"name":"Hybrid_02","versionKey":"default","nodeType":"directory","structName"

:"None","elementID":"None","indexName":"Hybrid","indexVal":"2","baseLine":"N"

,"isBinary":"N","isIndexed":"Y","ID":"34","entryTime":"2002-02-14 14:44:45",

"Comment":""}]

Service parameters

// Service name

OrbiterQueryService.php

// Service operations

operation:’api’

description: ’List the service API.’

required attributes: ’’

optional attributes: ’format’

service method: ’GET’

operation:’get’

description: ’Get the query result’

required attributes: ’query’, ’database’

optional attributes: ’format’, ’cache’, ’vo’, ’role’, ’useEndPoints’, ’validation’

service method: ’GET’

operation:’noop’

description: ’Get the timing’

required attributes: ’’

optional attributes: ’timing’

service method: ’GET’

// Service attribute definitions

attribute: ’operation’

description: ’Specify the type of operation service request required.’

defaultValue: ’’

allowableValues: ’api’, ’get’, ’noop’

attribute: ’html’

description: ’Generate HTML compliant output by replacing escaped character

and use appropriate tagging and line returns.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’query’

description: ’Specify sql query with urlencode.’

defaultValue: ’’

227

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

allowableValues: ’’

attribute: ’database’

description: ’Specify database name on which query can be run.’

defaultValue: ’’

allowableValues: ’’

attribute: ’timing’

description: ’Specify whether to log response time in the service log.’

defaultValue: ’off’

allowableValues: ’on’,’off’

attribute: ’cache’

description: ’Specify whether to keep cache on.’

defaultValue: ’on’

allowableValues: ’on’, ’off’

attribute: ’validation’

description: ’Compares the database response contents and the

cache contents when set to "on"’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’vo’

description: ’Virtual Organization Name’

defaultValue: ’’

allowableValues: ’’

attribute: ’role’

description: ’Role in the Virtual Organization’

defaultValue: ’’

allowableValues: ’’

attribute: ’useEndPoints’

description: ’Gets the number of connection strings from load balancer

when set to more than 0’

defaultValue: ’0’

allowableValues: ’’

attribute: ’format’

description: ’Specify the service response format.’

defaultValue: ’json’

allowableValues: ’json’, ’api’, ’xml’, ’text’, ’custom’

228

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Orbiter Simulator Service

This STAR Simulator service reads the sql files, identifies the database and query from the
sql file and then generates Orbiter query service requests. This service is also useful to run
and get the Orbiter query response and response times.

Brief example of use:

http://128.205.41.182/orbiter/trunk/service/webservice/OrbiterSimulator

Service.php/operation/runfile/file//tmp/testfiles/auau7_log.txt/format/

json/cache/on/debug/on

Response: Reads the sql file auau7_log.txt, runs all the sql queries

against the Orbiter query service

and gets the service response in json format.

// Service name

OrbiterSimulatorService.php

// Service operations

operation:’api’

description: ’List the service API.’

required attributes: ’’

optional attributes: ’format’

service method: ’GET’

operation:’runfile’

description: ’Runs Star sql files.’

required attributes: ’file’

optional attributes: ’format’, ’cache’, ’noop’, ’output’, ’detail’,

’debug’, ’trails’

service method: ’GET’

// Service attribute definitions

attribute: ’operation’

description: ’Specify the type of operation service request required.’

defaultValue: ’’

allowableValues: ’api’, ’noop’, ’runfile’

attribute: ’html’

description: ’Generate HTML compliant output byt replacing escaped character

and use appropriate tagging and line returns.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

229

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

attribute: ’file’

description: ’Specify the absolute file name containing the

STAR application database queries.’

defaultValue: ’’

allowableValues: ’’

attribute: ’database’

description: ’Specify the database name for the query to run.’

defaultValue: ’’

allowableValues: ’’

attribute: ’debug’

description: ’Output the query and response in addition to the normal

statistics when "on".’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’cache’

description: ’Set to "on" to cache the queries and use cached queries.’

defaultValue: ’on’

allowableValues: ’on’, ’off’

attribute: ’detail’

description: ’Set to "on" to output the cumulative query timing.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’noop’

description: ’Specify whether to log the service request.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’output’

description: ’Set to output the trial queries and not perform them.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’address’

description: ’Set to a valid Orbiter network node or basestation

with a deployed service.’

defaultValue: ’’

allowableValues: ’’

attribute: ’trials’

230

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

description: ’Set the number of times to perform trial query set and

report the average statistics.’

defaultValue: ’1’

allowableValues: ’’

attribute: ’format’

description: ’Specify the service response format.’

defaultValue: ’json’

allowableValues: ’json’, ’api’, ’xml’, ’space’

attribute: ’timing’

description: ’Specify whether to log response time in the service log.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

231

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Orbiter Cache File Service

This Orbiter cache file service class is responsible for cache file retrieves/stores the contents
from/to cache.

Brief example of use:

http://128.205.41.182/orbiter/trunk/service/webservice/OrbiterCache

FileService.php/operation/list

// Service name

OrbiterCacheFileService.php

// Service operations

operation:’api’

description: ’List the service API.’

required attributes: ’’

optional attributes: ’format’

service method: ’GET’

operation:’noop’

description: ’List the time taken to process the request.’

required attributes: ’’

optional attributes: ’format’

service method: ’GET’

operation:’cacheFileHashType’

description: ’Get the hash type defined.’

required attributes: ’’

optional attributes: ’format’

service method: ’GET’

operation:’cacheFileList’

description: ’List all the cache files.’

required attributes: ’’

optional attributes: ’format’, ’vo’, ’role’

service method: ’GET’

operation:’cacheFileGet’

description: ’Get the contents of cache file.’

required attributes: ’conStr’

optional attributes: ’format’, ’hashStr’, ’vo’, ’role’

service method: ’GET’

232

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

operation:’cacheFileDelete’

description: ’Delete a specific cache file for a given hash string

or canonical string. When using delete, either conStr or

hashStr needs to be specified.’

required attributes: ’conStr’

optional attributes: ’hashStr’, ’vo’, ’role’

service method: ’GET’

operation:’cacheFileDeleteAll’

description: ’Delete all the cache files.’

required attributes: ’’

optional attributes: ’vo’, ’role’

service method: ’GET’

// Service attribute definitions

Example Use: http://128.205.41.182/orbiter/trunk/service/webservice/

OrbiterCacheFileService.php/operation/list

Result: {"filename":"45026ae00a6f455c7eec7d97adc4f576bfcf051a",

"filesize":"364"}/operation/get

- Returns the Cache file for a given hash string or canonical string.

Example Use: python ./testOrbiterREST.py http://128.205.41.182/

orbiter/trunk/service/webservice/

OrbiterCacheFileService.php/operation/get

hashstr/45026ae00a6f455c7eec7d97adc4f576bfcf051a

Result: <records><record><name>Sector_07</name><versionKey>

default</versionKey><nodeType>directory</nodeType>

<structName>None</structName><elementID>7</elementID>

<indexName>Sector</indexName><indexVal>7</indexVal>

<baseLine>N</baseLine><isBinary>N</isBinary><isIndexed>

Y</isIndexed><ID>13</ID><entryTime>2000-01-12 20:11:07

</entryTime><Comment></Comment></record></records>

attribute: ’operation’

description: ’Specify the type of operation service request required.’

defaultValue: ’’

allowableValues: ’api’, ’noop’, ’cacheFileHashType’, ’cacheFileList’,

’cacheFileGet’, ’cacheFileDelete’, ’cacheFileDeleteAll’

attribute: ’html’

description: ’Generate HTML compliant output by replacing

escaped character and use appropriate tagging

and line returns.’

defaultValue: ’off’

233

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

allowableValues: ’on’, ’off’

attribute: ’delete’

description: ’Specify whether to delete the file.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’timing’

description: ’Specify whether to log response time in the service log.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’noop’

description: ’Specify whether to log the service.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’conStr’

description: ’Canonical String.’

defaultValue: ’’

allowableValues: ’’

attribute: ’hashStr’

description: ’Hash string.’

defaultValue: ’’

allowableValues: ’’

attribute: ’vo’

description: ’Virtual Organization name.’

defaultValue: ’’

allowableValues: ’’

attribute: ’role’

description: ’Role in the Virtual Organization.’

defaultValue: ’’

allowableValues: ’’

attribute: ’format’

description: ’Specify the service response format.’

defaultValue: ’json’

allowableValues: ’json’, ’api’, ’xml’, ’text’, ’custom’

234

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Orbiter Query Database Load Balancer Service

This service is responsible for load balancing the query and other databases. Also used for
updating the database rank and status. The Service response will return connection strings
of the type specified by the user based on the rank and status.

Brief example of use:

http://128.205.41.182/orbiter/trunk/service/webservice/OrbiterQueryDb

LoadBalancerService.php/operation/get

// Service name

OrbiterQueryDbLoadBalancerService.php

// Service operations

operation:’api’

description: ’List the service API.’

required attributes: ’’

optional attributes: ’format’

service method: ’GET’

operation:’get’

description: ’Get the connection strings’

required attributes: ’endpoints’, ’type’

optional attributes: ’format’

service method: ’GET’

operation:’update’

description: ’Update the connection string’

required attributes: ’rank’, ’conStr’

optional attributes: ’status’

service method: ’GET’

// Service attribute definitions

attribute: ’operation’

description: ’Specify the type of operation service request required.’

defaultValue: ’’

allowableValues: ’api’, ’get’, ’update’

attribute: ’html’

description: ’Generate HTML compliant output by replacing

escaped character and use appropriate tagging

and line returns.’

235

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’conStr’

description: ’Database Connection String’

defaultValue: ’’

allowableValues: ’’

attribute: ’type’

description: ’Type of the database’

defaultValue: ’star’

allowableValues: ’’

attribute: ’endpoints’

description: ’Number of connection strings to be retrieved’

defaultValue: ’ORBITERQUERYCONNECTIONSTRINGS’

allowableValues: ’’

attribute: ’status’

description: ’Status of the Connection String’

defaultValue: ’1’

allowableValues: ’1’, ’0’

attribute: ’rank’

description: ’Database Rank’

defaultValue: ’1’

allowableValues: ’’

attribute: ’format’

description: ’Specify the service response format.’

defaultValue: ’json’

allowableValues: ’json’, ’api’, ’xml’, ’text’, ’custom’

236

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

Orbiter Query Database Connection String Service

This service provides the user an ability to add, update, and delete the database connection
string information; so that the user can manage database resources on demand.

Brief example of use:

http://128.205.41.182/orbiter/trunk/service/webservice/OrbiterQuery

DbConnectionStringService.php/operation/api

// Service name

OrbiterQueryDbConnectionStringService.php

// Service operations

operation:’api’

description: ’List the service API.’

required attributes: ’’

optional attributes: ’format’

service method: ’GET’

operation:’insert’

description: ’Insert the connection string’

required attributes: ’conStr’, ’type’

optional attributes: ’rank’, ’hostType’

service method: ’GET’

operation:’update’

description: ’Update the connection string’

required attributes: ’conStr’, ’type’

optional attributes: ’rank’, ’status’, ’hostType’

service method: ’GET’

operation:’delete’

description: ’Delete the connection string’

required attributes: ’conStr’

optional attributes: ’’

service method: ’GET’

// Service attribute definitions

attribute: ’operation’

description: ’Specify the type of operation service request required.’

defaultValue: ’’

allowableValues: ’api’, ’insert’, ’update’, ’delete’

237

PROTECTED CRADA INFORMATION BNL-101061-2013

Tech-X Corporation
DE-FG02-07ER84757

SBIR Phase II Final Report
August 15, 2011

attribute: ’html’

description: ’Generate HTML compliant output by replacing

escaped character and use appropriate tagging and line returns.’

defaultValue: ’off’

allowableValues: ’on’, ’off’

attribute: ’conStr’

description: ’Database Connection String’

defaultValue: ’’

allowableValues: ’’

attribute: ’type’

description: ’Type of the database’

defaultValue: ’star’

allowableValues: ’’

attribute: ’hostType’

description: ’Type of Host’

defaultValue: ’local’

allowableValues: ’local’, ’remote’

attribute: ’status’

description: ’Status of the Connection String’

defaultValue: ’1’

allowableValues: ’1’, ’0’

attribute: ’rank’

description: ’Database Rank’

defaultValue: ’0’

allowableValues: ’’

attribute: ’format’

description: ’Specify the service response format.’

defaultValue: ’json’

allowableValues: ’json’, ’api’, ’xml’, ’text’, ’custom’

238

PROTECTED CRADA INFORMATION BNL-101061-2013

