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Representing Shear Localization under Dynamic Loading Conditions
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The localization and adiabatic shear banding process is studied for both annealed tantalum and
316L stainless steel in the annealed, rolled, and pre-shocked conditions. Tantalum does not form
adiabatic shear bands and the dynamic response of this material is examined using both
continuum and crystal plasticity computational tools to examine the large deformation response
of this material and the corresponding microstructural evolution with deformation. It is found
that models which are based upon thermally activated physics of dislocation motion represent
well the response of this material under the conditions examined. Comparisons between
numerical simulations and experimental data (i.e. flow stress, crystallographic texture,
metallographic strain measurements) made on the deformed samples compare reasonably well to
the experimental results. Results also suggest that complex and statistically varying evolution of
stress state is predicted. Adiabatic shear banding does occur in the three different initial state
316L stainless steel materials. These experiments are considered in the context of both
traditional high resolution numerical representation and also a sub-grid technique which is
implemented within an explicit Lagrangian framework. This sub-grid method is based on the
assumed-strain approach of Fish and Belytschko (1988), which allows for localization bands to
be embedded within an element, thereby alleviating mesh sensitivity and reducing the required
computational effort for representation of this very small scale process zone. Computational
results are presented and compared to both the tantalum and 316L stainless steel experimental
results (LA-UR-10-07418).
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» Motivation and challenge

* Macro-scale experiments

» Continuum isotropic constitutive model
— Anisotropic MTS

» Thermo-viscoplastic single crystal model
— Jhermally activated slip

* Embedded polycrystal forced shear simulations
» Comparison to experimental results

¢ Summary & comments
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Explosively Loaded Sample Demonstrates Ductile Damage
and Failure Physics T. Mason

Explosively Loaded Tantalum Experiment
6 mm thick PETN Beneath Sample — Center Detonated
Soft Sample Recovery

AN “Void sheets’ are forming along grain boundaries in sample
« Los Alamos
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Motivation

» Large-deformation high-rate ductile
failure involves
— Strain localization
— Void nucleation
— Void growth
— Void corlescence
* Predictive modeling of failure
requires a good representation of each
of these mechanisms
*  Modeling strategy
— Sub-grid computational technique

— Constitutive / micro-mechanical

models Boundary levels: 15° -
100.0 ym = 100 steps  IPF [010]

. Ta plate impact
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Strain Localization in Fragmentation
Problems

Hull, Gray, Kelly, Cerrcta

Cross-sectional metallography points to considerable

2N amount of localized plastic work before failure
- Los Alamos
i gorerer
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Challenge of linking microstructure to

performance Cu Plane Strain Compression
Undeformed e=-1.5
‘,’- ¢r-‘- g 3

Ta Plate Impact

» The ductile failure process generally involves
localization, porosity initiation, porosity
growth, and coalescence dominated by
localized deformation.

» These events occur at the length scale of the
single crystal.

Boundary levels: 15°
,100.0 ym = 100 steps  [PF [010] -

2 B. Henrie
- Los Alamos :
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Numerical model with boundary conditions
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Axisymmetric, 3 node linear
elements for shear zone

Adiabatic

Embedded 1091 grain
polycrystal region

40 um grain size

~7 um element size
Rate-dependent isotropic
continuum regions
Frictionless contact surfaces
at corners

ABAQUS - implicit used but
dynamic displacement rate
applied

3 crystallographic
realizations
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[.ocalization - Ta

» Dynamic response of the SHPB system is not represented
* Piecewise linear velocity profile applied uniformly to the top surface
* Top surface stress response is weighted average of top row of elements

Velocity profile at -100 °C Predicted response at -100 °C
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Small strain continuum model for the inner and

outer regions

Stress
6 =C¢’
Strain
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Normality Flow
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Constant temperature

Strain in the continuum
Regions is less than 0.05
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MTS model - continuum

Follansbee & Kocks,
Maudlin et al., 1999

, 1988; Chen & Gray, 1996;
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Shear zone single crystal model

Asaro & Rice (1977) , Acharya & Beaudoin (2000),
Kothari & Anand (1998), Busso et al. (2000), Kocks (1976)

Kalidindi et al. (1992), Bronkhorst et al. (1992), Anand (1998)
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Shear zone single crystal model
Asaro & Rice (1977) , Acharya & Beaudoin (2000),

Kothari & Anand (1998), Busso et al. (2000), Kocks (1976)

Kalidindi et al. (1992), Bronkhorst et al. (1992), Anand (1998)
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Single crystal model - Ta

Single Crystal Model Ry
{111} cp:lSOJ/kg-K
a=6.5 um/m-K
77=0.0,0.95
m,, =-24.5 MP&/K
C,, =268.5 GPa
my, =—11.8 MP&/K
Cp, =159.9 GPa
My, =—14.9 MPY/K
Initial Cy, =87.1GPa
Texture {200} r'=1.47 .
7o =10" sec
5, =50 MPa
5, =550 MPa
F=21x10"7
p=034
q=166
5, =125 MPa
AN h, =300 MPa
- Los Alamos A=10"%]
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Material Parameter Evaluation
512 Elements/Grains

Ta - 24 BCC systems
{110}<111>, {1123<111>

i
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Single crystal model - Ta
Single Crystal Model
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Material Parameter Evaluation

Ta - 24 BCC systems
{110}<111>, {112}<111>

p = 16640 kg/m’ r=14

¢, =150 J/kg-K 7, =107 sec™
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Experimental load-displacement response is
over-predicted
600 T —

 Although the loading rate [
difference is described,
overall the model over-
predicts the magnitude of
load required to deform the
sample.

» This is believed to be caused
primarily by 2D
representation.

» The single crystal model 100 | :
could also be inadequate to E. Cerreta
well represent this level of 0 ' ' '

. 0 0.l 02 03 04 0.5 0.6
detail. Top Surface Displacement, mm

200 ¢

Top Surface Stress, MPa

Q)
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Mises Stress, MPa

T Eq. Pl. Strain
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[Localization - Ta

Continuum Experimental

Realization 1 Polycrystal

— i
Operated by Los Alamos National Security, LLC for NNSA
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MAT(

Portion of the shear zone
isolated for closer examination.

Statistics of material state
* von Mises stress
* Plastic strain
* Temperature
« Plastic strain rate

Comparison to measurement
* Crystallographic texture
« Strain profile by
metallography

Oparaied by Los Alamos Nalional Security, LLC for NNSA
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Realization 1

Experiment

>

{110}

A E. Cerreta, J. Bingert

omudlt:;:;: Alamas Natonal Secunty, LLC for NNSA N“m
Measurement of Granular Aspect Ratio Ross
14 T T T T T T T
Grain morphology (aspect ratio) was .
measured along lines parallel to shear 2r . . ;

zone

Grain Aspect Ratio
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3 Differing Crystallo

Realization 1 Realization 2
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Shear zone region interrogation by nano-indentation

* Hysitron triboindenter — Berkovich pyramidal tip
+ 10 measurement zone width — 4 micron step

* Penetration depth — 200 nm

* Loading/unloading rate — 10 nm/s

Hold time — 10's

A. Ross
G. Swadener

» Los Alamos
[EEREYS

Operated by Los Alamos National Security, LLC for NNSA NK‘&

Shear zone interrogation by nano-indentation
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Top Hat Problem: Experiments vs. Computations

» Experiments
— Split-Hopkinson pressure bar

— Top-to-bottom loading (10-25 m/s)

» Computations

— 46,000 triangular elements in EPIC

— 2,000 elements in shear section

— Axisymmetric, adiabatic conditions

— Frictional self-contact at both
comers

— Piece-wise linear (in time)

downward velocity profile applied to

top surface
— Rigid frictionless base
»  Compare response (average stress vs.
— .deflection at top surface
aLosA?amos at top surface)

NALARAL LERORATORY
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Top Hat Problem: Tantalum
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Top Hat Problem: 316L Stainless Steel

700 |
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400 f}

300 316 Stainless Steel

Top Surface Stress, MPa
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Top Hat Problem: 316L Stainless Steel

300 i 316 Stainless Steel

— -, >

Top Surface Stress, MPa

200 ]

100 +
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0 0.1 0.2 03 04 05 0.6

o
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Top Surface Displacement, mm
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Sub-grid Computational Approach

=
s Los Alamgg

Operated by Los Alamos National Security, LLC for NNSA N“&A"

- Modeling Localization:
Conventional vs. Embedded-zone Approach

» Localization phenomena involve a discontinuous strain field

Conventional computational techniques
— Can represent jumps in strain only at inter-clement boundaries, not inside
elements
— Represent a localization zone as a band of elements, spanned by a single
element in width, and thus yield mesh-dependent results
— Necessitate resolving localization zones explicitly, which is prohibitively
expensive, and requires a priori knowledge of the band location and orientation
Sub-grid computational technique
— Allows part of the localization band to be embedded inside an clement,
obviating the need for excessive mesh refinement
— Allows localization band width to be specified as a material parameter, instead
of being dictated by the mesh size
— Allows band orientation to be determined based on material stability analysis

. — Allows smooth transition from uniform to localized deformation, and facilitates
. Los Alamims use of different material models inside and outside the band
.- g
Operated by Los Alamos National Securty, LLC for NNSA N“m

17



Localization: Bifurcation Analysis

» Based on Hadamard (1903), Hill (1962)

» Localization zone R characterized by
thickness b, unit normal n and strain jump
direction m.

» Compatibility
[é] = 390nin; + myn)

+ Equilibrium
[¢:1 = [ridi] = mif[ei;] = 0
» Constitutive relations

6ij = Dijrién
» Combined, they lead to: Find n and m such
that
(nDyijrn)me =0 = det(n;Dyjymy) = 0

Vil

3

: !-j°5§ 3 rA'a'HmCE

Opemmdeb;léLEAhmol Nationa! Securfty, LLC for NNSA i-“l“.l'"ﬂ;

< Based on the work of Belytschko et al (1988),
Fish and Belytschko (1988)
+ Conventional FEM approximation
w; = NAdA, g =B dA
+ Strain field is continuous within elements

c _1 a“l-l-a“] a_L aNA+aNA
U2\ T oax ) T2 oy T oy

* Introduce assumed strain field  £ich that
AE,‘j = E{} AdA
» Constitutive relations
o =L(§)

* Internal force vector in the explicit Central Difference Method

A MAB AP = (1, - fh),  fh = fﬁﬁ‘ Z;j(8) dQ
J 1
« Los Alamos

%é'%OI-VORV

Operated by Los Alamos National Security, LLC for NNSA N“f".ﬂ;
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Enhanced Assumed Strain (B-bar) Method

»  Weak discontinuity is characterized by
T=-(m®n+n@m)

» Projection of Aedonto discontinuous mode

(ae: YT

+ The assumed strain field takes the form
A& = Agjj + a (B Ty) Ty

* Recall that, by definition, ag; = BA Ad?

» The B-bar operator has the form

BA = (818 + a Ty T, )BA,
where @ = al inR;, and a = -a"¥ in Ry,
* Modified Gauss quadrature scheme

e

Ng q
b b
2N [Jwdas ) -, [ sy R (1-5) )] e v
q a
« Los Alamos
S 87 :
Operated by Los Alamos National Securfty, LLC for NNSA ?Jl““\uri

Enhanced Assumed Strain (B-bar) Method

¢ The unit normal vector n is known. Must
determine the unit strain jump vector m,
and the scalars af and a™

» Equivalence between strain fields
J’(EA -BA)do =0
2}

* Definition of m as a unit vector

lmll =1
+ Equilibrium at the band-matrix interface
[tl=n-[o]=0

+ Traction continuity condition is enforced at each
Gauss point, at the end of each time step, using
an iterative solution scheme.

_/".
s Lc;g Alamos

Operated by Los Alamos National Security, LLC for NNSA YA L=l ]

19



Numerical Examples

2

-Los Alan)p§
it e —
NYSA

Operated by Los Alamos National Securty. LLC for NNSA

Strain Softening: A Prerequisite for Localization

A

Softening gives rise to material instability
det(n; Dijrmy) = 0
Mechanisms of material softening include
— Thermai softening: heating due to plastic work
— Damage (voids and/or cracks)
— Dynamic recrystallization
For simplicity, we choose an isotropic elastic-plastic
material model, with linear isotropic
hardening/softening:
— Elastic parameters: E =200 GPa, v=0.29
— Strength parameters:
a,=300MPa, g, = 310 MPa
K, =220MPa, K, =-66 MPa
— Mass density, p = 7850 kg/m?
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Extension of Rectangular Block

Dimensions: L =0.14m,w=0.10m

A 4 A 4 4 A
» Upper-right quadrant modeled using N
three meshes to test results for N
N
mesh dependence N
~ Mesh L: N
5 7 embedded-zone elements, b/h = 1/3
— Mesh 2:
10 * 14 embedded-zone elements, b/h=2/3
<
— Mesh 3: N
15 " 21 conventional elements, b/h = 1 §a>
* Band width b = 3.33 mm is assumed \F
*+  Bottom-left element is weakened &l
» Shaded area represents localization yAN
zone detected by bifurcation analysis 7 e B i
a
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Extension of Rectangular Block

Staps S20-1
L droreman” scosam sy e - 1.00008.c3
x

Deformed Var: U Dafomasios Scols Fador -1 000e+00

Location and orientation of band, and its effect on overall deformation, are
captured reasonably well, even by coarsest mesh.
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» Correct structural response is captured throughout loading
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Top Hat Problem: Stainless Steel
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Concluding Remarks

» A sub-grid finite element formulation for modeling strain
localization was presented, and its implementation within an
explicit Lagrangian framework was described

* The method can treat
— Plane-strain and axisymmetric problems
— Small-deformation and finite-deformation problems
— Compressible and incompressible material behavior
— Problems involving highly-dynamic loading

* Focus of current and future work

— Accounting properly for softening mechanisms like
damage (e.g. Johnson and Addessio, 1988), thermal
softening (e.g. Anand, 1985), and dynamic
recrystallization
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Summary & comments

» Damage and failure in polycrystalline metallic materials is
strongly dependent upon microstructural details — modern
lower length scale tools are necessary to assist in our learning
about these complex physical processes. This can then
properly motivate the development of physically based higher
length scale models for use in applications.

e In general, we do not have the ability to adequately represent
the topology of polycrystalline microstructures — this is
especially true in 3D. Sub-granular initial state is also a
concern.

* The modeling results compare OK with experimental
measurements. Comments are:

— Stress response is consistently over-predicted.

— Texture prediction clearly shows 2D deformation gradient.

— Shear zone strain profile is well predicted.

— Due to tessellation limitations, triangular elements were required.
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Single Crystal Work Asaro and Rice, 1977
Asaro, 1979

Tension Chang and Asaro, 1981

- Single crystals of Al-2.8Cu with 6’ and @ precipitate particles

- Course slip bands were aligned with the active slip systems

- Macroscopic shear bands were preceded by the formation of coarse slip bands
~ but were not aligned with active slip systems.

2
» Los Alamos

NATICHAL LABORATORY
i

[T
Operated by Los Alamos National Security, LLC for NNSA C WA o]
WAy

24



Polycrystal Work Bronkhorst et al. (1992)

Anand & Kalidindi (1994)
Plane Strain Compression OFHC Cu
| T I T IR ! i
6 7 8 Y v
I 12 13 B} 5

- Each of the 25 crystals was divided into 50
equal-sized elements.

- Localization into zones oriented 30-40° from
horizontal.

- Shear banding is a natural part of
inhomogeneous large deformation process and
is closely linked with evolution of
crystallographic texture.

. L;)s Ala

NATIONAL LASORATORY
43

R
Operaied by Los Alamos Nationat Security. LLC for NNSA ;
NYSA

Single Crystal Work
Wang, Beyerlein, LeSar (2006, 2007)

1100]

Talk on Tuesday 8:00

-
[CIEYS]
- - Dislocation dynamics on Cu at rates
of deformation 104 — 109 5!,
- [100], [111], [-211] tensile loading
orientations.
- Inhomogeneous dislocation accumulation
leads to “directional” microstructure.
‘ - Slip bands developing on the more active
slip systems, particularly for [111]
- orientation.

Strain rate: 10" 5"
Plastic strain: 0.13%
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Single/Polycrystal Work

Tension

008

500 um

- Modeled the tension response of large

>0.70
0613
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0380
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0175
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Cheong & Busso (2006)

Case 2 (max s“’(= 0.36)

grain “sheet” sample.

- Able to represent the qualitative profile of
localized deformation.

- Required inclusion of misorientation
distribution within the large crystals to
represent the magnitude correctly.

— Case 2
o 2 4 Data
\ 0.20
E 12% strain

.10
. A 8% strain, .
Dl L S

A

_-) -1.80 -1.30 -0.80 0.;0 0.20 Q.70 1.20
= !‘A?Réxlgmr?nsv Distance from centre of specimen gauge section (mm)
opmm‘\;; L:’s Alamos Nations! Secunty, LLC for NNSA N“m
Polycrystal Work
Becker (1992)

Bending

- Taylor-type model applied to each integration
point using 8 grains chosen at random from
a distribution of 800 grains.

- Resistance to shear band growth by grains
which are not favorably oriented.

- Overall localization planes are formed at
reasonable strain levels and at appropriate
orientations.
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Tophat Experiments

Results from tophat experiments performed at 25 C
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[Localization - Ta

» Dynamic response of the SHPB system is not represented
* Piecewise linear velocity profile applied uniformly to the top surface
» Top surface stress response is weighted average of top row of elements

Velocity profile at -100 °C
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[Localization Low density mesh shown

Z uniform velocity

* FE code EPIC - explicit

* Axisymmetric and adiabatic
* 46,000 triangular elements

* 2000 shear section elements

» Contact friction surfaces in
two corners

* Velocity profile applied to
top surface

» Rigid and frictionless base

» Stress response at top surface
compared to experiments

2,000 gage section elements

EPIC
46,000 elements

contact M, = 0.2

rigid and frictionless
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Continuum Model
Addessio and Johnson, 1993; Maudlin et al., 1999 D Rat »
Mason, 1999, 2004 Damage Rale gD’ >0
Stress . é .
) D= fsl g=(1-p)uD”
T=MT  M=(1-¢)1 3(1-¢)
oP 4, = 0.0003

T=MI;(D’—DP')—M(——UD"+BFT-DP]1+MI\_'I"T
op p

Strain Rate . -
- Equation of State

D=D¢+D’ =D* +D? + D”

P=(KB+K,B*+K,B)(1-TBI2)+TE,(1+ B)

Plastic Flow Rate = - -
T, =70 Pa-s A= K, —1968GPa [ =160
PR o 4 =15 Po K,=2598GPa  p, =16,640 kg/m’
D _r_( -T ) 9, =0.625 - 5  |K,=256.6GPa
g p=(1-¢)p » = 2%6.
195 =225
1—0'[({—,",9)2[1+q3¢2—2ql¢005h5}=0 Plastic Work
. =095
B3 = 6=—"1-F, Z‘ =54.4 Jikg-K
2-T 0T  s=-"hC P=-1uT P, p =24 ke
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[Localization - Ta

» Predicted responses for sample 1356 and 1357 experiments performed at 25 °C
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Continuum Model — Sample 1357

Time = 40 micro-sec.
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+ Contact friction significant in top corner
* Damage plays no role
» Shear band does not form
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Shear Band — 316 SS

Displacement (a)
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Shear Band — 316 SS
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Shear Band — 316SS

Displacement (d)
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Top Surface Stress, MPa

Shear Band — 316SS
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Shear Band — 316 SS
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Localization

* Shear and normal stress defined relative to shear zone line
* Stress in shear zone is quite uniform

» Shear zone line angle changes from 77.2° to 75.8°
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Localization

« Shear zone was bisected to form separated “hat” and “brim” pieces — frictionless contact
« There is a resistance to deformation due to the expansion of the outer ring.
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Number of Matcrial Points
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Realization 3
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[.ocalization - Ta

Continuum
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Time Fraction = 0.08
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Localization

120

Ta

T T
120

Shear Zone Elements

3897 Material Points

1356 Simulation

Top Surface Displ. = 0.383 mm

T T

Number of Material Points

T T T T T T
Top Surface Displ. = 0.394 mmn |

Shear Zone Elements
3§97 Material Points
1356 Simulation

a 100 Realization 3
£
=
N
8
=
Z w
)
2
§ «
= 350 400 450 00 S50 600 650 00 750
20 T T T T T T T Temperature, K
1o Shear Zone Elements
3897 Material Points
0 1356 Simulation 1
350 400 450 500 550 600 650 700 750 w 100 Top Surface Displ = 0378 mm
Temperature, K g i
£ |
F 80 4
T 1
{ .
Realization 1 : . Realization 2
3
g or
z
20
- o
« Los Alamos 350 400 450 00 530 600 650 00 70
NA"QNE‘L"L‘A':’QIAYORV Tem ml’c, K
Operated by Los Alamos National Security, LLC for NNSA ?«“&m‘
Time Fractioa = 0.05
10 T T T T T T T . .
Realization 1
140 ]
L 4
.8
I
.E 100 B
]
5
£
g w ]
s 50 . . - :
560 ]
-3 -
£ 700 L 3
Z 4 ] ¥
600 - /n"‘ 3
V.
. i 3
5 g
) ]
Temperature, K g 2 i
€
& wp :
200 3
100 [ J
o o == T
0 02 04 06 038 1
s Time Fraction
- Los Alamos
NATIONAL LABORAYORY
ot
Operated by Los Alamos National Securfty, LLC for NNSA YA =]
l"l‘ 1

38



Time Fraction = 0.05
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Extraction of material point information — 3 realizations
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Extraction of material point information — 3 realizations

| Original corner point I\
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