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ABSTRACT

Multiscale modeling of interface-defect interaction
in multilayered metallic composites

H. M. Mourad*, 1. J. Beyerlein, B. L. Hansen, C. A. Bronkhorst,
J. R. Mayeur, F. L. Addessio

Theoretical Division, T-3, Los Alamos National Laboratory
P.O. Box 1663, MS B216, Los Alamos, NM 87545, USA

* email: hmourad@lanl.gov

We consider a multiscale modeling strategy for the behavior of composite materials
consisting of alternating thin layers of two immiscible metals. Dislocations and other
defects can be nucleated, annihilated, stored in or transmitted across the bi-metal interfaces
in such composites. The effect of such interface-defect interactions on the macro-scale
properties of the composite material is more pronounced when the thickness of individual
layers is small, resulting in a high density of heterophase interfaces in the composite.
In this interface-dominated regime, depending on their structure and properties, the bi-
metal interfaces can endow their parent composite material with very desirable properties,
e.g. outstanding damage resistance and significantly enhanced lifetimes, via their ability to
mitigate damage accumulation induced under severe loading conditions. Metallic laminates
with layer thicknesses in the sub-micron range can now be fabricated in bulk quantities
(~cm?) using severe plastic deformation processes, such as accumulative roll bonding [1].
The proposed multiscale modeling strategy takes into consideration the structure of
heterophase interfaces, and its evolution during the deformation process. This is crucial
in elucidating the effect of interfaces on microstructural evolution under severe plastic
deformation, with the goal of manipulating the fabrication process to produce composites
with the desired properties.

REFERENCES:

[1] S.C.V. Lim and A.D. Rollett, “Length scale effects on recrystallization and texture
evolution in Cu layers of a roll-bonded Cu-Nb composite,” Mater. Sci. Engng. A, vol. 520,
pp. 189-196, 2009. '
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Motivation and Background
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e Interfaces can absorb and eliminate defects
e provide the layered composite with an efficient mechanism
for mitigating damage accumulation, and
e give this class of materials very desirable properties
.
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Motivation and Background: PVD

Cu-Nb 2.5 nm layers
P W bt * AL

a Physical Vapor Deposition (PVD) foils:
e KS orientation relationship:
{111}ec Il {110} (interface plane),
e Long growth time (~ 24 hours).
e Too thin even for some testing methods (~ 20 ym thick)

(110%cc I {11 1) pcc

.« Need bulk fabrication technique for ID layered composites
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Motivation and Background: ARB

e SPD bulk fabrication technique

e High-purity polycrystalline Cu, Nb
e Rolling: 60% thickness reduction
e Anneal: 615°C for 3 hours

e Layer thickness: 1 mm — 10nm
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Motivation and Background: ARB

e Two-dimensional layered microstructure

e Controllable layer thicknesses

e« Monotonic deformation imposed in a familiar manner
@

Requirement: The ability to predict microstructural evolution
under extreme strains
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Objectives and Approach

e Objectives:

Manipulate the ARB process (short term) and/or
other bulk fabrication processes (long term) to
produce layered composite materials with optimal

properties.

e Approach:

Develop a meso (nm to um) multi-scale modeling
framework, capable of predicting microstructural
evolution in multilayered metallic composites, during
the transition from the constituent-dominated to the
interface-dominated regime.
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Modeling At Multiple Scales: Overview
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Singke interface mode): Isofated interface
deformation

Crystal Plasticity Finite Element: Mutti-
interface deformation

Plastic deformation of polycrystal
Influence of interface in strength

and texture evolution of phases

AIM

Interface-dominated behavior of multilayered metallic composites - p. 8/26

LAUR-XX-XXXXX

nNYsA




T P
‘LDRD

o aton Ko ot

Crystal Plasticity FEM
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Modeling the Rolling Process
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e Plane strain compression is an idealization of the rolling
process, approached as r — oo
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Mechanics BVP
e Governing PDE and boundary conditions:
V.o+b=0 in Q
u=1a onTI“
t on I'?
e Kinematics:
F=F"FF F’ =LPFP
1
L=y 7 men®  E=C(FTF -1)-A(T-T)
a
@ Stress-strain relations:
1 T
S=C:E° = F*S F*
detF*
A
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Local Single Crystal Plasticity Model
e Slip rate:
) M \P q
. |T(@] - st .
(@) _ _20 2 0 sgn(t?
7 = Foexp{ 2 F gn ()
l Lo
where 1% =g : (m'* @ n'?)
e Rate & temperature dependent hardening law:
P _ b
§(@ =3 hlep ‘Y(m| P = o [r+ 0 -ndapl | ~5—5
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e Adiabatic heating: T = Z @y
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Single Crystal Plasticity Model Parameters

Initial texture Cu Nb Cu: 12 systems — {111} (110)
ay £ =8960 kg/m’ p=8400kg/m' Nb: 24 systems — {110} (111),
¢, =380 J/kg-K ¢, =2068Jkg-K {112} (111)
a =177 pm/m-K @ =8.7 tm/m-X
7=0.0,095 17 =0.0,095
my, ==36.3 MPo/K m,, =—17.7 MPa/K
¢, =179.5GPa C,, =242.0GPa
(10} m;, =-16.4 MPa’K m;, =1.92 MPa’K
C,, =126.4 GPa ¢\, =121.2GPa
m,, =-25.7 MPa/K my, =218 MPa/K
C,, =82.5GPa C,, =28.0GPa
r =Vl 4 r=14
7o =107 sec™! 7o =107 sec™
(i) s, =1 MPa s, =40 MPa
5, =20 MPa 5, = 700 MPa
F,=1.0x10"1] F,=2.1x10"
p=033 p=034
g =166 g=1.66
s =205 MPa s, = 140 MPa
h, =200 MPa h, =300 MPa
7y A=15x10" 1 A=1.0x10"" 512 Elements (Grains)
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Single Layer PSC Simulation
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Single Layer Cu / Nb PSC Simulation

Cu: 12 systems — {111} (110)

Nb: 24 systems — {110} (111),{112}(111)

e Same microstructure morphology, initial crystallographic

texture, strain (€ = —0.8)
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Single Layer PSC Simulation

310°
« Substantial difference in _
rolling resistance between A%
Cu and Nb 5
210

e Load—deflection curves are o Nb
expected to be different in g 1500

the multilayered case dueto &

mutual kinematic constraints 1 10°

C
between layers 3
o How do these differences 2
manifest themselves in the
multilayered case? Yo % et B A WE i

Displacement, mm

A,
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Six-Layer Cu/Nb PSC Simulation
e Two-dimensional six-layer problem Cu
e Aspect ratio 3:1
e 169 grains, 71,876 elements AL
e Currently in progress
o Local CPFEM can be used to .
simulate the rolling process until
layer thicknesses reach ~ 1 um b
e In sub-micron (ID) regime, a
non-local CPFEM model must be
used to capture relevant size Lu
effects
Nb
.
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Non-local Crystal Plasticity FEM
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Flux-based Crystal Plasticity Model

e Governing PDE and boundary conditions: for each slip
system a, and dislocation type p € {e+,e—, s+, s—}

. (@) Cpla) _ gp@) :
Q(p)+V f(p)_<I> in Q

(p)
(a) _ () ; —
Op) =6 NQati=0
(a) _ =(a) 1)
Q(p) - Q(p) onrl

nf@=79  onr/
(p)
e Constitutive relations:
(a) (a) (a)
f i) (p) Q(p) (p)
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Flux-based Crystal Plasticity Model

« Coupling with Mechanics:

e Slip rate:

D= pl ||f§‘;§ I (Orowan’s equation)
p

)
) )

where 1@ =§: (m'? @ n'®), ¥ =pup'®

e Dislocation kinetics:

Go

U[a) ~0
kT

(p)

sgn (z'?) (glide, V p)

= vpexp | —

0.5

) p)
%é(am [0+ g

e Advantages:
e Accounts correctly for the underlying physics in plasticity
e Resolves boundary layers and captures size effects
e Facilitates linking AIM with CPFEM framework

. Los Alamos
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Spatial Discretization

e Dislocations are carriers of

plastic slip
- : . ite element
e Dislocation transport is i g
driven by stress integration ?oint
volume
e Mechanics BVP is solved
using FEM

e Dislocation transport IBVP is
solved using FVM

e FV discretization is
piggy-backed on Gauss
quadrature point cloud
associated with FE mesh

/\
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Divergence of the Dislocation Flux

2 Volume integration:

deV+fV-de:f<I>dV
|4 |4 |4

e Volume averaging:

1
@+—fv-fdv=c1>
Vv

e Divergence theorem:

1
o+—| f-adA=9
V Jov
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Divergence of the Dislocation Flux

e Finite volume approximation: (o

1 1 ~(n)
= adA = =Y W FM S0 a0
7 ) F V;x f

&4‘
\.__\0

e Dislocation blocking at interfaces:

Dmop = —l Z [1 —X(n))f(n) .aWpm

|4 ne¥ m)
1 ~

Pinm =+— 3. (1-x™) F" -a®A™sgn(v)
|4 ne?

wherec,%:{n|f(”)-a‘”)>o}, 0<sy™<1
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Example: Al Bi-crystal in Single Slip
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Example: Al Bi-crystal in Single Slip

108 E
\E 10!
+
=
10°
e GBhas y=0.5
e éyz =0, 0.025, 0.05, 0.075, 0.1
Foal
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Analytical Interface Model

B
QA\’Y A

Lk !‘\l\ 4 F
A

e The goal of AIM is to predict the evolution of lattice and
interface defect populations, based on the ability of the
interface to absorb, store, annihilate, and emit lattice
dislocations
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Analytical Interface Model

B
A
O — W A
= !'-<\ =+
s/ n 5
TN 08
A

o Dislocation flux leaving layer A into the interface:

—_ sA_ A : A - A :BA
a'f|1“f‘m =J = Jabs * Joloc ™ Jemit ~ Jtran
e
.
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Evolution of Interfacial Dislocation Populations

e« Rate of absorption:
A(a :A(a)
Jabs Z Jabs Z Xabsj

aea a(—:a
2 Rate of transmission:

_ BA(a) _ (Ba) .B(B)
Jtran Z Jtran Z Z tran Jabs
acal aca’ Be BB

e Extrinsic dislocations:

E _ AB
= Jtran T Jiran (/)rxn rxn (/)ann
—_——

Residuals
« Interfacial dislocations with A-lattice Burgers vector:

(
=2 X [1‘%2&]1:& +in — Pomi

acal BepB
Ny s
g
pah. Storage
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