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Modeling Thermo-mechanical behavior of PBX 9501
Partha Rangaswamy?!, Mathew W. Lewis!
'Los Alamos National Laboratory, Los Alamos, NM 87545

An engineering overview of constitutive modeling of the thermo-mechanical response of Plastic-
Bonded eXplosives (PBXs), specifically PBX 9501 will be presented. A range of mechanical behavior is
observed which includes small strain recoverable response in the form of viscoelasticity; change in
stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, and
void formation; inelastic response in the form of plasticity as shown in cyclic tests, and viscoelastic
creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of
the presentation is to step through the analysis of experimental data to obtain the parameters for a
constitutive model which includes viscoelasticity and continuum damage to capturing a few of the
above observed mechanisms. Examples of verification and validation as demonstrated against Brazilian
disk and losipecu gemoetries will also be presented.
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Talk Outline

Background
Rationale, objective and goal of this study

PBX 9501
What it is ? what are the issues ;

Mechanical Test Results
Monotonic, Cyclic, Triaxial

Analysis of Experimental Data
Statistical analysis, Viscoelastic properties, Damage Calibration

ViscoSCRAM model
What it is, pros and cons

Verification and Validation Suite
What are they, relevance to this study



Background

It is important to be able to accurately predict the behavior of
high-explosive (HE) materials because,

e extreme sensitivity with which they respond in the
environment in which they are designed to perform, and

e to accidental mechanical shock, which might occur
during handling.

Thus it is imperative that a capability exist to model the
response of HE materials subjected to a variety of
thermomechanical loading conditions, a response that is highly
complex, requiring sophisticated material modeling to simulate.



PBX 9501

What is PBX 9501 ?

Plastic Bonded Explosive
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Particle size (gm)
94.9% by wt. HMX (10 to 200 um particles)
2.5% by wt. Estane 5703 (polymeric glue)
2.5% by wt. BDNPA/F nitroplasticizer (NP)
0.1% by wt. stabilizer. DPA or Irganox.




Energetic Materials Modeling

Challenges

Very heterogeneous materials
— High volume fraction of discontinuous phase
— High contrast in properties and behavior of phases
Statistical variability |
Nonlinear response |
— Rate, temperature, density, and history dependence
Multiple mechanisms of deformation
— Viscoelasticity
— Plasticity
— Damage
e Voids
e Cracks
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Stress (MPa)

Uniaxial Compression/Tension Mechanical Test Data
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Modeling

PBX Constitutive Modeling
Needs for Engineering Analysis

3D (multiaxial stress states)

Rate dependence

Softening and failure

Creep and relaxation

Plasticity (permanent inelastic deformation)
Damage (Modulus degradation)

Temperature dependence of mechanical response
Reliable ignition models

Spatial heterogeneity

Thermomechanical cyclic response (ratchet growth, damage
accumulation, effect of confinement on these) PBX 9502



Statistical Analysis of Uniaxial Monotonic Stress Strain Data
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Table of failure strains with statistical confidence intervals

Compression Failure Strains
Temp(deg C)  Strain Rate (1/s) "@stress” Mean Std dev. N DOF CI 90 low CI 90 high CI 95 low CI 95 high CI1_99 low CI1_99 high

MPa

-15 0.00001 14.80 0.0121 0.0004 6 5 0.0113 0.0128 0.0111 0.0130 0.0105 0.0136
-15 0.001 17.50 0.0105 0.0018 6 5 0.0068 0.0141 0.0058 0.0151 0.0032 0.0178
0 0.00001 10.60 0.0110 0.0010 6 5 0.0089 0.0130 0.0084 0.0135 0.0069 0.0150
0 0.001 14.10 0.0121 0.0013 6 5 0.0094 0.0147 0.0086 0.0155 0.0067 0.0174
23 0.000001 4.90 0.0069 0.0006 o6 5 0.0056 0.0081 0.0053 0.0085 0.0044 0.0094
23 0.00001 6.20 0.0084 0.0005 6 5 0.0074 0.0094 0.0071 0.0097 0.0064 0.0104
23 0.0001 7.80 0.0092 0.0013 6 5 0.0066 0.0118 0.0059 0.0125 0.0040 0.0144
23 0.001 9.30 0.0101 0.0014 6 ] 0.0073 0.0128 0.0065 0.0136 0.0045 0.0156
23 0.01 11.10 0.0116 0.0011 4 3 0.0091 0.0141 0.0082 0.0150 0.0054 0.0179
40 0.00001 4.30 0.0073 0.0007 6 5 0.0059 0.0087 0.0055 0.0091 0.0045 0.0101
40 0.001 7.00 0.0097 0.0018 4 3 0.0055 0.0140 0.0040 0.0155 -0.0008 0.0203
50 0.00001 3.20 0.0064 0.0011 6 5 0.0041 0.0086 0.0034 0.0093 0.0018 0.0109

50 0.001 6.10 0.0096 0.0012 4 3 0.0068 0.0124 0.0058 0.0134 0.0027 0.0166



Log E (MPa)

Stress (MPa)

Obtaining Viscoelastic Properties from Uniaxial Stress Strain
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Stress

Compression-pos23degC- Stress-Strain (Experimental v8 Viscoelastic fif) Tension-pos23deqC- Stress.Strain (Experimental v& Viscoelastic fit)
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Modeling

What is ViscoSCRAM?

ViscoSCRAM was developed in the 1990s and early 2000s as an engineering
constitutive model for Plastic-Bonded eXplosives (PBXs).

Model features include

Linear viscoelastic shear response including Time Temperature
Superposition

Inelasticity initially only from microcracking (damage)

Use only compressive part of damage surface

Keep only shear crack strains

Finite crack strain rate for any nonzero stress

Stress dependent damage growth rate, ad hoc increased growth rate for
mean tension | |

No different moduli for tension vs. compression unless added ad hoc
Crack friction
Two initiation models for ignition modeling

Bennett et al, 1998, J. Mech. Phys. Solids. Vol. 46 (12)



ViscoSCRAM Modeling

Linear ViscoElastic Continuum Damage

Isotropic, Generalized Maxwell Model Statistical Dist. of Randomly Oriented Micro
Cracks




Crack Strains
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Visco-elasticity and cracking
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. . Modeling
Validation tests for PBX 9501
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Stress (MPa)

Hydrostatic Stress Simulation
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Uniaxial Strain Simulation
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Stress (MPa)

Uniaxial Stress Simulation Compression
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Validation of losipescu tests for Pristine PBX 9501

SHEAR STREES (MF1)

b 005 o1 .18 0z 225 02 0.35 o4
DISPLACEMENT (mem}

Enlarged view of the v Moving part
detailed meshinthe | Fixed part

center region Moving direction Figure 6: Comparison of Iosipescu test data and analysis results for displacement versus
shear stress at the gauge section

SoOv1

(Avg: 756%)
+8,526e+00(
+7.812e+00
«7.09T7Te+00
+6.382a+00
+5.6680+00
+4.95384+00
+4.2308e+00
+3,524e+00

+2 RFI+NN

Test03 at 78sec, the last recorded image Test04 at 73.6 sec, the last recorded image

Crack size at the last recorded moment — FEA result at 85second



Load (MPa)

Validation of Brazil Disk Test
Deformation and Failure of PBX 9501 High Explosive
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Stress Deviator Magnitude (MPa)

Triaxial Compression Response of PBX §501
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Future Modeling

R e e =

Pursue Current Best Modeling Options

e ViscoDCA
— Damaging linear viscoelasticity
— Rate and temperature dependence
— Implemented in ABAQUS/Standard and EPIC
e Plans for /Explicit, ParaDyn
e FRHE
— Viscoplastic with volumetric plastic component
— Rate and temperature dependence

— Directional damaging elasticity based on plastic strain
accumulation

— Implemented in ABAQUS/Explicit and Epic



