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Modeling Thermo-mechanical behavior of PBX 9501 
Partha Rangaswamyl, Mathew W. Lewis1 

lLos Alamos National Laboratory, Los Alamos, NM 87545 

An engineering overview of constitutive modeling of the thermo-mechanical response of Plastic­

Bonded eXplosives (PBXs), specifically PBX 9501 will be presented. A range of mechanical behavior is 
observed which includes small strain recoverable response in the form of viscoelasticity; change in 
stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, and 
void formation; inelastic response in the form of plasticity as shown in cyclic tests, and viscoelastic 
creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of 
the presentation is to step through the analysis of experimental data to obtain the parameters for a 
constitutive model which includes viscoelasticity and continuum damage to capturing a few of the 
above observed mechanisms. Examples of verification and validation as demonstrated against Brazilian 
disk and losipecu gemoetries will also be presented. 
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Talk Outline 

Background 
Rationale, objective and goal of this study 

PBX 9501 
What it is ? what are the issues; 

Mechanical Test Results 
Monotonic, Cyclic, Triaxial 

Analysis of Experimental Data 
Statistical analysis, Viscoelastic properties, Damage Calibration 

ViscoSCRAM model 
What it is, pros and cons 

Verification and Validation Suite 
What are they, relevance to this study 



Background 

It is important to be able to accurately predict the behavior of 
high-explosive (HE) materials because, 

• extreme sensitivity with which they respond in the 
environment in which they are designed to perform, and 

• to accidental mechanical shock, which might occur 
during handling. 

Thus it is imperative that a capability exist to model the 
response of HE materials subjected to a variety of 
thermomechanicalloading conditions, a response that is highly 
complex, requiring sophisticated material modeling to simulate. 



What is PBX 9501 ? 
PBX 9501 

Plastic Bonded Explosive 

°dmore et al o O' 

o. 

Composition of PBX 9501 
Panicle size (URl 

• 94.9% by wt. HMX (10 to 200 J.lm particles) 
• 2.5% by wt. Estane 5703 (polymeric glue) 

• 2.5% by wt. BDNPA/F nitroplasticizer (NP) 

• 0.1 % by wt. stabilizer. DPA or Irganox. 



Energetic Materials Modeling 

Challenges 

• Very heterogeneous materials 

- High volume fraction of discontinuous phase 

- High contrast in properties and behavior of phases 

• Statistical variability 

• Nonlinear response 

- Rate, temperature, density, and history dependence 

• Multiple mechanisms of deformation 

- Viscoelasticity 

- Plasticity 

- Damage 

• Voids 

• Cracks 
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PBX Constitutive Modeling 
Needs for Engineering Analysis 

• 3D (multiaxial stress states) 

• Rate dependence 

• Softening and failure 

• Creep and relaxation 

• Plasticity (permanent inelastic deformation) 

• Damage (Modulus degradation) 

• Temperature dependence of mechanical response 

• Reliable ignition models 

• Spatial heterogeneity 

Modeling 

• Thermomechanical cyclic response (ratchet growth, damage 
accumulation, effect of confinement on these) PBX 9502 



Statistical Analysis of Uniaxial Monotonic Stress Strain Data 
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Table of failure strains with statistical confidence intervals 

Compression Failure Strains 
Temp(deg C) Strain Rate (l is) "@stress" Mean Std dey N DOF CI 90 low Cl_ 90_ high CI_ 95_ low CI_ 95_ high CI_99_low CI_99_high 

MPa 
r- -

-15 I 0.00001 14.80 0.0121 0.0004 6 5 0.0113 0.0128 0.0111 0.0130 0.0105 0.0136 
1 

-15 0.001 17.50 0.0105 0 .0018 6 5 0.0068 0.0141 0.0058 0.0151 0.0032 0.0178 

~ 

0 0.00001 10.60 0.0110 0.0010 6 5 0 .0089 0 .0130 0 .0084 0.0135 0.0069 0.0150 

0 0.001 14.10 0.0121 0.0013 6 5 0 .0094 0 .0147 0.0086 0.0155 0.0067 0.0174 

23 0.000001 4.90 0.0069 0 .0006 6 5 0 .0056 0.0081 0 .0053 0.0085 0.0044 0.0094 

23 0.00001 6.20 0.0084 0 .0005 6 5 0.0074 0.0094 0 .0071 0.0097 0.0064 0.0104 

23 . I 0.0001 7.80 0.0092 0 .0013 6 5 0.0066 0 .0118 0 .0059 0 .0125 0.0040 0.0144 ... 
23 0.001 9.30 0.0101 0 .0014 6 5 0.0073 0 .0128 0 .0065 0.0136 0.0045 0.0156 

23 
i , 0.01 11.10 0.0116 . 0.0011 4 3 0.0091 0.0141 0.0082 0.0150 0.0054 0.0179 
Y - ----

40 0.00001 4.30 0.0073 0 .0007 6 5 0.0059 0.0087 0.0055 0 .0091 0.0045 0.0101 
t 

40 I 0.001 7.00 0.0097 0 .0018 4 3 0 .0055 0.0140 0 .0040 0 .0155 -0.0008 0.0203 
t 
I 

t 
50 , 0.00001 3.20 0.0064 0 .0011 6 5 0 .0041 0 .0086 0.0034 0 .0093 0.0018 0.0109 .. 
50 i 0.001 6.10 0.0096 0 .0012 4 3 0.0068 0.0124 0 .0058 0 .0134 0.0027 0.0166 



Obtaining Viscoelastic Properties from Uniaxial Stress Strain 
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Compression-pos23degC. Stress.Straln (Experimental VI Viscoelastic fit) 
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What is ViscoSCRAM? 
ViscoSCRAM was developed in the 1990s and early 2000s as an engineering 

constitutive model for Plastic-Bonded eXplosives (PBXs). 

Model features include 
Linear viscoelastic shear response including Time Temperature 
Su perposition 
Inelasticity initially only from microcracking (damage) 
Use only compressive part of damage surface 
Keep only shear crack strains 
Finite crack strain rate for any nonzero stress 

Modeling 

Stress dependent damage growth rate, ad hoc increased growth rate for 
mean tension 
No different moduli for tension vs. compression unless added ad hoc 
Crack friction 
Two initiation models for ignition modeling 

Bennett et aI, 1998, J Mech. Phys. Solids. Vol. 46 (12) 



ViscoSCRAM 
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Crack Strains 
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Visco-elasticity and cracking 
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3 Point Bend 

Validation tests for PBX 9501 
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Hydrostatic Stress Simulation 
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Uniaxial Strain Simulation 
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Uniaxial Stress Simulation 
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Enlarged view ofthe 
detailed mesh in the 
center region 
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Validation of losipescu tests for Pristine PBX 9501 
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Validation of Brazil Disk Test 
Deformation and Failure of PBX 9501 High Explosive 

Brazil Disk 
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Future Modeling 

Pursue Current Best Modeling Options 

• ViscoDCA 

- Damaging linear viscoelasticity 

- Rate and temperature dependence 

- Implemented in ABAQUS/Standard and EPIC 

• Plans for /Explicit, ParaDyn 

• FRHE 
- Viscoplastic with volumetric plastic component 

- Rate and temperature dependence 

- Directional damaging elasticity based on plastic strain 
accumulation 

- Implemented in ABAQUS/Explicit and Epic 


