LA-UR- \\—oRX\ 2%

Approved for public release,;
distribution is unlimited.

Title: | Deployable Dead Time Corrections for Neutron Multiplicity
Measurements Accounting for Neutron Correlations and
Multiple Detector Chains

Author(s): | Danielle K. Hauck, Stephen Croft, Louise G. Evans, Andrea
Favalli, Peter A. Santi, Martyn T. Swinhoe

Intended for: | 52nd Annual Meeting of INMM, Palm Desert, CA

4 I:c_)?s Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)



Deployable Dead Time Corrections for Neutron Multiplicity Measurements
Accounting for Neutron Correlations and Multiple Detector Chains
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Peter A. Santi, Martyn T. Swinhoe
Los Alamos National Laboratory, MS E540, Los Alamos, NM 87545

ABSTRACT

Currently, most standard implementations of deadtime corrections for neutron multiplicity counting
utilize empirical formulas. The corrections have had success for limited count rates, especially
when appropriate deadtime parameters can be determined for a limited range of item properties.
However, the corrections often break down outside the intended application range and current dead
time corrections are not sufficiently robust to apply to higher order correlations beyond triplets.
Sophisticated dead time corrections have been developed by Matthes and Haas (1985) and Hage
and Cifarelli (1992) based on the joint probability for detecting correlated neutrons in a paralyzable
detector system. Baeton et al. (1997) further modified the joint probability to include the effect of
multiple detector chains. Deployable methods are being developed, applying the probability-based
approach to standard multiplicity measurement data including multiplicity shift register, time
interval analysis and list mode data, including expressions for higher-order correlations. Progress
on implementation of the dead time correction in an analysis algorithm and testing of the correction
based on simulations and actual data will be presented.

INTRODUCTION

In correlated neutron counting, the measured rates of neutron multiplets are used to determine item
properties such as mass and neutron multiplication. The measured multiplet rates is a non-trivial
function of the dead time and correlated nature of the neutrons. Most commonly-used dead time
corrections include several simplifying assumptions in the dead time model. Many dead time
corrections also employ empirically determined factors which can compensate for biases present in
the overly simplified dead time model. However, these dead time corrections only hold for limited
count rate ranges and are not sufficiently robust to apply to correlations beyond triplets.

Here, we attempt to develop a full and complete dead time model, with the recognition of three
facts. First, computing power makes it possible to solve even complex systems of equations in real
time. Second, a more accurate dead time model will result in corrections which are applicable over
a wider count rate range including high count rates. Finally, there is a deficiency in understanding
the true effects of dead time on a neutron pulse train. A comparison of an exact dead time model
for correlated neutrons with experimental data and simulated dead time effects will make it possible
to rigorously analyze the validity of the assumptions of a paralyzable detector.

The following derivation of an exact dead time correction for correlated neutrons follows the
approach of Matthes and Haas [1], Hage and Cifarelli [2] and Baeton et al. [3]. These previous
corrections make simplifications early in the derivation. A complete and exact derivation, in terms
of infinite series of true multiplicity rates, is provided for singles, doubles, triples and quadruples in
an upcoming technical report [4]. However, this paper focuses on the dead time effects on



measured singles and doubles rates. The dead time model is then tested against simulated updating
dead time applied to a simulated pulse train from a benchmarked Monte Carlo model [5].

JOINT PROBABILITY FUNCTION

In a paralyzable detector with updating dead time §, the difference between the true pulse train (Il)
and the measured pulse train (T1,,,), is that any neutrons that were detected in [1y, less than § after a
previous neutron detection is not counted in I1,,. This idea can be formulized through developing
the probability (as a function of dead time) of obtaining neutron counts in I1,,,. The probability of
obtaining a neutron count in I1,,, at an arbitrary time ¢, is equal to the joint probability of having a
neutron detection at time ¢ in the true pulse train I1, and having zero neutron detections in the time
interval of § previous to t. Similarly, the probability of having two neutron counts in [1,, at times
t, and t, is equal to the joint probability of having neutron detections in I, at ¢, and t, and having
zero detections in the dead time intervals prior to t; and t,. Therefore, developing a formula for
these joint probabilities in terms of the system dead time and true correlated detection rates provides
a relationship between II, and I1,,,. The joint probability can become quite complex since each
measured multiplicity rate is a non-trivial function of all true multiplicity rates. The relationship

between the true pulse train I1, and observed pulse train I1,, is conceptually demonstrated in Figure
1.
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Figure 1. Relationship between the true and observed pulse trains due to dead time effects in a
paralyzable detector. Only neutrons that are not detected within a dead time interval d of another neutron
are counted in the measured pulse train.

The measured singles rate (d4,,) is equal to the probability of observing a count at arbitrary time ¢
in [1,,,, which is in turn equal to the joint probability Py, of detecting zero neutrons in the interval
[t — &, t] and one neutron in the infinitesimal interval [t, ¢ + dt]. Therefore, the singles rate is
given by



dlm = NO = POl(t: 6, dll dz, d3, ) Equation 1

Here it is emphasized that the singles joint probability is a function of the dead time as well as all
true correlated detection rates including the true singles rate (d,), doubles rate (d,), etc. The singles
rate is also equal to the zeroth moment (N,) of the triggered gate histogram (sometimes called the
Reals + Accidentals gate).

The probability of observing neutron counts at arbitarty times t; and t, in I1,, is related to the total
number of counts obtained in a series of triggered gates. All derivations in this paper assume that
the detector response function has a single exponential (with decay constant ), and therefore all
doubles detection probabilities are dependent only on the time offset between detections 7 = t, —
t;. In this case, the total number of neutrons detected in a series of triggered measurement gates is
the integral of the joint probability over the gate width,

PD+G
Ny =Ty f Po101(T, 6, d1,dy, d3) dt Equation 2
PD

where Ty, is the total measurement time, PD is the gate predelay and G is the gate width. The total
number of neutrons in a series of triggered gates is also equal to the first moment of the triggered
gate histogram N;. The first moment can be written in terms of the first two true correlated
detection rates d; and d, [6], as

Ny = (dlsz + dymfa)Tu Equation 3

where f, is the gate utilization factor for doubles. Rearranging, the measured doubles rate can be
written as a function of the true multiplicity rates as

2 dlmz(;) Equation 4

Equations 1 and 2 can be inverted numerically (including numerical integration of Equation 2) up to
arbitrary desired accuracy to determine the true multiplicity rates in terms of measured rates when
two true multiplicities (d; and d;) are included in the model. Extension to the measured triples rate
(discussed in the technical report [4]) is required for a closed inversion solution with three
multiplicities in the model. The increased accuracy by including three multiplicities is considered
in this paper. Full implementation will be discussed in future publications.

JOINT PROBABILITY FUNCTIONS FOR A SINGLE DETECTOR CHAIN

Each of the previous developments [1-3] of dead time corrections based on the joint probability
function make simplifications to the equations early in the derivation and the complete results are
never given. The complete joint probability functions for singles, doubles, triples and quadruples
have been derived in terms of infinite series of the true multiplicity rates d,, d5, d, ... in a technical



report [4]. In the interest of space, the results for observed singles and doubles rates are reported
here.

Singles Rate
The measured singles rate is given by

dlm = [P()l = AleBl Equatlon 5
where the coefficients are given by
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Note that with one multiplicity accounted for, the measured singles rate becomes
di = die~h8dt, Equation 8

which is identical to the dead time correction obtained from the Poisson distribution assumption. A
plot of the measured singles rate as a function of true singles rate is shown in Figure 2 using up to
one, two and three multiplicities. The functional relationship was calculated using detector
parameters from a Monte Carlo model of Pu metal in a neutron counter with a 1000 cps emission
rate. The simulated dead time effect on the measured singles rate is also plotted in Figure 2.

Doubles Rate
The joint probability for observing two neutrons in the measured pulse train is given by
Po1o1 = (Azq + Az Azz)e® Equation 9
where
w N-2
A2 = Z Z DY Gnyingn) = Gonon — (Gaaon + Goaan) + -+ Equation 10
N=2n,=0

Each coefficient G, 15,,1) corresponds to the contribution from nl neutron detections in the first

interval and n3 detections in the third interval, for a total of N = n1+n3+2 detections. The
coefficients are derived in the technical report [4] and reported here
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Figure 2. Effects of dead time on measured singles rate. The comparison data point (red circle) represents
simulated dead time on a neutron pulse stream of Pu metal from a Monte Carlo model [6]. Greater accuracy
results from the inclusion of a greater number of true multiplicity rates.



Similarly expressions exist for the remaining terms in Py, 4,, including A22;
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and finally the term B2;
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Figure 3 shows the effect of dead time on the measured doubles rate, taking into account up to two
and three true multiplicity rates. The simulated dead time effects are more accurately modeled by
including higher order multiplicity rates. The doubles rate curve is compared to the simulated dead
time effect on the measured doubles rate from a Monte Carlo model of a Pu metal item.
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Figure 3. Dead time effects on the measured doubles rate. The comparison data point (red circle)
represents simulated dead time on a neutron pulse stream of Pu metal from a Monte Carlo model [6]. The
physical portion of the curve ends at the singularity.



TESTING

The dead time model was tested against a simulated updating dead time applied to a pulse train
from a Monte Carlo model of various items in a neutron multiplicity counter [6]. Emission count
rate and dead time were varied to supply testing capability across a range of measurement scenarios.
The ability to accurately characterize the singles and doubles correction factors using up to one, two
and three multiplicities was tested. The dead time model was compared to two other dead time
correction methods; the empirical method often used conventionally [7] and a recently developed
dead time correction factor which is a variation of Dytlewski [5]. The results from selected test
cases are given in Table 1.

Table 1. Relative accuracy of the dead time correction. Accuracy expressed as percent recovery, defined
as Recovery = 1 — Corrected Rate/Measured Rate. The first column lists the simulated dead time for
each case and the second column gives the simulated measured rates after dead time effects.

Measured Empirical Croft- Based on Joint Probability Function

8 Rates Correction Dytlewski 1 Component 2 Components 3 Components

Cf-252  Rate = 1000 cps Singles = 996833 Doubles = 491144

%0 S 910527 -0.190 -0.038 0.081 -0.001 -0.001
D 338672 -1.469 9.106 0.476 0.221
150 S 831679 -0.898 -0.109 0.173 0.007 0.007
‘D 229190 -6.870 -18.365 0945  0.408
360 S 694253 -4.815 -0.326 0.288 -0.005 -0.005
D 99270 -29.365 -35.763 0.001 -1.256
Pu Metal  Rate = 1000 cps Singles = 51211 Doubles=51615
0 S 50886 -0.178 -0.063 0.000
D 50184 -0.875 -0.941 0.107
5o S 50563 -0.355 0.113 -0.008
D 48868 -1.750 -1.869 0.049
60 S 49929 -0.704 0.223 0.691 -0.020 0.020
D 46332 3419 3,660 3.396 -0.078
Pu Oxide  Rate = 1000 cps Singles = 1029765 Doubles = 164889
00 S 938394 -0.133 -0.018 0.025 -0.003 -0.003
D 110279 -3.555 -11.314 2.240 2.173
80 S 855208 -0.807 -0.043 C0.042 0.016 -0.016
D 75742 -7.859 -19.738 0.212 -0.314
360 S 710201 -4.924 -0.225 0.080 -0.016 -0.016
D 30450 -35.101 -41.554 12392 2.106

The dead time correction developed here out performs the two comparison techniques in its ability
to match the simulated dead time effects, even for scenarios with relatively high neutron
multiplication. In the infinite limit of the inclusion of all higher multiplicity rates, the dead time
correction developed here is exact for correlated neutrons for an updating dead time, and in this
sense should well represent the simulated dead time. However, the dead time correction assumes



that the detector response has a single exponential, which is not necessarily true in the modeled
neutron detector system. This may explain the small differences between the simulated measured
rates and corrected rates. A rigorous investigation of the effect of multiple dieaway times in the
detector response on dead time corrections is underway and will be presented in future publications.

The dead time correction presented here can be numerically inverted with the inclusion of two
detection multiplicities to obtain a relationship between true multiplicity detection rates in terms of
measured rates. Hence, the accuracies presented in Table 1 for 2 multiplicities are legitimately
obtainable using only the measured singles and doubles rates for neutron counter systems that
closely approximate a paralyzable system. The dead time correction with three multiplicities
(which is a more accurate model) requires knowledge of the measured triples rate to be inverted. In
this case, a numerical inversion can be performed, although this will require multiple numerical
double integrations. Preliminary testing shows that this can be done in a reasonable amount of time
with current standard computational power.

JOINT PROBABILITY FUNCTIONS FOR MULTIPLE DETECTOR CHAINS

Most detector systems utilize multiple detector chains, in which only a few detector tubes are
connected to each preamplifier and discriminator. The dead time effects result in statistical
modification to the pulse streams coming from each individual detector chain. The individual pulse
trains are then combined through a derandomizer or OR gate into a single pulse train. The total
dead time effects are minimized by having multiple detector chains. However, the statistical effects
of dead time are altered. Baeton et al [3] derived a formulism for calculating the joint probability
function for a multi-chain system, based on the relative singles rates in each chain and the single-
chain joint probability function. The multi-chain joint probabilities can then be used as discussed,
in place of the single chain functions derived here. Planned work includes extension of the exact
dead time model developed here to a multi-chain system following Baeton’s approach.

CONCLUSIONS

The dead time correction developed here closely followed the approach of Matthes and Haas [1],
Hage and Cifarelli [2], and Baeton et al. [3]. The differences in the dead time corrections lie in the
number of multiplicities included and the type of simplifications that are made to the equations.
Here, we recognize that current computing power makes it possible to leave equations in their exact
form. Additionally, further improvement to dead time corrections will require rigorous
understanding of dead time effects and the relationship between reality and any physical model that
is used. For this purpose it is necessary to have an exact description of the paralyzable dead time
model.

The dead time model based on the joint probability function, although published previously, has not
been widely adopted, and its importance has not been fully acknowledged. This is due partially to
the availability of implemented dead time corrections in neutron counting software. One major
contribution of the neutron counting project which supported this work will be to implement
selected dead time algorithms in accessible analysis software.

FUTURE WORK



Future work will focus on evaluating the legitimacy of the assumptions included in the developed
dead time correction, and where needed, extension to more realistic physical models. Most dead
time models (including the one presented here) assume a single time constant in the detector
response function. Deviations from this assumption and the effects on the dead time correction
accuracy are currently being investigated. The dead time model presented here is exact for
correlated neutrons within the paralyzable assumption. The next planned step is to experimentally
test how well reality conforms to the paralyzable model with a large neutron counter with a single
detector chain. The counter system will be modified to include multiple detector chains to test a
multi-chain extension based on Baeton’s approach.
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