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Deployable Dead Time Corrections for Neutron Multiplicity Measurements 
Accounting for Neutron Correlations and Multiple Detector Chains 

ABSTRACT 

Danielle K. Hauck, Stephen Croft, Louise G. Evans, Andrea Favalli, 
Peter A. Santi, Martyn T. Swinhoe 

Los Alamos National Laboratory, MS E540, Los Alamos, NM 87545 

Currently, most standard implementations of deadtime corrections for neutron multiplicity counting 
utilize empirical formulas. The corrections have had success for limited count rates, especially 
when appropriate deadtime parameters can be determined for a limited range of item properties. 
However, the corrections often break down outside the intended application range and current dead 
time corrections are not sufficiently robust to apply to higher order correlations beyond triplets. 
Sophisticated dead time corrections have been developed by Matthes and Haas (1985) and Hage 
and Cifarelli (1992) based on the joint probability for detecting correlated neutrons in a paralyzable 
detector system. Baeton et al. (1997) further modified the joint probability to include the effect of 
multiple detector chains. Deployable methods are being developed, applying the probability-based 
approach to standard multiplicity measurement data including multiplicity shift register, time 
interval analysis and list mode data, including expressions for higher-order correlations. Progress 
on implementation of the dead time correction in an analysis algorithm and testing of the correction 
based on simulations and actual data will be presented. 

INTRODUCTION 

In correlated neutron counting, the measured rates of neutron multiplets are used to determine item 
properties such as mass and neutron multiplication. The measured multiplet rates is a non-trivial 
function of the dead time and correlated nature of the neutrons. Most commonly-used dead time 
corrections include several simplifying assumptions in the dead time model. Many dead time 
corrections also employ empirically determined factors which can compensate for biases present in 
the overly simplified dead time model. However, these dead time corrections only hold for limited 
count rate ranges and are not sufficiently robust to apply to correlations beyond triplets. 

Here, we attempt to develop a full and complete dead time model, with the recognition of three 
facts. First, computing power makes it possible to solve even complex systems of equations in real 
time. Second, a more accurate dead time model will result in corrections which are applicable over 
a wider count rate range including high count rates. Finally, there is a deficiency in understanding 
the true effects of dead time on a neutron pulse train. A comparison of an exact dead time model 
for correlated neutrons with experimental data and simulated dead time effects will make it possible 
to rigorously analyze the validity of the assumptions of a paralyzable detector. 

The following derivation of an exact dead time correction for correlated neutrons follows the 
approach of Matthes and Haas [1], Hage and Cifarelli [2] and Baeton et al. [3]. These previous 
corrections make simplifications early in the derivation. A complete and exact derivation, in terms 
of infinite series of true multiplicity rates, is provided for singles, doubles, triples and quadruples in 
an upcoming technical report [4]. However, this paper focuses on the dead time effects on 



measured singles and doubles rates. The dead time model is then tested against simulated updating 
dead time applied to a simulated pulse train from a benchmarked Monte Carlo model [5]. 

JOINT PROBABILITY FUNCTION 

In a paralyzable detector with updating dead time 8 , the difference between the true pulse train (TIo) 
and the measured pulse train (TIm), is that any neutrons that were detected in TIo, less than 8 after a 
previous neutron detection is not counted in TIm. This idea can be formulized through developing 
the probability (as a function of dead time) of obtaining neutron counts in TIm. The probability of 
obtaining a neutron count in TIm at an arbitrary time t , is equal to the joint probability of having a 
neutron detection at time t in the true pulse train TIo and having zero neutron detections in the time 
interval of 8 previous to t. Similarly, the probability of having two neutron counts in TIm at times 
tl and tz is equal to the joint probability of having neutron detections in TIo at tl and tz and having 
zero detections in the dead time intervals prior to tl and tz. Therefore, developing a formula for 
these joint probabilities in terms of the system dead time and true correlated detection rates provides 
a relationship between TIo and TIm. The joint probability can become quite complex since each 
measured multiplicity rate is a non-trivial function of all true multiplicity rates. The relationship 
between the true pulse train TIo and observed pulse train TIm is conceptually demonstrated in Figure 
1. 
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Figure 1. Relationship between the true and observed pulse trains due to dead time effects in a 
paralyzable detector. Only neutrons that are not detected within a dead time interval d of another neutron 
are counted in the measured pulse train. 

The measured singles rate (dlm) is equal to the probability of observing a count at arbitrary time t 
in TIm, which is in tum equal to the joint probability POl of detecting zero neutrons in the interval 
[t - 8, t] and one neutron in the infinitesimal interval [t, t + dt]. Therefore, the singles rate is 
given by 



Equation 1 

Here it is emphasized that the singles joint probability is a function of the dead time as well as all 
true correlated detection rates including the true singles rate (dl ), doubles rate (d 2 ), etc. The singles 
rate is also equal to the zeroth moment (No) of the triggered gate histogram (sometimes called the 
Reals + Accidentals gate). 

The probability of observing neutron counts at arbitarty times tl and t2 in Om is related to the total 
number of counts obtained in a series of triggered gates. All derivations in this paper assume that 
the detector response function has a single exponential (with decay constant It), and therefore all 
doubles detection probabilities are dependent only on the time offset between detections T = t2 -
t l . In this case, the total number of neutrons detected in a series of triggered measurement gates is 
the integral of the joint probability over the gate width, 

PD+C 

Nl = T M J POlOl (r, 0, d l , d 2 , d 3 ) dt2 

PD 

Equation 2 

where T M is the total measurement time, P D is the gate predelay and G is the gate width. The total 
number of neutrons in a series of triggered gates is also equal to the first moment of the triggered 
gate histogram Nl . The first moment can be written in terms of the first two true correlated 
detection rates d l and d2 [6], as 

Equation 3 

where 12 is the gate utilization factor for doubles. Rearranging, the measured doubles rate can be 
written as a function of the true multiplicity rates as 

Equation 4 

Equations 1 and 2 can be inverted numerically (including numerical integration of Equation 2) up to 
arbitrary desired accuracy to determine the true multiplicity rates in terms of measured rates when 
two true multiplicities (d l and d2 ) are included in the model. Extension to the measured triples rate 
(discussed in the technical report [4]) is required for a closed inversion solution with three 
multiplicities in the model. The increased accuracy by including three multiplicities is considered 
in this paper. Full implementation will be discussed in future publications. 

JOINT PROBABILITY FUNCTIONS FOR A SINGLE DETECTOR CHAIN 

Each of the previous developments [1-3] of dead time corrections based on the joint probability 
function make simplifications to the equations early in the derivation and the complete results are 
never given. The complete joint probability functions for singles, doubles, triples and quadruples 
have been derived in terms of infinite series of the true multiplicity rates dv d2 , d3 , .. . in a technical 



report [4]. In the interest of space, the results for observed singles and doubles rates are reported 
here. 

Singles Rate 
The measured singles rate is given by 

Equation 5 

where the coefficients are given by 

B, = nt,c-1Nno( 1+ %, (n ~ l/~:t (1- e-""8)) 

= -d1 D + d2 D [1- ).18(1- e-AS
)] - d3D [1- :8(1- e-AS

) + 2~8(1- e-2AS
)] . Equation 6 

00 

Al = dt1 I (-l)nl dN (l- e-AS fl 
N=l 

= dt1 [d1 - d2 (1- e-AS ) + d3(1- e-AS )2 - ••• ] Equation 7 

Note that with one multiplicity accounted for, the measured singles rate becomes 

Equation 8 

which is identical to the dead time correction obtained from the Poisson distribution assumption. A 
plot of the measured singles rate as a function of true singles rate is shown in Figure 2 using up to 
one, two and three multiplicities. The functional relationship was calculated using detector 
parameters from a Monte Carlo model of Pu metal in a neutron counter with a lOOO cps emission 
rate. The simulated dead time effect on the measured singles rate is also plotted in Figure 2. 

Doubles Rate 
The joint probability for observing two neutrons in the measured pulse train is given by 

Equation 9 

where 

00 N-2 

A = '" '" (-l)N G( ) - G( ) - (G( ) + G( ») + ... 21 L L nl,1,n3,1 - 0,1,0,1 1,1,0,1 0,1,1,1 Equation 10 
N=2 nl=O 

Each coefficient G(nV1,n3,1) corresponds to the contribution from nl neutron detections in the first 
interval and n3 detections in the third interval, for a total ofN = nl +n3+2 detections. The 
coefficients are derived in the technical report [4] and reported here 
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Figure 2. Effects of dead time on measured singles rate. The comparison data point (red circle) represents 
simulated dead time on a neutron pulse stream ofPu metal from a Monte Carlo model [6]. Greater accuracy 
results from the inclusion of a greater number of true multiplicity rates. 



· Similarly expressions exist for the remaining terms in JP>OlOl, including A22; 

00 N-l 

= L L (_l)N-l Gen1,1,n3'O) 
N=l nl=O 

= Geo,1,O,O) - (G(1,1,O,O) + Geo,1,1,O) ) + (Ge2,l,O,O) +Ge1,1,1,O) + Geo,l,2,O)) - ... 

= dt1 {dl - d2[(1- e-M ) + e-·h(e M -1)] 

+ d3 [(1- e-Aof + e-AT(1- e-2AO )( eM - 1) + e-2AT ( eM - 1)2] + ... } 

Equation 16 

= dl dt1 Geo,1,O,O) 
Genl,l,O,O) = dNdt1(1- e-Aot1 Equation 17-20 

Geo,1,n3,O) = d3dt1e-n3AT(eAO _1)n3 
N-1 

= (N - i)! dNdt1e-n3AT(eM -lt3 ~ ( n1 -1 ) (-l)k (1- e-kM ) 
(n1-1)!n3! . L k-(N- n 1) k 

k=N-nl 

the term A23; 

00 N 

= L L (_l)N-l Gen1,o,n3,1) 
N=l nl=O 

= Geo,O,O,1) - (Gel,O,O,1) + Geo,O,l,1) ) + (Ge2,o ,O,1)+Gel,O,1,l) + Geo,O,2,l)) - ... 

= dt2 {d1 - d2[e-AT(1- e-AO ) + (1- e-M )] 

+ d3 [e-AT(1- e-M )2 + e-2AT ( eM - 1)(1- e-2M ) + (1 _ e-M )2] + ... } 

Geo,O,O,1) 
Geo,o,n3,1) 

Gen1,O,O,l) 

and finally the term B2; 

00 N 

= L L (-l)N Gen1,o,n3'O) 
N=1 n1=O 

= -( Geo,o,l,O) + G(1,o,O,O) ) + (Geo,o,2,O) +G(1,O,1,O) + G(2,o,O,O)) 

- (G eo,O,3,O) + G(1,O,2,O) + Ge2,o,1,O) + G(3,o,O,O)) + ... 

Equation 21 



= -2d18 + d2 [28 (1 - A~(1- e-M )) + ~ eM (1- e-M )2 e-AT ] 

-d3 [28 (1 - :0(1- e-AO ) + 2~0( 1 - e-2AO )) + ~ e-2AT ( e AO - 1)2 (1 - e-2M ) 

+ 2 ~ e-AT ( eM - 1) (( 1 - e-M ) - ~(1 - e-2M ))] + ... 
Equation 26 

G(O,O,l,O) or G(1,o,O,O) 

G(o,o,n,o) or G(n,o,o,o) 

Figure 3 shows the effect of dead time on the measured doubles rate, taking into account up to two 
and three true multiplicity rates. The simulated dead time effects are more accurately modeled by 
including higher order multiplicity rates. The doubles rate curve is compared to the simulated dead 
time effect on the measured doubles rate from a Monte Carlo model of a Pu metal item. 
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Figure 3. Dead time effects on the measured doubles rate. The comparison data point (red circle) 
represents simulated dead time on a neutron pulse stream ofPu metal from a Monte Carlo model [6]. The 
physical portion ofthe curve ends at the singularity. 



TESTING 

The dead time model was tested against a simulated updating dead time applied to a pulse train 
from a Monte Carlo model of various items in a neutron multiplicity counter [6]. Emission count 
rate and dead time were varied to supply testing capability across a range of measurement scenarios. 
The ability to accurately characterize the singles and doubles correction factors using up to one, two 
and three multiplicities was tested. The dead time model was compared to two other dead time 
correction methods; the empirical method often used conventionally [7] and a recently developed 
dead time correction factor which is a variation of Dytlewski [5]. The results from selected test 
cases are given in Table 1. 

Table 1. Relative accuracy of the dead time correction. Accuracy expressed as percent recovery, defined 
as Recovery = 1 - Corrected Rate/Measured Rate. The first column lists the simulated dead time for 
each case and the second column gives the simulated measured rates after dead time effects. 
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Measured Empirical Croft- Based on Joint Probability Function 
Rates Correction Dytlewski 1 Component 2 Components 3 Components 

Rate = 1000 cps Singles = 996833 Doubles = 491144 
910527 -0.190 -0.038 0.081 
338672 -1.469 -9.106 

831679 -0.898 -0.109 0.173 
229190 -6.870 -18.365 

694253 -4.815 -0.326 0.288 
99270 -29.365 -35.763 

Rate = 1000 cps Singles = 51211 Doubles = 51615 
50886 -0.178 -0.063 
50184 -0.875 -0.941 

50563 -0.355 -0.113 
48868 -1.750 -1 .869 
49929 -0 .704 -0.223 0.691 
46332 -3.419 -3.660 

Rate = 1000 cps Singles = 1029765 Doubles = 164889 
938394 -0.133 -0.018 0.025 
110279 -3.555 -11.314 
855208 -0.807 -0.043 0.042 

75742 -7.859 -19.738 
710201 -4.924 -0.225 0.080 
30450 -35.101 -41.554 

-0.001 

0.476 

0.007 
0.945 

-0.005 
0.001 

-0.020 
3.396 

-0.003 
2.240 

-0.016 
0.212 

-0.016 
2.392 

-0.001 
0.221 

0.007 
0.408 

-0.005 
-1.256 

0.000 
0.107 

-0.008 
0.049 

-0.020 
-0.078 

-0.003 
2.173 

-0.016 
-0.314 
-0.016 
2.106 

The dead time correction developed here out performs the two comparison techniques in its ability 
to match the simulated dead time effects, even for scenarios with relatively high neutron 
multiplication. In the infinite limit of the inclusion of all higher multiplicity rates, the dead time 
correction developed here is exact for correlated neutrons for an updating dead time, and in this 
sense should well represent the simulated dead time. However, the dead time correction assumes 



that the detector response has a single exponential, which is not necessarily true in the modeled 
neutron detector system. This may explain the small differences between the simulated measured 
rates and corrected rates. A rigorous investigation of the effect of multiple dieaway times in the 
detector response on dead time corrections is underway and will be presented in future publications. 

The dead time correction presented here can be numerically inverted with the inclusion of two 
detection multiplicities to obtain a relationship between true multiplicity detection rates in terms of 
measured rates. Hence, the accuracies presented in Table 1 for 2 multiplicities are legitimately 
obtainable using only the measured singles and doubles rates for neutron counter systems that 
closely approximate a paralyzable system. The dead time correction with three multiplicities 
(which is a more accurate model) requires knowledge of the measured triples rate to be inverted. In 
this case, a numerical inversion can be performed, although this will require multiple numerical 
double integrations. Preliminary testing shows that this can be done in a reasonable amount of time 
with current standard computational power. 

JOINT PROBABILITY FUNCTIONS FOR MULTIPLE DETECTOR CHAINS 

Most detector systems utilize multiple detector chains, in which only a few detector tubes are 
connected to each preamplifier and discriminator. The dead time effects result in statistical 
modification to the pulse streams coming from each individual detector chain. The individual pulse 
trains are then combined through a derandomizer or OR gate into a single pulse train. The total 
dead time effects are minimized by having multiple detector chains. However, the statistical effects 
of dead time are altered. Baeton et al [3] derived a formulism for calculating the joint probability 
function for a multi-chain system, based on the relative singles rates in each chain and the single­
chain joint probability function. The multi-chain joint probabilities can then be used as discussed, 
in place ofthe single chain functions derived here. Planned work includes extension of the exact 
dead time model developed here to a multi-chain system following Baeton' s approach. 

CONCLUSIONS 

The dead time correction developed here closely followed the approach of Matthes and Haas [1], 
Hage and Cifarelli [2], and Baeton et al. [3]. The differences in the dead time corrections lie in the 
number of multiplicities included and the type of simplifications that are made to the equations. 
Here, we recognize that current computing power makes it possible to leave equations in their exact 
form. Additionally, further improvement to dead time corrections will require rigorous 
understanding of dead time effects and the relationship between reality and any physical model that 
is used. For this purpose it is necessary to have an exact description of the paralyzable dead time 
model. 

The dead time model based on the joint probability function, although published previously, has not 
been widely adopted, and its importance has not been fully acknowledged. This is due partially to 
the availability of implemented dead time corrections in neutron counting software. One major 
contribution of the neutron counting project which supported this work will be to implement 
selected dead time algorithms in accessible analysis software. 

FUTURE WORK 



Future work will focus on evaluating the legitimacy ofthe assumptions included in the developed 
dead time correction, and where needed, extension to more realistic physical models. Most dead 
time models (including the one presented here) assume a single time constant in the detector 
response function. Deviations from this assumption and the effects on the dead time correction 
accuracy are currently being investigated. The dead time model presented here is exact for 
correlated neutrons within the paralyzable assumption. The next planned step is to experimentally 
test how well reality conforms to the paralyzable model with a large neutron counter with a single 
detector chain. The counter system will be modified to include multiple detector chains to test a 
multi -chain extension based on Baeton' s approach. 
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