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Purpose of peridynamics CEN

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body

e Why do this? Develop a mathematical framework that help in modeling...
* Discrete-to-continuum coupling
e Cracking, including complex fracture patterns
 Communication across length scales.

Figure 11.20 Pull-out: (a) schematic diagram; (b) fracture sur
glass-ceramic reinforced with SiC fibres. (Courtesy H, 8. Kim, P. S. Rogers and R. D.
Rawlings.)




Peridynamics basics: ®
The nature of internal forces

Standard theory Peridynamics
Stress tensor field Bond forces within small neighborhoods
(assumes contact forces and (allow discontinuity)

smooth deformation)

Horizon 6
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Differentiation of contact forces

Summation over bond forces



Peridynamics basics: ®
Deformation state and force state

* The deformation state maps each bond to its deformed image.

Y[x[{q —x) = y(q) —y(x)

* The force state maps bonds to bond forces according to the constitutive model.

f(q,x) =T[x{q — x) — T[ql{x — q)

* The constitutive model maps deformation states to force states.

Tlx] = T(Y[x]) Tlql = T(Y[q])




Peridynamic vs. local equations CEN

State notation: State(bond) = vector

Relation Peridynamic theory Standard theory
Kinematics Y(q-x) = y(q) - y(x) F(x) = X (x
X

Linear momentum | ;5 () — / (t(q, x) — t(x,q)) dVy+b(x) | PY(X) =V o(x)+b(x)
H

balance
Constitutive model t(q,x) = T{q — x), T =T(Y) o=o(F)
Angular momentum / Y(q—x) x T(q—x) dVy =0 o— ol
balance H
Elasticity T = Wy (Fréchet derivative) o = Wr (tensor gradient)
First law ézloi\—l—q—i—r t=ag-F+q+r

N

TeY — L T(e) Y(€) dVe




Mixed blessing of nonlocality CEE

= Nonlocality is necessary to achieve the goals of peridynamics, but it entails some
practical difficulties.

=  Example: nonuniform horizon in a bar with “homogeneous bulk properties”.

=  We know how to scale a material model so the Young’s modulus is independent of
horizon.

Ts(§) = 672Z(&/5)
where Z is a reference force state that depends only on strain.
= But when you use this to model equilibrium of a bar with variable horizon, you get

a “wrong” result:
\ : Prescribed horizon 6(x)
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Origin of artifacts CEN

= The peridynamic force density operator L(x) involves the force state not only at x
but also the force states at all points within the horizon.

0 =L(x)+b, L(x) = f {Ts[x1{q — x) — Tsp[q){x — q)}dq

so simply scaling the material model at x is not sufficient.

§(x) ( 5(q)

Variable horizon




“Patch test” requirement for a @
coupling method

" |n a deformation of the form
u(x) =a+ Hx
where H is a constant and the material model is of the form

T[x)(¢) = 672 (x)Z(¢ /5 (x))
where 6 (x) is a prescribed function and Z is a state that depends only on H, we require

L(x) =0 forallx.

A Prescribed horizon &(x)
u : / f :
a
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» Solution u(x):

b




Peridynamic stress tensor i e

= Define the peridynamic stress tensor field by

o(x) = j j (Tlx — y)y +w) — Tlx + yl(—y — w)} dy dz
0 0

= |dentity:

d co
T=| ome-x0 -l - adg

= u(x) is the force per unit area carried by all the bonds that cross x.

Tlx —yKy +w)




Partial stress field i

= Under our assumption that

T[x](§) = 672(x)Z(§/6(x))

one finds directly that

0o (x): = j ETIx1(E) dE = j £2(8) dé

which is independent of x, so dv,/dx = 0.

" Y, is called the partial stress field.

= (Clearly the internal force density field computed from
Lo(x) == dvy/dx

passes the “patch test.”

= This observation leads to the following idea...



Concept for coupling method i e

= |dea: within a coupling region in which § is changing, compute the internal force

density from

d 0o
L) =22 (), vo(x): = [ ET[x}(§) &
= Here, T[x](x) is determined from whatever the deformation happens to be near x.

= / is no longer involved.

= The material model has not changed from full PD, but the way of computing L

has.




Local-nonlocal coupling idea i .

Local region Transition region Nonlocal region
d d
L0 =2 L) = 2 LG) = [TxIE) = Tl + 61~ dg

N

Full peridynamic (PD)

vo(x) = j ETIx1(E) dé

A

v (x) = a(F(x))

Partial stress
(PS)

Horizon & (x)

Good old-fashioned
local stress

Position x




Continuum patch test results i .

* Full PD shows artifacts, as expected.
PS shows no artifacts, as promised.
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Continuum patch test with coupling-

* No artifacts with PD-PS coupling (this was hoped for but not guaranteed).

Horizon Strain
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Pulse propagation test problem i e

Does our coupling method work for dynamics as well as statics with variable horizon?

6 = 1 (nonlocal)

Horizon
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Pulse propagation test results i .

*  Movies of strain field evolution

Full PD everywhere Coupled PD-PS
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Pulse propagation test results i .

e Strain field: no artifacts appear in the coupled model the local-nonlocal transition.

Full PD everywhere Coupled PD-PS
" o T T : : ! I I . . ; ; ; v'::) 1] T T T T T T T L T T T T
E S
=2 Nonlocal Local -2 r Nonlocal Local
_3 L

Artifact

N

= ' -1
1
N =8
_14 | | | | 1 | ! 1 | _14 1 1 1 1 1 | |
-20 -1% -10 =3 0 3 10 15 20 =20 =13 =10 =35 0 ) 10 15 2




Discussion N

* The partial stress approach may provide a means for local-nonlocal coupling
within the continuum equations.
e Uses the underlying peridynamic material model but modifies the way
internal force density is computed.
* Expected to work in 2D and 3D too (but not yet tested).
* No assumption of linear material response (but nonlinear not yet tested).
e PSisinconsistent from an energy minimization point of view.
* Not suitable for a full-blown theory of mechanics (as PD is).
* Not yet clear what implications this may have in practice.
* We still need to use full PD for crack progression.
* Some similarities between PS and the Virtual Internal Bond method (Gao &
Klein, JMPS, 1998).




