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ABSTRACT

GPUs have emerged as a powerful tool for accelerating general-purpose applications. The

availability of programming languages that makes writing general-purpose applications for run-

ning on GPUs tractable have consolidated GPUs as an alternative for accelerating general-

purpose applications. Among the areas that have benefited from GPU acceleration are: signal

and image processing, computational fluid dynamics, quantum chemistry, and, in general, the

High Performance Computing (HPC) Industry.

In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems

are gaining popularity. In this context, single-GPU applications are parallelized for running

in multi-GPU systems. Furthermore, multi-GPU systems help to solve the GPU memory

limitation for applications with large application memory footprint. Parallelizing single-GPU

applications has been approached by libraries that distribute the workload at runtime, however,

they impose execution overhead and are not portable. On the other hand, on traditional CPU

systems, parallelization has been approached through application transformation at pre-compile

time, which enhances the application to distribute the workload at application level and does

not have the issues of library-based approaches. Hence, a parallelization scheme for GPU

systems based on application transformation is needed.

Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vul-

nerable to transient and permanent failures. Current checkpoint/restart techniques are not

suitable for systems with GPUs. Checkpointing for GPU systems present new and interest-

ing challenges, primarily due to the natural differences imposed by the hardware design, the

memory subsystem architecture, the massive number of threads, and the limited amount of

synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU

systems is needed.

The goal of this work is to exploit higher levels of parallelism and to develop support for
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application-level fault tolerance in applications using multiple GPUs. Our techniques reduce

the burden of enhancing single-GPU applications to support these features. To achieve our

goal, this work designs and implements a framework for enhancing a single-GPU OpenCL

application through application transformation.
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CHAPTER 1. Introduction

1.1 Motivation

The ever increasing demand for computational power imposed by computer applications has

motivated the design of faster microprocessors. Processor performance is achieved primarily

by exploiting two factors:

• Instruction Level Parallelism (ILP), achieved by pipelining the operations on the proces-

sor, or by multiple instruction issue. The limits on ILP are given by data and control

hazards and dependencies [1].

• Memory Latency, reduced by minimizing the number of data transfers from memory,

which is achieved by adding several levels of on-chip cache memory. Cache memory

exploits temporal and spatial data locality, thus, cache memories are less effective if a

program does not present temporal and spatial data locality properties [1, 2].

To increase the ILP and reduce memory latency, processor designers have used several

techniques, such as: out-of-order execution, branch prediction, speculative execution, multiple

instruction issue, pipelining, data and instruction caching, and data prefetching, among other

techniques. These techniques require additional control logic, which results on the need of more

transistors integrated on a single chip. Technology scaling allows for integrating in a single chip

twice the number of transistors approximately every two years [3, 4].

Under this scenario, the software industry has achieved better performance on its software

applications at every new processor generation without any major change on the computation

model, but only by taking advantage of faster processors.
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Limits on Performance. During the last few years, processor performance has been

limited by the so-called “Brick Wall for Serial Performance”, defined by David Patterson

as [5]:

Brick Wall for Serial Performance = ILP Wall+Memory Wall+Power Wall

• The ILP wall, refers to the fact that it is increasingly more difficult to find enough

parallelism on the instructions. Besides, ILP increases hardware complexity which raises

power consumption.

• The Memory wall, processor clock rates have been increasing faster than memory clock

rates, i.e. memory latency is on the order of hundred of clock cycles.

• The Power wall, doubling every two years the number of integrated transistors on a single

chip increases both the dynamic power and the static power. Power is becoming a concern

not only because it is reaching high levels, but also because of the practical ability for

dissipation of the the generated heat.

In 2002, Andrew Grove, chairman at the board of Intel, stated at the Electron Devices

Meeting that the brick wall, particularly the power brick, is “becoming a limiter of integra-

tion” [6]. Some projections made by Intel forecast that by increasing the transistor integration,

processors would only obtain a modest amount of performance improvement compared to the

power increase. For instance: a 13% performance improvement increases aproximately 70% the

power; on the other hand by decreasing 13% performance, a decrease of roughly 50% of power

is achieved [7].

This observation implies that instead of having only one single high frequency processor, or

core, it is more profitable, in terms of power and computing performance, integrating several

lower frequency cores in the same chip, i.e Chip Multicore Processors (CMPs).

Chip Multicore & Manycore Processors. Through multiple low frequency cores

CMPs achieve higher power efficiency, while still executing more instructions per cycle than

unicore processors. Chip manufacturers have successfully integrated two, four and eight cores
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into a single chip for comercial CMPs [8], and the trend is to continue to integrate hundred of

cores in a single chip, i.e Manycore Processors [9]. Manycore processors are not only present as

the main processor of the computer system, but also they are present as the so-called Hardware

Accelerators (HWAs).

HWAs have been designed and deployed to release the main processor of time-consuming

tasks, mainly floating point operations and graphics rendering, leaving the main processor free

to execute other tasks. Currently, graphics and FPGA-based accelerators are most common.

FPGA1-based accelerators have become popular because of their reconfigurability, perfor-

mance and suitability for working in parallel. Potentially FPGA-based accelerators contain

tens of accelerator units working in parallel.

Graphics accelerators emerged around 1984 providing basic fixed 2D primitives, and evolved

to provide full programmable video capabilities. In 1999, Graphics accelerators turned into

manycore processors, known as Graphics processing Units (GPUs) [10]. Current GPUs inte-

grate hundred of processing cores and achieve up to 1.3 TFlops for single precision and over 500

GFlops for double precision. In addition to this tremendous computational power, GPUs have

become fully programmable, which makes GPUs amenable for accelerating massively-parallel

general purpose applications, opening a new application field to GPUs called General-Purpose

Computation on GPUs (GPGPU).

General-Purpose Computation on GPUs. The availability of programming languages

that makes writing general-purpose applications for running on GPUs tractable have consoli-

dated GPUs as an alternative for accelerating general-purpose applications. CUDA (Comput-

ing Unified Device Architecture) developed by Nvidia targets general purpose programming

on its GPUs. OpenCL (Open Computing Language) developed by the Khronos group is a

non-proprietary programming language targeting any parallel platform.

In spite of the availability of GPGPU-oriented programming languages, exploiting the huge

computational capabilities of the GPU requires careful algorithm redesign and application

rewrite. Evidently not all applications are suitable for GPU acceleration, only applications that

1FPGA (Field Programmable Gate Array) is a set of logic gates programmed to fulfill user-specific tasks
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are parallel in nature are suitable for execution on a GPU. Currently, applications modified

and optimized to run on GPU-accelerated systems range over a variety of fields, such as: signal

and image processing, computational fluid dynamics, quantum chemistry, and, in general, the

High Performance Computing (HPC) Industry [11].

Multi-GPU Systems. The computer industry is developing systems with GPU accel-

erators specially optimized for HPC (High Performance Computing) applications, integrating

one, two or four GPUs to enhance performance. The NVidia Tesla K10 is a HPC-optimized

computing system that integrates two Tesla GK104 GPUs and provides a theoretical peak

performance of 4.57 TFlops for single precision and 190 GFlops for double precision.

The natural next step towards exploiting higher levels of parallelism using GPUs is to

parallelize single-GPU applications for running in multi-GPU systems. Furthermore, multi-

GPU systems help to solve the GPU memory limitation for applications with large application

memory footprint. Multi-GPU execution can be achieved by exploiting task and/or data par-

allelism, the former is easy to achieve but it might lead to poor load balance, while the later

achieves better load balance but it requires data and computation decomposition, which adds

complexity.

The potential for achieving higher levels of parallelism or overcoming the GPU memory

limitation added to the complexity of re-writing or modifying applications for supporting exe-

cution on multi-GPU systems encourages the research of a framework that minimize the manual

transformation of applications.

Reliability of GPU Systems. Like any computing device, GPUs are not free of transient

and permanent failures. A study conducted on more than 20,000 GPUs on the Folding@home

distributed computing network shows that two-thirds of tested GPUs exhibit susceptibility to

transient errors on memory or logic. This study suggests the utilization of hardware or software

fault tolerant techniques to mitigate the impact of failures in GPUs [12]. Although no hard

data on permanent errors for GPUs has been published, GPUs are exposed to the same issues

as unicore processors and memories.
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Application execution time is affected negatively by the presence of failures, because all the

work done up to the failure time is lost, and, consequently, the application should be restarted.

Fault tolerance schemes prevent lost work by saving application information before the failure

occurs.

Checkpoint/Restart for GPU Systems. The most popular fault tolerant scheme is

the Checkpoint/Restart technique [13]. This scheme takes periodic snapshots of the application

state (checkpoints) during its execution. After an application crashes, the checkpoints taken

before the application crash are utilized to restart the application from the last valid checkpoint.

Checkpointing for unicore and multi-processors have been largely studied over the past two

decades [13, 14, 15, 16, 17]. However, checkpointing for GPU systems presents different issues

compared to those issues arisen by unicore and multi-processor systems. These differences

emerge from the natural differences between the hardware design and programming languages

of GPUs compared to those of unicore processors and multi-processors, as illustrated next.

• GPUs have separate memory and the internal memory organization is different than

memory on CMPs or multi-processors,

• GPUs require a massive number of threads to achieve peak performance, and

• GPUs provide limited synchronization.

These differences make current checkpoint schemes unsuitable for GPU systems. The grow-

ing popularity of GPU systems in the scientific field, encourages the research of fault tolerant

schemes suitable for GPU systems.

1.2 Problem Statement

GPUs have emerged as a powerful tool for accelerating general-purpose applications. The

availability of programming languages that makes writing general-purpose applications for run-

ning on GPUs tractable have consolidated GPUs as an alternative for accelerating general-

purpose applications. Among the areas that have benefited from GPU acceleration are: signal
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and image processing, computational fluid dynamics, quantum chemistry, and, in general, the

High Performance Computing (HPC) Industry.

In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems

are gaining popularity. In this context, single-GPU applications are parallelized for running

in multi-GPU systems. Furthermore, multi-GPU systems help to solve the GPU memory

limitation for applications with large application memory footprint. Parallelizing single-GPU

applications has been approached by libraries that distribute the workload at runtime, however,

they impose execution overhead and are not portable. On the other hand, on traditional CPU

systems, parallelization has been approached through application transformation at pre-compile

time, which enhances the application to distribute the workload at application level and does

not have the issues of library-based approaches. Hence, a parallelization scheme for GPU

systems based on application transformation is needed.

Like any computing engine of today, reliability is also a concern in GPUs. GPUs are partic-

ularly vulnerable to transient and permanent failures. Current checkpoint/restart techniques

are not suitable for systems with GPUs. Checkpointing for GPU systems present new and in-

teresting challenges, primarily due to the natural differences imposed by the hardware design,

the memory subsystem architecture, the massive number of threads, and the limited amount

of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU

systems is needed.

The issues of multi-GPU execution and application-level checkpointing for single-GPU ap-

plications are covered on this work.

1.3 Goal and Objectives

1.3.1 Goal

The goal of this work is to exploit higher levels of parallelism and to develop support for

application-level fault tolerance in applications using multiple GPUs. Our techniques reduce

the burden of enhancing single-GPU applications to support these features. Multi-GPU ex-

ecution not only exploits higher levels of parallelism but also helps to overcome the global
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memory limitation. Fault tolerance, i.e. application-level checkpointing, enables GPU systems

to reliably run real long-time scientific applications.

1.3.2 Objectives

To achieve our goal, this work designs and implements a framework for enhancing a single-

GPU OpenCL application through application transformation. The enhancements supported

are: (i) multi-GPU execution and (ii) application-level checkpointing. In this context, the

objectives of this research can be divided in four major areas: acceleration in single-GPU and

multi-GPU systems, computation and data decomposition, minimizing checkpoint overhead and

automated application transformation.

1.3.2.1 Acceleration in Single-GPU and Multi-GPU Systems

• Achieving high performance in GPU systems relies on high occupancy and efficient global

memory access. This work analyzes the effect of these parameters on the algorithm for

unstructured grid-based analysis in terms of memory access pattern and GPU occupancy.

Based on this analysis an optimized algorithm suitable for running on GPUs is proposed.

• The performance enhancement achieved by multi-GPU systems depends on the suitability

of the application algorithm to exploit data or task parallelism and keep communication

overhead low. This research analyzes the data and task parallelism techniques, applied

to the unstructured grid application, in terms of the communication overhead and data

dependencies, aiming to determine which parallelism technique achieves better results.

1.3.2.2 Computation and Data Decomposition

• Computation and data decomposition are the building blocks for implementing data

parallelism and application-level checkpointing. In this context, computation and data

decomposition depend on the application data flow, i.e. data dependencies, and the

access patterns. In particular, these two characteristics (i) limit the parallelism achieved

and impose data exchange among GPUs, i.e. communication overhead, and (ii) limit the
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ability of hiding checkpoint latency. This research aims to study computation and data

decomposition in terms of data dependencies and data access patterns, and to propose

mechanisms to automate this decomposition.

• The communication overhead imposed by the decomposition, is aggravated by the perfor-

mance of the network that interconnects the GPU devices. This research investigates the

effect on the network performance, in terms of the bandwidth degradation, as well as the

benefit of overlapping computation and communication to reduce the overall overhead

achieved.

1.3.2.3 Minimizing the Checkpoint Overhead

• In an iterative application, minimizing the checkpoint overhead per iteration is achieved

by finding a checkpoint location where the checkpoint latency can be reduced by parti-

tioning data and computation and overlapping checkpoint operations with computation.

To this end, this research aims to provide metrics for selecting a checkpoint location where

the checkpoint overhead is minimized through overlapping computation and checkpoint

operations.

• Minimizing the total checkpoint overhead is achieved by finding a checkpoint period that

keeps a balance among the total overhead and the amount of information lost. This

research proposes a checkpoint interval based on the probability of failure.

1.3.2.4 Automated Application Transformation

• Depending on the feature desired (multi-GPU execution or application-level checkpoint-

ing) the transformation requirements are different. To reduce the burden of enhancing

GPU applications, this research aims for identifying and automating the transformation

needed by the application to support the desired feature.
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1.4 Contributions

We develop a framework to enhance single-GPU applications. The enhancements supported

are: multi-GPU execution and fault tolerance (application-level checkpointing), see Figure 1.1.

Single-GPU System

GPU

(a) Single-GPU Application

Multi-GPU System

GPU-0

GPU-1

...

GPU-N

(b) Multi-GPU Execution

Single-GPU System

GPU

F.T.(Ckpt)

(c) Fault Tolerance

Figure 1.1: Enhancements performed to a single-GPU application

We make the following contributions:

1. Exploiting Higher Levels of Parallelism

• Applications can exploit higher levels of parallelism, potentially allowing higher

speedups.

• The application memory footprint is divided between multiple GPUs, potentially

overcoming the memory limitation imposed by the size of the GPU global memory.

2. Increasing Fault Tolerance

• Application-level checkpointing enables GPU systems to reliably run real long-time

scientific applications.

• Kernel and data decomposition as well as checkpoint operations overlapping tech-

niques reduce the checkpoint overhead.

3. Automated Application Transformation

• Reduces the effort of enhancing single-GPU application for supporting multi-GPU

execution and application-level checkpointing.
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As it can be seen in Figure 1.2, our checkpointing scheme can be applied to multi-GPU

systems, however, at the current time no coordination among the checkpoints taken is imple-

mented. Coordination among the checkpoints taken will save a consistent state of the appli-

cation and might reduce the total checkpoint overhead by avoiding checkpointing duplicate

information.

Multi-GPU System

GPU-0

GPU-1

...

GPU-N
F.T.

...

F.T.

F.T.

(a) Non Coordinated

Multi-GPU System

GPU-0

GPU-1

...

GPU-N
F.T.

...

F.T.

F.T.

(b) Coordinated

Figure 1.2: Fault tolerance applied to a multi-GPU application

1.5 Overview of Dissertation

This chapter starts by presenting the performance issues of single core processors that

motivated the development of multi-core and many-core processors, i.e. CMPs and GPUs.

GPUs gained popularity to accelerate general-purpose applications, however, issues related

to reliability and multi-GPU execution remain open. This research addresses these issues

and proposes a framework for enhancing single-GPU application to support application-level

checkpointing and multi-GPU execution. The rest of this document is organized as follows.

Chapter 2 presents current approaches for multi-GPU execution and fault tolerance, as

well as a background on GPU architecture and failures. Chapter 3 introduces the algorithm

of unstructured grid-based applications and its implementation on single-GPU systems, the

implementation on multi-GPU systems is presented in Chapter 4. Chapter 5 introduces the

data analyzer of our framework for program transformation. Subsequently, Chapter 6 presents

the framework for program transformation to parallelize single-GPU applications. Chapter 7

introduces the main techniques for application-level checkpointing. Following this, Chapter 8
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presents the framework for program transformation to support application-level checkpointing

of single-GPU applications. Finally, Chapter 9 covers the concluding remarks and future work.
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CHAPTER 2. Related Work

2.1 Introduction

The release of powerful GPUs with a fully programmable pipeline attracted the interest of

the research community for accelerating general-purpose applications using GPUs. The Nvidia

Fermi integrates 512 cores and achieves a single precision peak performance of 1.3 TFlop.

Moreover, the availability of programming languages, such as CUDA and OpenCL, that

makes writing applications for GPUs tractable have consolidated GPUs as an alternative for

accelerating general-purpose applications, opening a new field for GPUs called General-Purpose

Computing on GPUs. Areas that have benefited of GPU acceleration includes: linear alge-

bra, molecular dynamics, computational fluid dynamics, quantum chemistry, signal processing,

among others.

Multi-GPU systems is the natural next step for achieving higher levels of parallelism. Fur-

thermore, multi-GPU systems help to overcome the global memory limitation for executing

applications with large application memory footprint. The achievable speedup is limited by

the communication overhead and data dependencies.

As with any other computational device, reliability in GPUs is also a concern because of

the occurrence of soft and hard failures. A study conducted on more than 20,000 GPUs on the

Folding@home distributed computing network shows that two-thirds of the tested GPUs exhibit

susceptibility to transient errors on memory or logic [12]. In this context, the checkpoint/restart

technique is commonly utilized for providing fault tolerance.
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2.2 GPU Architecture

During the last few years the game industry has evolved such that current games present

great complexity and realistic graphics. Such complex and realistic graphics require hardware

with huge computation capabilities and bandwidth, which is provided by Graphics Processing

Units (GPUs).

2.2.1 CPUs vs GPUs

A GPU is a massively parallel, multi-threaded, manycore processor with tremenduous com-

putational capabilities and high memory bandwidth. Figure 2.1 shows a comparison between

GPUs and CPUs1 computation capabilities and bandwidth, where it can be seen that, as of

2011, the peak performance and bandwidth of the GPU is about four times the performance

and bandwidth of an Intel CPU.

(a) Peak Performance (b) Bandwidth

Figure 2.1: GPU and CPU comparison ( taken from [18] )

The main reason for the performance difference between a GPU and a CPU is their dif-

ferent design philosophies. While the design of the CPU is based upon a complex control

logic, to optimize the execution of a single thread and reduce memory access latency, which

includes techniques such as: speculative execution, branch prediction, superscalar, out-of-order

1In this context CPU refers to chip unicores and chip multicores
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execution and prefetching; the design of the GPU focuses on providing huge computational ca-

pabilities and memory bandwidth to optimize the execution of several threads and hide memory

access latency. These different philosophies result in different transistor utilization, as shown

in Figure 2.2.

(a) On the CPU a good amount of transistors
is dedicated to control logic and cache

(b) On the GPU most of the transistors are ded-
icated to provide computational power

Figure 2.2: Transistor utilization for CPU and GPU ( taken from [18] )

Besides the differences in their design philosophies, CMPs and GPUs follow different mul-

tiprocessing paradigms. A CMP is essentially a MIMD (Multiple Instruction Multiple Data)

machine, where each core independently executes a different set of instructions on different data

sets, whereas a GPU is a SIMD (Single Instruction Multiple Data) machine, where each core

executes the same instructions on different data sets. GPUs are SIMD machines because this

paradigm fits the reality of graphics processing where the same operation (set of instructions)

is executed on a set of primitives (vertices, lines, triangles).

Although the biggest GPU manufacturers are Nvidia and ATI, this document focuses only

on the Nvidia GPUs since they are used in our experimental implementations.

2.2.2 Architecture of the NVIDIA GPU Family

Since its introduction in 1999, the GPU has evolved from a fixed-function pipeline to a fully

programmable pipeline.

The first GPU introduced featured a classic pipeline with five major stages: (i) vertex
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shader stage, (ii) setup stage, (iii) pixel shader stage, (iv) raster operations (ROP) stage,

and (v) memory stage. The main feature of this pipeline is that every stage of the pipeline

implements specialized hardware to boost the overall performance. Because the number of

pixels operations far exceeds the number of vertex operations, the GPU implements more pixel

processors than vertex processors in a ratio of three to one. However, the main drawback

of this approach is that depending on the type of application, resources may be insufficient

for one stage but sit idle for another stage in the same application. This is because different

applications have different shader processing requirements, for instance some application are

more pixel-shader intensive while others are more vertex-shader intensive.

The GPU Tesla series was designed with the objective of executing vertex and pixel shader

operations on the same unified processor architecture. Shader unification would enable (i)

dynamic load balancing of pixel and vertex intensive applications among the shaders of the

classical pipeline design, (ii) introduction of new graphics shader stages and, (iii) design of

a generic and fast processor. This unified design opens the door to new parallel-computing

capabilities to GPUs, but at the same time increases the design complexity.

To satisfy the computational requirements of different graphics applications, modern GPUs

integrate hundreds of cores. The Nvidia Fermi family integrates up to 512 cores in a single chip

providing a peak performance of 1,331 GFlops for single precision and 665 GFlops for double

precision [19].

Figure 2.3 shows the architecture of the NVIDIA Tesla C2070, which is composed of an

array of Scalable Processors (SPs). The SPs provide all the computation capabilities of the

GPU and support IEEE-754 floating-point precision.

The Nvidia Tesla GPU shown in Figure 2.3 has 448 SP cores (or simply cores) grouped

into 14 Streaming Multiprocessors (SMs). The SM is a computing multiprocessor that executes

graphics shader programs and general purpose computing programs. Each SM has 32 cores,

four Special Function Units (SFUs), two warp schedulers, two dispatch units, a configurable L1

cache/shared memory and a L2 cache memory. The shared memory acts as a software man-

aged cache, allowing the programmer to use this cache to improve the execution performance.

The SFUs are used for transcendental operations and contain four floating-point multipliers.
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Graphics Processing Unit (Nvidia Fermi)

GigaThread Global Scheduler

SM-13 SM-14...SM-1 SM-2

L2 Cache

Interconnect Network

Global Memory (off-chip)

SFUSFU SFUSFU

SP SP
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SP SP
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SP SP

SP SP

SP SP
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Register File

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

L1 Cache / Shared Memory

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

Streaming Multiprocessor (SM-14)

Figure 2.3: Architecture of the NVIDIA Tesla C2070 GPU

Organizing the cores into SMs allows flexibility for providing different levels of performance by

having more or less SM in a GPU.

The GPU presented in Figure 2.3 implements an off-chip DRAM memory, which has much

higher latency than the shared memory on the SM. Programs should be written in a way that

the accesses to this DRAM memory are reduced to achieve higher performance.

Next, for comparison purposes the main features of the NVidia Testla T10 and the C2070

(Fermi), which are used for our implementations, are summarized in Table 2.1.

Table 2.1: NVidia Tesla T10 and C2070 Technical Specifications

Parameter Tesla T10 Tesla C2070

Number of Cores 240 448

Clock Speed 1.296 GHz 1.147 GHz

Number of SM 30 14

Number of cores per SM 8 32

Number of 32-bit Registers per SM 16 K 32 K

Shared Memory per SM 16 KB 16 KB / 48 KB

L1 Cache N.A. 48 KB / 16 KB

L2 Cache N.A. 768KB

Peak Memory Bandwidth 102 GB/s 144 GB/s

Peak Single Precision Performance 933 GFlops 1.03 TFlops

Peak Double Precision Performance 78 GFlops 515 GFlops

Warp Schedulers per SM 1 2

Dispatch Units per SM 1 2
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Besides the differences shown in Table 2.1, each SP core in the Tesla T10 contains a multiply-

add (MAD) unit which can issue three floating point operations per cycle, whereas the Tesla

C2070 contains a floating point unit that can issue two floating operations per cycle (dual

issued pipeline).

2.3 General-Purpose Programming on GPUs

In addition to the tremendous computational capabilities of the GPU, the development of

GPUs with fully programable pipelines makes them amenable for accelerating massively-parallel

general purpose applications, opening a new application field to GPUs called General-Purpose

Computation on GPUs (GPGPU).

The availability of GPGPU programming languages, such as CUDA (Computing Unified

Design Architecture) and OpenCL (Open Computing Language), have consolidated the adop-

tion of GPU technology as an alternative for accelerating general-purpose applications.

CUDA is a proprietary programming language developed by Nvidia targeting its GPUs.

OpenCL is a standard developed by the Khronos group targeting parallel platforms such as

Chip Multi-Processors, Digital Signal Processors (DSPs), FPGAs, etc.

Since OpenCL is based on CUDA, the CUDA programming language shares several con-

ceptual foundations with OpenCL; they have similar platform, execution, memory and pro-

gramming models [20, 21, 22].

2.3.1 Platform Model

The platform model describes a high level representation of the system composed of a host

and several devices. The host orchestrates the program execution on the devices and interacts

with the non-CUDA (or non-OpenCL) parts of the program. The devices execute the parallel

threads, and they can be a GPU, Chip Multi-Processor, Digital Signal Processor (DSP), FPGA,

etc. A device is divided into Streaming Multiprocessors (or Compute Units) and, as explained

in the previous Section, a SM is composed of Scalable Processors (or Processing Elements).
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2.3.2 Execution Model

A CUDA/OpenCL application is composed of a host program and one or more kernel

functions (or simply kernels), which are executed on the host and on the devices, respectively.

The host program issues a command for scheduling for execution a kernel. When the kernel

is executed, the runtime generates a large number of threads (or work-items), organized in a

grid, that exploits data parallelism. Hence, a kernel defines the code to be executed by all the

threads in parallel when it is executed.

The threads in a grid are organized in a two-level hierarchy. In the top level, the grid has a

two dimensional set of thread blocks (or work-groups) and at the lower level each thread block

is composed by a three dimensional array of threads, where all the thread blocks have the same

number of threads. Thread blocks are assigned for execution to SMs, hence, threads that are

executed in the same thread block can collaborate and synchronize among them. Each thread

block is assigned an unique two dimensional coordinate that is used to identify uniquely a

thread block. In the same way, the threads are assigned a unique three dimensional coordinate

that identifies uniquely a thread.

The size of the grid and the thread blocks are passed as parameters when the kernel is

scheduled for execution.

The execution model does not assume a particular execution order of the thread blocks, and,

hence, it does not support synchronization among thread blocks to avoid potential deadlocks.

2.3.3 Memory Model

The data required by the kernel should be transferred from the host memory to the device

global memory. Although having a large number of threads hides the memory latency, it

imposes a large traffic in the interconnect network to global memory which might increase the

memory latency.

In order to minimize the traffic in the interconnect network, a device provides additional

types of memory with different latencies:

• Global Memory, it can be read or write by any thread. It is the largest on the GPU and
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the slowest, therefore, it should be efficiently used. In some GPU families global memory

is cached,

• Constant Memory, it resides in global memory and remains constant throughout the

execution of the kernel,

• Texture Memory, it is only defined by CUDA and it refers to a global memory area that

it is cached. The cache is optimized for 2D spatial locality,

• Shared Memory (Local Memory), this memory area is shared by the thread block and,

hence, shared by the threads in the same thread block,

• Registers (Private Memory), are the fastest memory on the GPU. This area is private to

a thread, and

• Local Memory, only defined by CUDA, it is a memory area private to a thread that

resides in global memory. In general it is used by automatic variables that cannot fit in

the registers.

2.3.4 Programming Model

CUDA and OpenCL supports two programming models: data and task parallelism. Data

parallelism is the philosophy design behind CUDA kernels, i.e. the same task executed in

different pieces of data. Task parallelism refers to executing different tasks in parallel, which is

achieved by executing concurrently different tasks on the host and on the device or on different

devices. Some GPU families provide support for executing different kernels in parallel in the

same GPU [19].

2.3.5 Thread Scheduling

The GigaThread scheduler assigns threads for executing to SMs depending on the number

and size of the thread blocks defined at the time the kernel was sent for execution.

The number of thread blocks assigned to a thread block depends on the maximum number

of thread blocks that a SM can support, as long as no resources are exceeded such as shared
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memory or registers. The Nvidia Tesla T10 supports up to eight thread blocks assigned with

at most 2KB of shared memory per thread block, however, if each thread block needs 2.1KB

then only seven thread blocks can be allocated per SM.

For performance purposes the threads of a thread block are executed in warps. A warp is

a set of 32 threads that are executed in lock-step mode one instruction at the time. When

an instruction involves a long latency, i.e. memory, operation, the scheduler switches the

execution to a ready warp; this allows to hide long latency operations. When the instruction

finishes its long latency operation, waits until it is scheduled for execution again. Similarly, to

hide the ALU latencies, instruction from several warps are interleaved and sent to the pipeline

for execution. In this context, selecting a ready warp does not incur any delays, which is known

as zero-overhead thread scheduling.

As it can be noticed, a GPU can hide both ALU and memory latency by running multiple

warps per SM. The idea is that the scheduler has many warps to choose from and send for

execution and by this way to minimize the performance loss due to latency.

2.4 Executing Applications on Multi-GPU Systems

Multi-GPU systems are becoming popular not only for achieving higher levels of paral-

lelization, but also for overcoming the memory size limitation imposed by single GPU sys-

tems [23, 24, 25, 26, 27].

Performance on multi-GPU systems has been studied in works by Schaa et al. [23] and

Spampinato et al. [24]. The objective of these works is to provide accurate analytical models

for predicting the execution time, taking into account computation time as well as network

and PCI-e interconnect communication time. These models show that communication between

GPUs has a negative impact on the execution time for applications where the data communi-

cation time is bigger than the computation time. The accuracy of these analytical models is

experimentally tested with benchmarks running on actual muti-GPU systems, and it is shown

that the predicted times are within 11% to 40% of the actual measured execution time.

Running single-GPU applications on multi-GPU systems can be approached by either pro-

viding libraries that parallelize a single GPU application at runtime [25, 26] or instrumenting
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the application before compiling [27].

In [25] a framework for exploiting higher levels of parallelism in multi-GPU systems and

computer clusters is proposed and implemented. This framework, called CUDASA, is composed

of four layers: application, network, bus and GPU layer, see Figure 2.4.

Figure 2.4: Overview of the four abstraction layers of CUDASA ( taken from [25] )

The three lower layers exploit parallelism at different hardware levels, i.e. GPU, multiple

GPUs in a single system and at the computers that compose the cluster; while the topmost layer

contains the sequential function calls that exploit the parallelism provided by the underlying

layers. To provide extended levels of parallelism this framework has three components: (i) a

runtime library, which provides the basic functionality for job and task scheduling, distributed

shared memory management and common interface functions, (ii) a set of language extensions

that introduces function interfaces and type qualifiers for the higher layers of abstraction,

leaving the GPU layer unchanged, and (iii) a self-contained compiler that acts as a CUDA

pre-compiler. The language extensions of CUDASA allow to specify the type of subroutine,

i.e. job or task, and the size in a similar way the size of a kernel is defined in CUDA. The

libraries keep internal queues with blocks ready for execution and distribute the pending blocks

to GPUs. Although the authors present good scalability results for dense matrix multiplication

for up to 4 GPUs in a single system, for computer cluster configurations the scalability is fairly

poor due to the high communication overhead.
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Kim et al. [27] present a framework that decomposes at runtime an OpenCL kernel written

for a single GPU into multiple CUDA kernels and executes them on multiple GPUs. The

framework is composed of three components: (i) a command scheduler that dequeues each

command queued in the original OpenCL program and schedules the dequeued commands in the

ready-queue, (ii) a virtual GPU device that provides the single compute device image through

a set of assignment queues, and a virtual buffer, which contains all the processed commands,

and a master copy of the actual device buffers, respectively, and (iii) a CUDA runtime, which

defines as many CPU threads as GPUs the system has and executes the commands in the

assignment-queues, see Figure 2.5. The workload is partitioned such that the data transfer

is minimized for each partition, which is achieved by performing access range analysis of the

arrays accessed by the kernel.

Figure 2.5: Framework for achieving a single device image ( taken from [27] )

The speedups presented for a set of applications show linear speedup for the majority of

the applications, while for few applications show no linear speedup or no speedup at all is

achieved, which according to the authors is due to the uneven workload distribution and false

data sharing among partitions.

Chen et al. [28] present a framework for execution of CUDA applications on multiple GPUs

that exploits fine-grained tasks to achieve efficient load balance in the system. This framework

defines: (i) a global task container that has all the tasks that are to be executed, (ii) a local

task container that it is associated to a device, (iii) one host process per device, and (iv)

a persistent kernel launched at the beginning of the computation on each device. The host

process moves tasks from the global task container to the local task container when there is
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free space on it and informs the device. The kernel running on the device fetches tasks from

the local task container and executes them by groups of threads, called tasks execution units

(TEUs). Multiples TEUs can be executed concurrently on the same device, which, according

to the authors, can be more efficient than executing one TEU on the whole device when there

is limited data parallelism which can be handled by a few threads. Two granularity levels are

proposed: thread block level and warp level. The framework is evaluated on a system with

four GPUs; for uniform workloads, the warp-level granularity presents some imbalance and

execution overhead compared to the static scheduling and tread block level granularity, for

non-uniform workloads the static scheduling presents poor load balancing, while the thread

block and warp granularities level present good load balancing, with the warp-level granularity

performing slightly better. Although the results presented are encouraging, no information

about speedup achieved or overhead is presented.

StreamIt [29, 30] is a platform-independent programming language designed to expose the

parallelism and communication of streaming applications. StreamIt provides basics constructs

for representing application parallelism and communication without depending on the topol-

ogy or computation granularity of the underlying architecture. Hagiescu et al. [31] propose an

automated compilation flow for mapping StreamIt programs onto GPUs. An scalable mapping

framework that extends the work in [31] to multi-GPU systems is proposed in [32]. This frame-

work has four components: (i) an algorithm for partitioning the StreamIt application, (ii) a

global mapper that balances the partitions among the available GPUs, (iii) a code generator

for producing the code for the partitions and communications among them, and (iv) an execu-

tion environment that provides a controller that coordinate kernels loaded on each CPU and

an inter-partition memory communication scheme for pipelined execution. This framework is

experimentally compared to the single GPU implementation, in general the results present a

reasonable speedup for systems with two and three GPUs, however, for four GPUs the speedup

is diminished possibly due to the data communication.

The frameworks described above provide support for multi-GPU execution of single-GPU

programs through an external library, which reduces their portability and performance. On the

other hand, instrumenting the application for providing support for execution on multi-GPU
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systems does not require additional libraries, hence, no extra overhead is included and better

performance can be achieved.

Instrumenting an application can be approached as a manual or automatic process. Manual

instrumentation has the advantage that fine tuning can be achieved, but on the other side it is

complex and prone to error.

In the domain of manual instrumentation, several works present multi-GPU implementa-

tions of dense algebra operations [33], linear programming [34], optimization problems [35],

computational fluid dynamics [36], medical imaging [37, 38], signal processing [39], among

others. All these works apply techniques for achieving fine tuned implementations of their

problems.

Automatic instrumentation for supporting execution on multi-GPU systems involves source

to source conversion, i.e. convert an application written for single-GPU systems into an applica-

tion for systems with multiple GPUs. At the time of this writing no works for automatic source

to source conversion for executing applications written for single-GPU systems on multi-GPU

systems have been found.

2.5 Failures and Fault Tolerance

With the current microprocessor fabrication trends, i.e. smaller feature sizes, lower voltages

and faster clock frequencies, microprocessors are becoming increasingly susceptible to hardware

failures [40, 41]. Hardware failures can be classified as: transient (soft) failures and permanent

(hard) failures.

Microprocessors can be protected against failures by implementing some form of redun-

dancy. Thus, when a failure occurs, it is masked by the redundancy, keeping the microprocessor

functioning as though the failure did not take place. Hardware redundancy can be achieved in

three different ways:

• Spatial redundancy is achieved by executing the same instructions on multiple indepen-

dent functional units at the same time.
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• Temporal (Time) redundancy is achieved by carrying out the same computation multiple

times on the same functional units at different times; and

• Information redundancy is achieved by adding extra data (bits) to the information used

in/computed from computations.

Next, transient and permanent failures and the techniques used to mitigate them are described.

2.5.1 Transient (Soft) Failures

Transient failures cause a component to malfunction for a brief period of time, after which

the functionality of the component is fully restored. Transient failures are caused by alpha-

particles in the chip material, cosmic rays from space, or radiation from radioactive reactive

atoms [42]. Transient failure rate is increased by the effects of transistor integration, with

lower threshold voltages and capacitances, smaller charges (Q=CxV) are needed to flip a bit

in memory or in the datapath or control logic [42, 43]. Typically, a microprocessor has a Soft

Error Rate (SER) of 4000 FIT2, where 50% affect the datapath and control logic, and 50%

affect the on-chip memories.

2.5.1.1 Fault Tolerant Techniques for Memory Structures

Data in memory can be protected against bit flips through information redundancy. The

most common form of information redundancy is coding, which adds extra bits to the data

stored. Extra bits allow to detect or to correct errors before using the data. Parity bits and

ECC (error-correcting code) are the coding schemes most commonly used for detecting and

correcting errors. In general, DRAM (dynamic RAM), L3 and L2 caches are ECC protected,

whereas L1 cache memory is parity protected. Standard ECC algorithms can automatically

correct single-bit errors and detect double-bit errors. ECC is reported to correct up 90% of

single-bit errors [44].

2FIT (Failures In Time): Errors per billion (109) hours of use.
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2.5.1.2 Fault Tolerant Techniques for Datapath and Control Logic

Several techniques based on spatial, information and temporal redundancy have been devel-

oped to protect the datapath and the control logic against transient failures. These techniques

show a trade off between failure protection coverage and additional logic needed, i.e. area

and power overhead; for instance they can protect all the datapath and control logic, only the

datapath, or only a subset of the datapath.

Spatial Redundancy Techniques. The most commonly spatial redundacy-based tech-

nique used is the replication check, which, depending on the application, duplicates (DMR: Dual

Modular Redundancy) or triplicates (TMR: Triple Modular Redundancy) computational logic

for error detection or correction, respectively. Besides replicated computational logic, a com-

parator or voter is needed to detect or correct, respectively, transient failures. The IBM S/390

G5 processor achieves 100% error detection from any transient error on the datapath through

complete duplication of the instruction and execution units. Duplicated instruction and ex-

ecution units are arranged in parallel to, and operate in lock-step with, their correspondent

primary instruction and execution units. To guarantee correct execution and recoverability, a

special unit, the Recovery Unit (RU), is used to detect errors, through output comparison. If

the RU finds no errors, it checkpoints the microarchitectural state and the register file into an

ECC protected checkpoint array every time an instruction completes; in the case of erroneous

execution, the execution is restarted from the last stored checkpoint [45]. The area overhead

paid by the G5 processor for this added reliability is, according to Spainhower and Gregg, about

35% [46]. Figure 2.6 shows a high level view of the architecture of the IBM G5 processor.

Figure 2.6: High level view of the IBM G5 processor ( taken from [47] )

Although full duplication of the datapath and control logic provides robust failure protection
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and easy implementation, it inefficiently utilizes the resources. The inefficiency arises from the

fact that both datapaths:

i) Execute all the instructions irrespective of their usefulness, which is necessary to keep both

datapaths synchronized, i.e. running in lock-step; and

ii) Stall when execution finds cache misses or data dependencies.

Indeed, only non-speculative instructions need to be verified, therefore, re-executed; and

not both executions need to stall because of cache misses. Based on these premises, robust

transient failure protection can be achieved without full duplication of the datapath.

Selective Series Duplex (SSD) provides failure protection at a lower cost in terms of compu-

tational logic replication [47]. Savings are achieved by selectively replicating some parts of the

computational logic, i.e. the pipeline, avoiding unnecessary front-end logic replication, such

as: branch prediction hardware, prefetching hardware, reorder buffer, among others. This is

possible because the two pipelines work in series, instead of in parallel, therefore, by the time

completed instructions reach the redudant or verification pipeline, V-Pipeline, branch decisions

and cache misses are already cleared, and hence no additional hardware for performing those

tasks is needed. A FIFO buffer, called the Re-Execution Queue (REQ), is utilized to store the

instructions, along with their results, that are ready to be commited by the main pipeline, i.e

the P-Pipeline, and ready to be executed by the V-Pipeline. Instructions are released from

the REQ buffer once they are executed by the V-pipeline. The P-Pipeline can continue ex-

ecuting instructions as long as the REQ buffer has space to allocate completed instructions.

When the REQ buffer is full, the P-Pipeline starts to stall, which increases the execution time.

Depending on the number of instructions that can be issued and commited per cycle by the

P-Pipeline and by the V-Pipeline, SSD increases the average execution time up to 1.3%, and

achieves a reduction of up to 61% in the area overhead compared to the case of full datapath

and control logic duplication. Figure 2.7 shows the organization of the main components of the

SSD architecture.
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Figure 2.7: High level view of the SSD architecture ( taken from [47] )

Information Redundancy Techniques. As with memory, information redundancy can

be implemented to protect the datapath and control logic against transient faults. The IBM

Power6 microprocessor [48] includes error detection mechanisms for most of its control logic.

Residue checking is used in the floating-point units, parity protection is used for most of the

latches in the data-flow circuits, and logical consistency checkers, which check that states are

valid with respect to their state machine, are used to protect the control circuits. In the same

way as the G5, the Power6 utilizes a Recovery Unit (RU) to checkpoint the system state into an

ECC protected checkpoint array, and to restart the execution from the last checkpoint stored,

if a failure is detected.

Temporal Redundancy Techniques. Unlike, spatial and information redundancy im-

plementations that add hardware overhead, implementations based only on temporal redun-

dancy do not involve adding hardware with re-execution purposes. However, carrying out the

same computations on the same functional units several times increases the average execution

time. There are two main sources for increasing execution time:

1. Separation between original and redundant executions. To be able to detect transient fail-

ures with duration ∆t, multiple executions should be separated by a time period greater

than ∆t. Therefore, selecting the time separation among the original and redundant exe-

cutions should be done carefully because, while a long delay results on delayed instruction

committing, a short delay results on inability for transient failure detection.

2. Redundant execution itself. When an instruction is re-executed using resources on the

pipeline, no other instructions, that need those busy resources, can be executed until the

resources are released.
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As it can be seen, temporal redundancy imposes trade-offs between the execution time

overhead and the transient failure protection coverage.

REESE (REdundant Execution using Spare Elements) [49] implements time redundancy,

exploiting idle periods on functional units for transient failure detection. The premise for

this scheme is that on modern microprocessors idle periods account for about 30% to 40%

of the total available time. REESE re-executes instructions during idle periods, achieving

decreased execution time overhead compared to the one imposed by naive time redundancy

schemes. Instructions are grouped for execution, in such a way that groups of new instructions,

called P-Streams, are interleaved with groups of re-execution instructions, called R-Streams.

Interleaving and grouping should be designed aiming to maximize ILP.

A FIFO buffer, called R-Stream Queue (RQ), is implemented to store P-Stream instruc-

tions, along with their results, that are ready to be committed, that is, ready to be re-executed.

Additional scheduling logic is needed to interleave P-Stream instructions and R-Stream instruc-

tions. To decide whether P-Stream or R-Stream instructions should be executed, the scheduler

takes into consideration data and control dependency conflicts found on the P-Stream and the

state of the RQ. Dependency conflicts as well as a full RQ stall the processor until dependencies

are cleared out or space is freed in the RQ. In general, if no dependencies among P-Stream

instructions are found and space is available on the RQ, P-Stream instructions are executed,

otherwise R-Stream instructions are executed. REESE achieves 14% performance decrease

when compared to a microprocessor with no time redundancy.

2.5.2 Permanent (Hard) Failures

Hard failures are directly related to physical damages on the transistor. The transistor

has four terminals, where the gate terminal controls whether a channel to connect the n-

doped silicon drain and source is created; the fourth terminal (body) is connected to ground in

Positive-Channel Metal Oxide Semiconductors (NMOSs) or to VDD in Positive-Channel Metal

Oxide Semiconductors (PMOSs). The oxide gate is a very thin insulating layer of SiO2 that

prevents current flow from the gate to the body. Figure 2.8 shows the cross section of an NMOS

transistor.
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Figure 2.8: Cross section of an NMOS transistor ( taken from [50] )

2.5.2.1 Types of Permanent Failures

Permanent failures are mainly due to process variation, material defects, and physical fail-

ures during use (operational hard failures), and causes a component to malfunction perma-

nently. As it will be seen in the next paragraphs, permanent failure rate is affected negatively

by technology scaling.

Most of the material defects are detected by quality control tests before shipment, the

remaining undetected material defects often manifest as failures in a similar fashion as the

ones caused by process variation, therefore, material defect related failures are not discussed in

detail in this document.

Process Variation. Although the microprocessor fabrication process is done with highly

precise equipment and in impurity isolated environments, microprocessors present variations

in film thickness, lateral dimensions, oxide thickness, and doping concentrations. Oxide thick-

ness, and doping concentration variation are becoming more prominent as the microprocessors

approach the nanotechnology, inducing variations on the threshold voltage. In [51], it is shown

through simulations that as the channel length (feature size) decreases, the threshold voltage

variation increases from around 40mV to 100mV.

Considering that for 35nm MOSFET generation the desirable threshold is 100mV to 200mV

and a supply voltage below 1V, these results show that small channel lengths are prone to suck-

at-x faults, potentially leading to permanent failures.
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Operational Hard Failures. Technology scaling reduces feature sizes and voltage levels

of transistors. In an ideal scaling scenario, every new generation, the number of transistors on a

chip doubles, the dynamic power per transistor decreases by about 50%, and the power remains

unchanged. However, in practice power and consequently the temperature have increased at

an alarming rate, which affects the lifetime reliability of the microprocessor.

Simulations show that for a given microarchitectural pipeline, shrinking the feature size

from 180nm to 65nm, results in the temperature increasing by 15 degrees Kelvin, and the

failure rate increasing by 316% [52]. Gate oxide breakdown (ODB) and electromigration are

likely to be the most dominant phenomena that cause operational hard failures [52, 53].

Gate oxide breakdown (ODB) results in the malfunction of a transistor due to the creation

of a conduction path through traps3 in the gate-oxide from the polysilicon gate (anode) to the

substrate (cathode) [50]. Traps are present in newly manufactured oxide due to imperfections

in the fabrication process. Over the operational time, more traps can appear as a result of

electric field stress, and eventually several traps can line to form a conduction path. The ODB

rate increases as the oxide gets thinner and the temperature increases. Figures 2.9a and 2.9b

show traps and a conduction path, respectively, formed on the gate oxide.

(a) Formation of traps in the gate oxide (b) A conduction path created by traps in the gate
oxide

Figure 2.9: Gate oxide breakdown (ODB) ( taken from [50] )

Electromigration is the gradual displacement of the metal atoms of a conductor as a result

of high current densities flowing through that conductor. In microprocessors, electromigration

3Traps are defects within the gate oxide. They are called traps because those defects can trap charges.



32

causes wear-out of the interconnects, leading to open circuits, which is aggravated by smaller

wire lengths, present in device scaling, and high operating temperatures.

2.5.2.2 Fault Tolerant Techniques for Permanent Failures

Fault tolerance in the presence of hard failures can be achieved with hardware or software

techniques.

Hardware Techniques. Hardware techniques aim for non-stopping operation of the mi-

croprocessor and memory components. Depending on the hardware implementation, non-stop

operation and degraded operation, until the failed hardware is replaced and normal operation

is restarted, is allowed. Hardware implementations include: replication check techniques, mem-

ory and CPU sparing. Hardware sparing consists of having spare hardware ready to replace

similar pieces of hardware in case of permanent failures. Sparing can be classified into: hot and

cold sparing. Hot sparing provides non-stop operation because the spare hardware is always

running and has the same architectural and microarchitectural state. Cold sparing requires

stopping the operation and restarting from a consistent state previously saved. Evidently hot

sparing does not impose execution time overhead, but it requires redundant hardware. Cold

sparing makes more efficient use of hardware resources, spare hardware can be utilized for nor-

mal execution, and when a hard failure is detected, the spare hardware continues the execution

that was being done by the failed hardware.

Although replication check techniques and hot sparing allow for non-degraded continuous

operation in the presence of hard failures, power and area overhead increases by two or three

times. Overhead is mainly due to the fact that synchronization is required, which increases the

control logic complexity.

Redundant Multithreading (RMT) is a technique that, similar to replication check tech-

niques, runs redundant threads of the program and compares their outputs to detect failures.

RMT provides tolerance to transient faults when implemented on unicore multi-threaded pro-

cessors, and tolerance to hard faults when implemented on CMPs, i.e. both threads run on

separate hardware.
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The main differences between RMT and check techniques are: (i) RMT does not require

redundant lock step execution, allowing for less hardware overhead, and (ii) output comparison

is done at instruction level rather than at cycle level, which means that redundant hardware

only needs to have the same architectural state, not the same microarchitectural state.

Chip-level Redundant Threading (CRT) implements RMT on a dual-core microproces-

sor [54]. CRT relaxes the synchronization constraint, allowing the redundant thread, i.e. trail-

ing thread, to run sufficiently behind the original thread, i.e. leading thread, to avoid stalling

and performance overhead due to cache misses and branch miss-predictions, respectively. CRT

replicates the inputs and compares the outputs at the instruction level, as it can be seen in

Figure 2.10. Input replication allow both threads to read the same data, which introduces

complexity because the trailing thread runs behind, and therefore could read updated data.

Figure 2.10: Chip-level Redundant Threading (CRT) ( taken from [54] )

The Branch Outcome Queue (BOQ) and Load Value Queue (LVQ) are two special structures

implemented by CRT to avoid stalling and branch miss-predictions on the trailing execution.

Ideally the trailing execution neither stalls nor has branch miss-predictions, however, in reality

this depends on the lag between the leading and trailing executions. On single thread appli-

cations, performance in CRT is the same as in DMR, but for multi-thread applications, CRT

outperforms DMR by 13% on average.

Dynamic Implementation Verification Architecture (DIVA) [55] splits the traditional mi-

croprocessor into the speculative DIVA core and the DIVA checker, see Figure 2.11. The DIVA
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core is an out-of-order execution microprocessor that has all the functionality to issue, decode,

execute and store the results in the reorder buffer, but it cannot commit instructions. The

DIVA checker has a functional checker stage that checks the correctness of the computation

(CHK), if there are no errors the results are passed to the commit stage (CT), else the checker

fixes the errors, flushes the DIVA pipeline and restarts the execution at the next instruction.

The checker is assumed to be failure free through ECC protection and there are no communica-

tion errors, hence, all the data DIVA reads or writes to memory or register is correct. Besides,

the DIVA checker is organized into two indepent parallel pipelines: the CHKcomp pipeline

verifies the correctness of all computations, and the CHKcomm verifies all the communications

with the core are correct. According to simulations, in the absence of faults, DIVA performance

overhead accounts for about 3%.

A watchdog timer and a counter are implemented to detect total failures of the core. The

watchdog timer detects when the core times out before retiring an instruction, and increases

the counter; once the counter reaches a threshold, the checker takes over the execution and

continues with degraded performance, providing fault tolerance to hard failures.

Figure 2.11: Dynamic Implementation Verification Architecture (DIVA) ( taken from [55] )

Software Techniques. Indeed, hardware techniques effectively provide non-stop fault

tolerance to hard errors; however, in order to achieve failure resilience and to avoid high perfor-

mance overhead, all of them impose area overhead. This is reasonable for critical systems that

require both high performance and availability at the same time; however, for commercial-grade

systems, adding specialized hardware for fault tolerance purposes is not an option due to high

costs. Off-the-shelf microprocessors, utilized in comercial-grade systems, implement basic fault
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tolerant techniques, such as: parity and ECC protection for cache and main memory.

Off-the-shelf microprocessors have been used as the building block for high performance

systems, the latest top 500 supercomputer list released on November 2012 [56] shows that the

top supercomputers are build out of commercial microprocessors; for instance: the Titan at the

Oak Ridge National Laboratory, ranked first at the time of this writing, is composed of 18,688

nodes, each with a 16-core AMD Opteron 6274 processor and an NVIDIA Tesla K20X graphics

processing unit (GPU) accelerator [57, 58], and the TH-1A at the National Supercomputer

Center in Tianjin, ranked eight at the time of this writing, is composed of 14,336 Intel Xeon

X5670 six-core processors [59, 60].

Fault tolerance for off-the-shelf microprocessors is implemented through software tech-

niques, which do not need additional hardware to support them. However, software techniques

impose higher performance overhead compared to hardware techniques.

Software techniques can be classified as: reactive and proactive policies. Reactive fault

tolerant policies minimize the effects of the faults on the execution of applications when the fault

occurs. Proactive fault tolerant policies predict faults and take actions to avoid an application

crash [61, 62, 63]. Failure prediction is based on information collected by the system about the

health of the system.

Among reactive policies, checkpointing/restart-based error recovery is the most commonly

used [15, 64, 65, 66, 67, 68]. Depending on the implementation, either the application itself or

the operating system periodically save the system/application state in a checkpoint. When the

application crashes as a result of a failure, the most recent checkpoint is used to restart the

application from the state saved in the last successful checkpoint. Therefore, checkpoints save

time by restarting the application from a saved point instead of restarting from the beginning.

In terms of performance, the proactive approach has shown to be more efficient than the

reactive approach. However, it is not always possible to predict failures, some studies have

shown that up to 76% of failures can be predicted. Besides, upon failure prediction, an action

has to be taken, for example: checkpoint the system or application.
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2.6 The Checkpoint/Restart Technique

As mentioned in the previous section, the Checkpoint/Restart technique is the most com-

monly used to achieve fault tolerance in the presence of permanent faults. Under this approach,

the process state is saved periodically into stable storage, i.e. checkpointed. The checkpoint

period, the time between two consecutive checkpoints, has direct effect on the running time of

the application [69, 70, 71].

The checkpoint/restart technique offers fail-stop protection, which means that the applica-

tion stops after a fault occurs and has to be restarted.

Checkpointing can be implemented in either of the following three ways: by the application

itself, through an external library, or by the operating system [13, 14].

Depending on the implementation, different issues arise: storage efficiency, transparency

and restart technique. Storage efficiency refers to whether only the required structures or

more than the required structures are saved in the checkpoint. Transparency is achieved when

no changes need to be made to the application code. Restart techniques can be application

dependent or independent (common); a common restart technique can be executed by an

automated system, whereas an application dependent technique requires a specific script for

restarting the application from a checkpoint. Table 2.2 summarizes the main features of each

scheme:

Table 2.2: Features Summary for Checkpointing Schemes

Checkpointing Scheme

Feature Application Library O.S. kernel

Storage Efficiency High Low Low

Transparency Low Medium High

Machine & O.S.-Specific No Yes Yes

Restart Technique
Application

Dependent
Common Common

There are three measures of checkpoint performance:

1. Checkpoint Latency, refers to the time that it takes to save the application/system data.
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2. Checkpoint Overhead, is the time added to the application execution time as a result of

checkpointing.

3. Checkpoint Size, is the average size of the checkpoint.

The main goal of a checkpoint implementation is to minimize the three measures. However,

most of the times checkpoint implementations aim for minimizing the checkpoint overhead be-

cause users prefer to risk running applications without checkpointing rather than a checkpointed

application with high checkpoint overhead.

Checkpoint overhead increases as the checkpoint period decreases, and vice versa. Under

the presence of faults, it is better to checkpoint as often as possible because the amount of work

lost would be small. For failure free executions, the less often the application is checkpointed,

the lower the checkpoint overhead is. Evidently this suggests a trade-off between checkpoint

overhead and checkpoint period.

To minimize the checkpoint measures, checkpointing can be incremental or non-incremental:

1. Incremental Checkpointing saves only the application/system data that has changed since

the last checkpoint. To recover a system with incremental checkpointing, all the check-

point files are needed to leave the application/system in the state that it had at the

moment that the checkpoint was taken. To avoid a large number of checkpoint files, after

taking a certain number of incremental checkpoints, a non-incremental checkpoint has to

be taken and all the previous checkpoint files are deleted.

2. Non-Incremental Checkpointing saves all the application/system data in every checkpoint.

Only the last checkpoint file is needed to recover the application/system state to the state

it had at the time the checkpoint was taken.

While the incremental approach saves time when the checkpoint is taken by saving only a

subset of the data, the non-incremental saves time when the restart/recovery is taking place

by having all the information needed in only one file.
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2.6.1 Application-Level Checkpointing

In the application-level checkpointing technique, the application developer inserts pieces

of code to explicitly save the state of the application. Application-level checkpointing offers

the following advantages: (i) highest level of efficiency since the application developer has

exact knowledge of which structures and when must be checkpointed, and (ii) hardware and

operating system independency. The main drawbacks of application-level checkpointing are:

(i) it requires changes to the application code, and (ii) the application imposes constraints on

when a checkpoint can be taken.

Cornell Checkpointing Compiler (C3) is an application level checkpointing implementation

for multi-thread applications in shared memory [66]. C3 has two components: (i) a pre-compiler

for source-to-source conversion of the application, and (ii) a runtime system that supports a

protocol for coordinating the checkpoint and restart of the application threads. In C3 the

application developer has to insert potentialCheckpoint() calls in places where it may be

safe to take checkpoints. As the subroutine name suggests, a call to potentialCheckpoint()

does not mean that a checkpoint is taken, it depends on how much time has passed since

the last checkpoint was taken. The checkpoint is done in three steps: each thread (1) calls a

barrier, (2) saves its private state, and (3) calls a second barrier. To avoid deadlocks between

threads, they are forced to take a checkpoint as soon as they hit a program barrier and another

thread has initiated a checkpoint operation, which is indicated through a flag in shared memory.

The portability of C3 is successfully shown in two different architectures: a two-way Athlon

machine running Linux and a four-way Compaq Alphaserver running Tru64 UNIX. On these two

architectures, the checkpoint overhead is about 2% to 3% of the non-checkpointed execution.

2.6.2 User-Level Checkpointing

In this approach, user-level libraries are provided to handle the checkpoint/restart opera-

tions. Library implementations address the drawbacks suffered by the application-level tech-

niques: (i) it may not require application code changes or at most it requires small changes, and

(ii) it does not present constraints for choosing the checkpoint period. However, library imple-
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mentations take core-dump-style snapshots of the computational state of the machine, which

results in large checkpoint files compared to the checkpoint files obtained by application-level

checkpointing implementations.

Libckpt is a checkpoint library implementation for uniprocessor systems running linux,

supports incremental and non-incremental checkpointing as well as automatic and user initiated

checkpointing. Automatic checkpointing does not require changes on the application, hence,

only requires re-linking the object files with the library. User initiated checkpointing allows the

user to specify certains places in the application code where it is more advantageous to take

checkpoints, hence, it requires calling checkpoint_here() and recompiling the application to

link the library [64]. Libckpt takes control of the program, generates an interrupt periodically

and takes a sequential4 checkpoint, although libckpt support asynchronous disk transfers5 as

well. Libckpt shows that by using incremental checkpointing, savings of up to 90% in the

checkpoint size can be achieved compared to the non-incremental case; in the same way, savings

of up to 80% in the checkpoint overhead can be achieved, however for a minority of applications,

an increase of up to 20% in the checkpoint overhead is shown.

Condor is a user-level library based checkpoint implementation for distributed process-

ing systems using linux [65]. Similar to libckpt, the application does not need code changes

and hence it only requires to link the objects files to the library. Condor implements check-

point/restart for process migration purposes; the main idea is to migrate processes to idle

stations, which achieves better resource utilization. A signal starts the checkpoint process,

which saves the process state, open files attributes, signals and processor state. Condor aug-

ments several system calls, such as: open(), write() and printf(), to have the ability of

saving the information required for checkpointing. Although Condor supports a variety of user

applications, it does not support checkpointing of communicating processes.

4Sequential checkpoint does not interleave computation with disk transfers.
5Asynchronous disk transfer allows interleaved computation with disk transfers.
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2.6.3 Kernel-Level Checkpointing

In the kernel-level checkpointing approach, all the functionality is provided by the kernel

of the operating system. The highest level of transparency is achieved, since no application

code changes and no recompiling is required. However, similarly to the user-level checkpoint-

ing approach, kernel-level implementations have large checkpoint sizes, and portability among

heterogeneous platforms is not possible.

Kernel-level implementations have different approaches: some of them are implemented as

dynamically loadable kernel libraries, as kernel threads, and others as modules embedded in

the operating system.

VMADump (Virtual Memory Area Dumper) is a kernel-level checkpointing implementation,

similar to Condor it is used for process migration with load balancing capabilities. Since

VMADump is used for process migration, it is invoked directly by the process, and hence it

is not totally transparent. Once the checkpoint is initiated, process attributes, CPU registers,

signal handlers and memory are saved [13].

A similar kernel-level implementation to VMADump is CRAK, except that CRAK is not

user-initiated, therefore, it is totally transparent [13, 67]. Although CRAK is classified as a

kernel-level implementation, it does not modify the kernel of an existing operating system, but

instead it adds a new kernel module. To support different versions of linux, the functionality

of CRAK is divided among the user and kernel level of the operating system; the user level

is preferred for some tasks because it is more ‘standard’, and therefore it is easier to do those

tasks correctly. The user level is used for identifying the processes to be checkpointed and

stopping them, after that the kernel level saves the following information: process credentials,

signal handlers, pending signals, file descriptors attached to sockets and regular files.

TICK (Transparent Incremental Checkpointer at Kernel level) is a kernel-level, transparent

checkpointing implementation for linux clusters [68]. TICK provides (i) full or incremental

checkpointing capabilities, (ii) transparency, (iii) flexibility, since many options can be controled

from files on /proc and, (iv) high responsiveness, since the checkpoint can be triggered within

microseconds.
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Checkpointing applications running on clusters, called Distributed Checkpointing, presents

challenges since the state of the system includes the state of different processes, located on

different nodes. A consistent global or system-wide checkpoint is a set of local checkpoints,

taken at every node where the application is running, that represents a consistent state of

the system at a particular instance of time. Clearly, when processes are communicating among

themselves, taking a global checkpoint is not straightforward, and it requires either some degree

of synchronization among the processes or a method to determine a global recovery line among

a set of uncoordinated checkpoints.

To achieve consistent global checkpoints, TICK needs to provide global synchronization,

as well as local support. To provide global synchronization, the Buffered Coscheduling (BCS)

is utilized; BCS divides the global execution into slices, at every time-slice: new communi-

cation calls are buffered until the next time-slice, and communication-pending information is

exchanged among nodes. To provide local support, TICK is implemented as kernel threads,

where there is one thread per processor. With these two techniques, global recovery lines are

automatically established because local checkpoints are taken after the communication calls

are buffered, i.e. no communication is in transit.

Similarly to other schemes, TICK augments the local operating system of the nodes to pro-

vide new mechanisms to transparently checkpoint the process. Every time a checkpoint is taken

by a kernel thread, the following information is saved: register file content, process descriptor

information, signal information and signal handlers defined by the process, file descriptors and

memory region descriptors.

Performance tests show that for a checkpoint period of one minute, the checkpoint overhead

is at most 4% when the checkpoint is stored in memory, and at most 6% when the checkpoint

is stored in local disk.

2.6.4 Checkpointing for GPUs

Conventional checkpoint/restart approaches fail to work with applications running with

GPUs because those approaches are designed to save only the main memory and CPU state.

Therefore, approaches targeting this architecture are needed; next, three approaches for appli-
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cation and system level checkpointing are described.

CheCUDA [72] is a user-level checkpointing approach for CUDA applications running on

systems with GPUs. This approach relies on the Berkeley Lab Checkpoint/Restart (BLCR) [73]

tool to checkpoint the application, which requires that no CUDA objects exist when the check-

point is taken. The steps taken by CheCUDA are: (i) copy the user data in the GPU to the

host memory and (ii) delete the CUDA objects, (iii) copy the application status data to the

checkpoint file, (iv) create and initialize CUDA objects, and (iv) copy the user data back to the

GPU memory. To collect application status data, CheCUDA includes wrappers for standard

CUDA functions, such as cuMemAlloc() and cuMemFree(), which save information in special

resources and object lists. Checkpointing an application with CheCUDA can be done by (i)

calling to the ckptSel() function, or (ii) using user level signals. Experimental results shows

that the overhead imposed by the wrapper functions that collect object information can be up

to 80% compared to the regular CUDA functions, and the checkpoint overhead time imposed

by CheCUDA in some cases is about the same as the kernel execution time.

CheCL [74] is a user-level checkpointing tool for OpenCL applications. This tool saves

only OpenCL objects and hence it works with a conventional system-level checkpointing tool,

such as BLCR [73]. Checkpointing is achieved by (i) decoupling the application process from

the OpenCL implementation, and (ii) providing a library that contains wrappers for OpenCL

objects and functions and records all the necessary information for restoring the GPU state.

The CheCL library replaces the libOpenCL.so library file, and when it is loaded by an OpenCL

application, an additional process is created, i.e. proxy process, that receives all the API calls

and then calls the actual API functions. Two checkpoint modes are supported by CheCL:

delayed checkpointing mode and immediately checkpointing mode; the former waits for the

next synchronization call to checkpoint the data, while in the later a synchronization call is

forced and the checkpoint is performed immediately. Experimental results show that the time

overhead imposed only by the CheCL library ranges from 10% up to nearly 80%, on average

20%, depending on the number of API calls. Checkpoint and restart time (in seconds) are

reported, however, it does not provide much information as no execution time is provided.

Laosooksathit et al. [75] propose a checkpoint mechanism that achieves low checkpoint



43

overhead by combining CUDA streams and a tool that provides transparent checkpoint/restart

to virtual machines. CUDA streams allows to divide and overlap GPU computation and data

transfer to the host memory, which reduces the communication overhead. The checkpoint is

performed in two steps: (i) the user data is copied back to the host memory, and (ii) the

virtual machine tool checkpoints the application state. This mechanism assumes that each

kernel synchronization point is a potential checkpoint request, hence, to decrease the number

of checkpoints taken two metrics are introduced: the expected cost of performing the checkpoint

and the expected cost of skipping the checkpoint.
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CHAPTER 3. Unstructured Grid Applications on Graphics Processing

Units

3.1 Introduction

Many fields of scientific research rely on simulations that require the analysis of surfaces.

In order to be tractable by computational methods, i.e. to numerically solve partial differential

equations, surfaces are discretized into small cells that form a mesh or grid. The grid represen-

tation has an impact on the rate of convergence, the solution accuracy and the computation

time required. Depending on the complexity of the problem to represent and solve, a structured

or unstructured grid is utilized.

3.2 Structured & Unstructured Grids

In a structured grid all its interior cell vertices belong to the same number of cells, whereas

in a unstructured grid every cell vertex is allowed to belong to different number of cells, see

Figure 3.1.

Algorithms are more efficiently implemented in structured grids, and data structures to

handle the grid are easy to implement; however, structured grids present poor accuracy if

the problem to be solved has curved internal or external boundaries. On the other hand,

unstructured grids present more flexibility and higher accuracy to represent problems that

have curved boundaries; however, the data structures to handle it are not easy to implement,

and also explicit neighboring information should be stored [76]. In general unstructured grids

are more utilized because of their flexibility and higher accuracy.

This document focuses on unstructured grids, therefore, the terms unstructured grid and

grid are used interchangeably in the next sections.
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(a) A structured grid representation (b) An unstructured grid representation

Figure 3.1: Grid representation of a surface

Every cell in a grid is defined by its shape, i.e. number of sides or faces (Nfaces), the

number of solution points in every face (NSPpF ), and the number of solution points inside the

cell (Ninner). The total number of solution points per cell (NSP ) is given by:

NSP = Nfaces ·NSPpF +Ninner (3.1)

Figure 3.2 shows a triangular cell with three solution points per face (NSPpF = 3) and one

inner solution point (Ninner = 1).
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Figure 3.2: A triangular cell with ten solution points

Each solution point has a set of values (Npar) that represent the local magnitudes for the set

of variables to analyze or parameters at that point, i.e. vi,j with 1 ≤ i ≤ NSP and 1 ≤ j ≤ Npar.

Depending on the research field the parameters may represent pressure, viscosity, velocity, etc.
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3.3 Unstructured Grid-based Analysis

Analysis using an unstructured grid is implemented as an iterative method where the values

of the variables at each solution point are updated until converges to the solution or reaches

a number of iterations. The operations that are carried out in every iteration can be divided

into four parts:

• Local cell analysis: obtains a coefficient for each solution point based only on the inter-

action with the other solution points in the same cell.

• Neighbor cell analysis: computes a coefficient for each solution point based on the inter-

action with its neighbor solution point.

• Update local variables: the local value of each solution point is updated using a linear

combination of the two previously computed coefficients.

• Update the boundary cells: the local value of each solution point at the grid boundaries

is updated based on the interaction with the other solution points in the same cell.

Next, Algorithm 1 presents the main algorithm for analysis based on unstructured grids.

It is important to notice that in an actual implementation of Algorithm 1, step 13 can be

performed in either the step 12 or 18. The selection for either of those depends on the execution

type, i.e sequential or parallel, and, if used, the type of parallelism exploited.

As it can be seen in Algorithm 1, the four main stages perform computations based on

information stored in main memory, such as the solution point variables, geometry information,

and a set of parameters for cell-oriented or neighbor-oriented (edge-oriented) analysis. What is

interesting to notice is that although solution point variables and parameters are heavily used

in all four main stages, they are accessed with different patterns at every stage. These memory

patterns limit data locality between and inside the stages, diminishing efficiency of data caches

for reducing memory latency. Therefore, performance of the grid analysis algorithm is limited

by memory latency.
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Algorithm 1 Analysis using an unstructured grid

1: counter ← 0

2: repeat

3: {Cell-oriented Analysis}
4: for all cells in grid do

5: for all solutionPoints in currentCell do

6: Compute local coefficient based on information of solution points within the same

cell

7: end for

8: end for

9: {Neighbor or Edge-oriented Analysis}
10: for all edges in grid do

11: for all solutionPoints in currentEdge do

12: Compute local coefficient based on information of the neighbor solution point

13: Obtain a single local coefficient by performing a linear combination of the two pre-

viously computed local coefficients

14: end for

15: end for

16: {Updates variables of solution points}
17: for all solutionPoints in grid do

18: Update local variables utilizing the local coefficient computed in the previous steps

19: end for

20: {Updates boundary condition variables}
21: for all solutionPoints in gridBoundaries do

22: Update boundary condition variables based on information of solution points within

the cell

23: end for

24: Check for convergence

25: counter ← counter + 1
26: until ( Converges ) or ( counter = Max )
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3.4 Memory Access Pattern

In Section 3.3, the main algorithm for analysis using unstructured grids was introduced,

which because of the data access patterns of its main stages is limited by memory latency. In

this section we describe the access pattern for the cell-oriented and neighbor-oriented analysis

stages in Algorithm 1 because those two stages account for almost 90% of the computation

time of the algorithm.

3.4.1 Cell-Oriented Analysis

In cell-oriented analysis, a set of coefficients for each solution point is computed based on

its own information as well as the information of the solution points that belong to the same

cell. As shown in Figure 3.3 accessing the solution point information is performed in two steps:

the first step involves retrieving the pointer to the beginning of the cell in the array of solution

point variables, and the second step involves accessing sequentially all the information in the

current cell.

Figure 3.3: Cell-Oriented analysis memory access pattern for a grid with 3-sided cells, three
solution points per face, one inner solution point and two parameters per solution point

Because all the cells store the same amount of information, the array with pointers to the

beginning of the cell, i.e the array of cells in Figure 3.3, it is not needed. Instead the beginning

of a cell in the array solution point variables can be computed as:

Ptr = NSP ·Npar · (#Cell − 1)
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As it can be noticed, the solution point variables in every cell are read once and utilized

several times, i.e NSP times. Clearly on a uni-threaded solution, cache memories are useful

to exploit temporal and spatial locality. Unfortunately, depending on the design of a multi-

threaded solution cache memories can exploit only spatial locality, because it is likely that

information in cache is replaced as required by different threads. Therefore, the expected

performance gain by a multi-threaded solution could be drastically reduced.

3.4.2 Neighbor-Oriented Analysis

In neighbor-oriented (or edge-oriented) analysis, a set of coefficients for each solution point

is computed based on its own information and the information of its neighbor solution point,

see Figure 3.4.
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Figure 3.4: Cell iterations between neighbors

Unlike cell-oriented analysis that traverses the grid at cell-level, edge-oriented analysis tra-

verses the grid at edge-level. Figure 3.5 shows that accessing the solution point information

is done in three steps: the first step involves retrieving the pointer to the solution point, in

the second step the pointer to the left and right solution point variables are retrieved, and the

third step involves accessing the two solution points variables.

Alike cell-oriented analysis, the first step is trivial as the pointers to the solution points can

be easily computed as 2 · (#edge− 1) ·NSPpF .

Unlike cell-oriented analysis, left and right solution point variables are not physically ad-

jacent, and information is read and used only once, hence, either on a uni-threaded or multi-

threaded solution the cache memories do not help to reduce memory latency.

In the last stage the solution point variables are updated utilizing only current solution

point information and coefficients, i.e. read and utilized once. Since coefficients and solution
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Figure 3.5: Edge-Oriented analysis memory access pattern for a grid with 3-sided cells, three
solution points per face, one inner solution point and two parameters per solution point

point variables arrays are processed sequentially, cache memories can take advantage of spatial

locality, and by this way help to reduce memory latency for both uni-threaded and multi-

threaded solutions.

3.5 Performance Considerations

In the CUDA platform, for execution purposes thread blocks are assigned to Streaming

Multiprocessors (SMs) whereas for scheduling purposes the threads belonging to the same

thread block are grouped into warps. Instructions of a warp are executed one at a time on all

its threads.

GPUs achieve high performance by hiding memory access latency, which is possible by

switching warp execution between warps that are waiting for long latency operations to finish

and warps that are ready to continue execution. Under this premise performance on GPUs is

mainly dependent on SM occupancy and global memory access.

3.5.1 Streaming Multiprocessor Occupancy

In a GPU a large number of warps active in a SM, i.e high occupancy, is needed to tolerate

long latency operations. The maximum occupancy in terms of number of threads, blocks and

warps that can be achieved is determined by hardware specifications [11]. However, achieving

maximum occupancy depends on the number of registers and amount of shared memory utilized

by each thread block.
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The number of registers utilized by the threads in the active thread blocks cannot be

greater than the maximum number of registers of the SM. In the same way, the amount of

shared memory utilized by the active thread blocks cannot be greater than the total amount

of shared memory of the SM. Hence, the number of active thread blocks can be computed as

follows.

ThreadBlocks = min

(⌊
TotalSharedMemory

SharedMemoryPerBlock

⌋
,

⌊
TotalRegisters

RegistersPerBlock

⌋)
(3.2)

Now, taking into consideration the maximum number of active thread blocks imposed by

hardware specifications, the number of active threads is given by:

ActiveWarps = min
(
maxActiveWarps,maxTBlocksPerSM ×WpTB,

ThreadBlocks×WpTB
) (3.3)

In the previous equation WpTB refers to the number of warps per thread block, which

depends on the number of threads per block as shown next.

WpTB =

⌈
ThreadsPerBlock

ThreadsPerWarp

⌉
(3.4)

Equation 3.3 defines the number of warps that can be active on a SM and it shows that

the highest value is limited by register or shared memory usage, by the maximum number of

active thread blocks and active warps specified by the hardware implementation.

Table 3.1 describes the parameters utilized in Equations 3.2, 3.3 and 3.4 that influence the

occupancy. The first five parameters in the table are architecture dependent, whereas the last

two parameters are application dependent.

3.5.2 Global Memory Access

A GPU implements different types of memory for storing data: global memory, constant

memory, texture memory, shared memory and registers. This memory structure allows to

reduce global memory accesses and collaboration among threads in the same thread block. In

terms of latency, global memory access is the slowest whereas registers are the fastest.

Since the GPU execution model requires that the information is first placed in global mem-

ory and then accessed by the GPU application, it is necessary to optimize global memory
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Table 3.1: Parameters that influence SM occupancy

Parameter Description

TotalSharedMemory Total amount of shared memory per SM

TotalRegisters Number of registers available per SM

ThreadsPerWarp Number of threads that are grouped into warps

maxActiveWarps Maximum number of warps that can be active in a SM

maxTBlocksPerSM Maximum number of Thread Blocks that can be active in a SM

SharedMemoryPerBlock Amount of shared memory utilized by a thread block

RegistersPerBlock Number of registers utilized by a thread block

access. Global memory access can be optimized by achieving peak bandwidth and by reducing

the number of accesses.

Although GPU provides large bandwidth for global memory operations, the access pattern

of the threads of a warp can reduce considerably the achieved bandwidth. To achieve peak

bandwidth usage, the GPU coalesces warp memory operations into two or four memory trans-

actions depending on the size of the words accessed. Therefore, warp memory access should

be organized in such a way that threads access adjacent memory locations. Depending on the

memory access pattern the number of memory transactions per warp is limited as follows.

2 ≤MemTransactions ≤MaxMemTransactions

= ThreadsPerWarp

(3.5)

When data is reutilized it is possible to reduce the number of global memory accesses by

storing the data either in registers or in shared memory. Shared memory is common for all the

threads in the thread block, which allows collaboration among them. Since shared memory is

organized in banks, to avoid bank conflicts threads should access data in different banks.

3.6 Implementation of Unstructured Grid Applications on GPUs

This section presents the implementation and performance analysis of Algorithm 1 intro-

duced in Section 3.3. Since the performance analysis require hardware-dependent parameters,

the NVidia Tesla T10 GPU is used on the remainder of this chapter. The technical specifications

of the Tesla GPU are shown in Table 3.2.
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Table 3.2: NVidia Tesla T10 Technical Specifications

Parameter Value

Number of Streaming Multiprocessors 30

Number of Streaming Processors per SM 8

Number of 32-bit Registers per SM (TotalRegisters) 16 K

Shared Memory per SM (TotalSharedMemory) 16 KB

Warp Size (ThreadsPerWarp) 32

Active Warps per SM (maxActiveWarps) 32

Active Thread Blocks per SM (maxTBlocksPerSM) 8

3.6.1 Streaming Multiprocessor Occupancy

Due to space constraints this section presents the implementation and analysis only for the

cell-oriented stage, analysis for the edge-oriented stage is similar.

As mentioned in Section 3.3, in cell-oriented analysis every solution point computes a co-

efficient based on its own variables as well as the variables of the solution points in the same

cell, hence, there is no collaboration between cells.

The straight forward implementation maps one cell to one thread block, where each solution

point is represented by one thread. In this implementation the number of thread blocks is equal

to the number of cells and the number of threads per thread block is equal to the number of

solution points.

Using Equation 3.2 and the fact that acording to Table 3.2 the maximum number of active

thread blocks per SM is eight:

8 =

⌊
16 KB

SharedMemoryPerBlock

⌋

=⇒ SharedMemoryPerBlock = 2 KB

8 =

⌊
16 K

RegistersPerBlock

⌋

=⇒ RegistersPerBlock = 2 K

(3.6)
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Now, assuming triangular cells and using Equation 3.1 it is possible to approximate:

SharedMemoryPerThread =
2 KB

NSP

≈ 2 KB

3×NSPpF

RegistersPerThread =
2 K

NSP

≈ 2 K

3×NSPpF

(3.7)

For a large value of solutions points per face, i.e. NSPpF = 9, it is possible to have

approximately up to 90 32-bit words per thread (or solution point) for calculations between

shared memory and registers, which it is enough. Therefore, it is possible to have eight active

thread blocks per SM because shared memory and registers do not impose limitations on the

number of active thread blocks per SM.

Finally, from Equation 3.4 the number of warps per thread block:

WpTB =
NSP

ThreadsPerWarp

=
3× 9 +Ninner

32

≈ 1

(3.8)

Therefore, there are eight active warps per SM, which means that only 25% of the occupancy

is achieved by this implementation.

Clearly, it is necessary to increase occupancy to fully hide global memory access and to keep

the streaming processors working. To increase occupancy it is necessary to increase the number

of threads per thread block, i.e. to increase the number of cells per thread block. Assuming

that the number of active thread blocks is not limited by register usage, the number of active

thread blocks is given in Equation 3.9.

ThreadBlocks =

⌊
16 KB

SharedMemoryPerBlock

⌋

=

⌊
16 KB

S. Mem per Cell× Cells per TBlock

⌋

≤ 8

(3.9)

In Equation 3.9 the number of cells per thread block is chosen such that the number of

active thread blocks per SM does not exceed eight, therefore, it is not limited by either shared
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memory or hardware specifications. Now, the number of active warps per SM can be computed

as follows.

ActiveWarps = ThreadBlocks×WpTB

=

⌊
16 KB

S. Mem per Cell× Cells per T. Block

⌋
×
⌈
NSP × Cells per T. Block

32

⌉

≤ 32

(3.10)

From Equation 3.10 a good approximation for testing purposes can be derived:

ActiveWarps =
512×NSP

S. Mem per Cell

=
512

Shared Mem per Solution Point

(3.11)

A similar analysis for the used registers provides the following approximation:

ActiveWarps =
500

Registers per Solution Point
(3.12)

3.6.2 Global Memory Access

Section 3.4 presented the memory access pattern for the cell-oriented analysis. In the GPU

implementation every thread accesses the information of a single solution point. According to

the algorithm presented in Section 3.3, every thread accesses non-contiguous memory locations,

which increases the number of memory transactions non-linearly depending on the number of

parameters stored at each solution point. Figure 3.6a shows non-contiguous memory access for

a case with two parameters.

In order to access contiguous memory locations, the data have to be reorganized as shown

in Figure 3.6b. The number of memory transactions for the reorganized data implementation

can be computed using Equation 3.13

# Transactions = 2×
[
Npar ×

1/2× ThreadsPerWarp× sizeof(float)

Transaction Size = 64 bytes

]

= 2×Npar

(3.13)



56

(a) Before data reorganization (b) After data reorganization

Figure 3.6: Thread memory access on the cell-oriented stage

As it can be seen in Equation 3.13, for single precision parameters the number of memory

transactions for a warp increases linearly with the number of parameters.

Memory access pattern for edge-oriented analysis, is performed in two stages: first the

data geometry is read and then the solution point information. As shown in Figure 3.7a, ge-

ometry information is accessed sequentially, therefore, coalescing memory transfers is possible.

However, due to the memory access pattern, solution point information is accessed in a random-

like fashion, making not possible to coalesce memory transfers, which leads to potentially one

memory transaction per thread.

(a) Before data reorganization (b) After data reorganization

Figure 3.7: Thread memory access on the edge-oriented stage

Under this considerations, the total number of memory transactions is approximated as:

# Transactions = 2×#Edges×NSPpF ×Npar (3.14)

Intuitively equation 3.14 represents all the non-coalesced memory accesses. Since the num-
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ber of memory transactions increase linearly with the total number of threads, the objective

is to decrease the number of memory access or in other words avoid the random-like memory

access.

The strategy used to reduce the number of memory transactions is depicted in Figure 3.7b.

The main difference is that instead of traversing the grid through the edges, the grid is traversed

through cells, therefore, the memory pattern for the solution point variables changes such that

the threads read contiguous memory locations. The neighbor pointer for all the solution points

is stored in a new structure, and it is accessed sequentially by the threads. However, the

neighbor information is still accessed in a semi random-like fashion. In the same way as with

the previous scheme the total number of memory transactions can be approximated as:

# Transactions = Npar ×
[
NFaces ×#Cells×NSPpF + 2× #Cells

Cells per T. Block
×WpTB

]
(3.15)

The terms inside the brackets in Equation 3.15 represent the neighbor information and the

solution point accesses, respectively.

In general the number of memory transactions defined by Equation 3.14 is bigger that the

one defined by Equation 3.15.

This change in the memory access pattern changes the algorithm described in Section 3.3,

which is described in Algorithm 2.

It is important to notice that the second approach generates Nfaces × #Cells × NSPpF

threads, which is bigger compared to the number of threads generated by the first approach

#Edges×NSPpF , however, this does not affect negatively the performance because this algo-

rithm is memory latency limited.

3.7 Implementation Results

Computational Fluid Dynamics (CFD) is a scientific area that analyze and solve problems

involving fluid flows utilizing numerical approaches. Aerospace engineering is one of the fields

that led the CFD development. The application utilized in this section solves the Navier-Stokes

equations on unstructured grids utilizing a high order correction procedure via reconstruction
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Algorithm 2 Unstructured grid analysis on GPU

1: counter ← 0

2: Initialize initial state

3: repeat

4: {Cell and Neighbor Analysis}
5: for all cells in grid do

6: for all solutionPoints in currentCell do

7: Compute local coefficient based on information of the neighbor solution point

8: Compute local coefficient based on information of solution points within the same

cell

9: Obtain a single local coefficient by performing a linear combination of the two coef-

ficients previously computed

10: end for

11: end for

12: {Updates variables of solution points}
13: for all solutionPoints in grid do

14: Update local variables utilizing the local coefficients computed in the previous steps

15: end for

16: {Updates boundary condition variables}
17: for all solutionPoints in gridBoundaries do

18: Update boundary condition variables based on information of solution points within

the cell

19: end for

20: Check for convergence

21: counter ← counter + 1
22: until ( Converges ) or ( counter = Max )
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methods. Details on this method are omitted, for the further details refer to the paper by

Wang [77].

The CFD application was originally implemented and optimized for running on CPUs. The

most important optimization techniques utilized in the CPU implementation are loop unrolling,

improved memory access and cache utilization.

In this section we present the results of the implementation of the CFD application on a

system composed by a Intel Xeon 3GHz quad-core processor and a GPU NVidia Tesla T10

GPU utilizing the algorithm proposed in this document. For comparison purposes we show

the speedup achieved by the GPU implementation without occupancy optimization (GPU1)

and the one with occupancy optimization (GPU2). The speedup is computed considering the

original CPU implementation.

Table 3.3: GPU Implementation of a CFD Application

No Occupancy Optimization Occupancy Optimization

NSP

Warps

per

SM

Threads

per

Warp

Speedup

(CPU/GPU1)

Warps

per

SM

Threads

per

Warp

Speedup

(CPU/GPU2)

Speedup

(GPU1/GPU2)

3 8 3 20 8 32 27 1.35

6 8 6 31 8 32 45 1.45

10 8 10 41 8 32 63 1.54

15 6 15 37 8 32 82 2.22

21 3 21 43 8 32 88 2.05

As it can be seen on Table 3.3, by improving the occupancy, the speed is improved by at

least 35% and in some cases the speedup achieved is doubled. The speedup of the occupancy

optimized implementation increases linearly if compared to the non-optimized implementation,

which is due to the higher occupancy achieved. In is interesting to notice that for cells with 15

solution points, the speedup is the highest, which is due to: (i) the occupancy achieves almost

full occupancy (255 threads), only one thread is wasted, and (ii) a cell almost corresponds to

a half warp, hence, frequently one memory transaction reads information for one cell.
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3.8 Conclusions

Implementation on a NVidia Tesla GPU of the ustructured grid-based analysis algorithm

was analyzed in terms of hardware occupancy and global memory access. This analysis led

us to propose an algorithm that achieves higher occupancy and more efficient global memory

access than the original algorithm. The actual GPU implementation achieved a speedup of

more than 80 times compared to the CPU version.

The edge-oriented analysis was shown to be troublesome because of the random-like memory

access, which linearly increased the number of memory transactions. In order to reduce the

number of memory transactions, the edge-oriented analysis was transformed into a cell-oriented

analysis. This new approach reduces the number of memory transactions, but at the same time

increases the number of threads generated. However, this was not an issue because unstructured

grid applications are memory latency limited, which means that computation is overlapped with

memory operations.
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CHAPTER 4. Techniques for the Parallelization of Unstructured Grid

Applications on Multi-GPU Systems

4.1 Introduction

As the popularity of GPUs for accelerating scientific applications grows, the size and com-

plexity of scientific applications grow as well. GPUs are good for processing big amounts of

data, however, the computational model of GPUs requires all the information to be stored in its

global memory [18]. This requirement limits the memory footprint of programs to the amount

of global memory. Currently GPUs are built with up to 6GB of global memory, which limits

the size of tractable problems. To overcome this limitation the computational problem needs

to be partitioned in smaller pieces and executed in all the available hardware in the system.

Multi-GPU systems are becoming popular as they allow to exploit higher levels of paral-

lelism and also as an effort to make memory-limited problems tractable by GPUs. In multi-GPU

systems, the processing and data are partitioned into the GPUs available, however, paralleliz-

ing applications is not trivial due to the data dependencies and the inherent complexity of the

application. Moreover, parallelized applications impose data transfer through the PCIe inter-

connection network, which is a slow operation that reduces the overall application performance.

This chapter presents the analysis and parallel implementation of unstructured grid appli-

cations on multi-GPU systems.

4.2 Data Dependencies Analysis

To determine the implementation details it is needed to understand the data flow and,

therefore, the data dependencies among the main stages of the algorithm. Depending on the

data dependencies, parallel execution can be exploited.
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Next, the data flow of the unstructured grid analysis algorithm (Algorithm 2 presented in

Chapter 3) is introduced and the data dependencies are represented using a Dependence Graph.

Figure 4.1a shows the stages in the main loop of the algorithm: neighbor analysis (T1), cell

analysis (T2), local variables update (T3) and boundary condition variables update (T4), as

well as the data flow among them. For simplicity only the data that is shared and modified

by the different stages is shown; for instance the values of the variables at each solution point,

represented as val, is an input for T1 and T2 and an output for T3.

Table 4.1 presents the description and size of the variables used in Figure 4.1a. In the column

Size, #Cells refers to the total number of cells of the grid, #BoundaryFaces is the number of

faces at the boundaries of the grid, NSP , Npar and NSPpF were introduced in Section 3.2.

Table 4.1: Description of the variables utilized in the data flow analysis of Algorithm 2

Name Description Size

val Variables for each Solution Point #Cells×Npar ×NSP

bcv Variables for S.P. at the grid boundaries #BoundaryFaces×Npar ×NSPpF

res Coefficients for each Solution Point #Cells×Npar ×NSP

Since the main algorithm is iterative, to fully understand the data dependencies among

the main stages of the algorithm, it is necessary to analyze the data flow in two consecutive

iterations. Figure 4.1b shows the data flow considering two iterations i and i+1, represented

by solid and dotted lines, respectively.

(a) Main stages of the algorithm and data flow (b) Data flow for iteration i (solid line) and i+1
(dotted line) of the main loop

Figure 4.1: Data flow of the algorithm for analysis based on unstructured grids

Based on Figure 4.1b it is possible to define the dependence graph for the algorithm. The



63

dependence graph represents the stages of the algorithm as nodes and the data dependencies

as directed arrows. A data dependency is represented by Ti → Tj, which denotes that task

Tj is dependent on data produced by task Ti [78]. Tasks that do not have data dependencies

among each other can take advantage of task parallelism, whereas dependent tasks might take

advantage of data parallelism.

Figure 4.2: Data dependencies graph for the algorithm for analysis based on unstructured grids

The dependence graph presented in Figure 4.2 shows the dependencies within one loop

iteration as well as the dependencies produced by the next consecutive iteration, represented

by solid and dotted lines, respectively. Dependencies within one iteration imposes limitations

on the parallelism achieved, i.e. data parallelism vs. task parallelism. Dependencies among

two different iterations defines the need of synchronization points, in case of parallel execution.

In computing systems where all the computation is done by a single computing device,

i.e. CPU or GPU, the stages described in Algorithm 2 are executed sequentially. Figure 4.3

presents the sequential execution of one iteration of the main loop in Algorithm 2. Notice that

the arrow between T1 and T2 does not represent a data dependency, but instead it is used to

indicate sequential execution.

Figure 4.3: Sequential execution of the four stages for analysis based on unstructured grids

4.3 Single GPU Analysis

Since the CPU and GPU have separate memory spaces, the data used by a kernel should be

transferred to the GPU memory before any computation can take place. Hence, the memory

of the GPU limits the memory footprint of a application executed in a GPU.



64

When the memory footprint of an unstructured grid-based application does not fit in the

global memory of the GPU, the computation should be decomposed into smaller pieces and

executed sequentially in the GPU. In this scenario, the data might be decomposed as well and

loaded into GPU memory when it is needed. Figure 4.4 presents the single-GPU execution when

only either half of the geometry information (geomx[·]) or half of the initial values (initx[·])

and half of the parameter information (parx[·]) fits in GPU memory. Therefore, when the first

or second half of the information is needed by the computation, it is loaded/unloaded from

memory.

Mem. TX

GPU

geom1[·] par1[·]

T1−1 T2−1

init1[·]

T3−1

par2[·] geom2[·]

T1−2 T2−2

init2[·]

T3−2

val 1
3
[·] geom1[·]

T4−1

geom2[·]

T4−2

iteration i

time

Figure 4.4: Single-GPU execution of the unstructured grid application when the memory foot-
print does not fit GPU memory

The case depicted in Figure 4.4 presents a saving of approximately 48% of GPU memory

and imposes a communication overhead that roughly can be approximated as: 3
2 · geom[·] + 1

2 ·

par[·] + 1
3 · init[·].

4.4 Parallelism Analysis

An algorithm subject to parallelization can take advantage of Data Parallelism and/or Task

Parallelism [79]. In data parallelism, task Tk is divided in N partitions and executed in parallel,

where every task partition modifies different pieces of data. In general the number of partitions

N is less than or equal to the number of compute devices available, M. In task parallelism,

tasks Tk and Tl are executed in parallel if there are not data dependencies between them.

Although parallel execution presents several advantages, it introduces additional complexity

to the algorithm and program code that can result in unexpected program behavior. For

instance, race conditions could be introduced if no synchronization points are defined.

Alike other parallel systems, the amount of parallelism achieved by systems with multiple

GPUs depends fundamentally on data dependencies. Data dependencies have a dual negative
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effect on parallelism: (i) limits the task parallelism achievable, and (ii) imposes data transfers

among tasks, which might be translated as data transfers between GPUs. Data transfers

between GPUs have an adverse effect in the performance if not carefully considered, because

any performance gain achieved with parallelism can be negated by the transfer latency.

The computational model of GPUs requires that the data used in the computations should

be stored in the device memory before performing the computations. Therefore, data that is

shared among several GPUs should be copied in the device memory of all the GPUs involved

in the computation. In addition to that requirement, to transfer data between GPUs, the data

first is transfered to the host memory, and then the data is transfered to the device memory of

the other GPU.

Next, data and task parallelism for unstructured grid applications are analyzed in terms of

data dependencies and the size of data transfers required.

4.4.1 Task Parallelism

The task parallelism possible to achieve in Algorithm 2 can be determined from the depen-

dence graph presented in Figure 4.2. Due to data dependencies only tasks T1 and T2 can be

executed in parallel, resulting in two possible execution escenarions. Figure 4.5 presents the

two possible execution scenarios: (i) Tasks T1, T3 and T4 executed in GPU-0, and T2 executed

in GPU-1, and (ii) Tasks T2, T3 and T4 executed in GPU-0, and T1 executed in GPU-1. Data

transfers between GPUs, represented using solid lines in Figure 4.5, are asynchronic, hence, to

avoid unexpected behavior, synchronization points (SPs) are included before executing tasks

that depend on data transferred from another GPU.

Although these two execution scenarios are very similar, they impose different requirements

in terms of data transfers. Next, the size of data transfers between GPUs is analyzed.

As it can be seen in Figure 4.5a, task T2 generates a coefficient (res) for every solution

point based on the information of all the solution points in the same cell, i.e. val. Arrays

val and res are transfered from and to, respectively, the device memory of the other GPU,

therefore, according to the variable sizes defined in Table 4.1 the number of floating point
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(a) GPU-0: T1, T3 and T4 / GPU-1: T2 (b) GPU-0: T2, T3 and T4 / GPU-1: T1

Figure 4.5: Task parallelism and data transfers of the algorithm for analysis based on unstruc-
tured grids

elements transfered is given by next equation.

SizeTPa = 2×
[

#Cells×NSP ×Npar

]
(4.1)

Using a similar argument, Figure 4.5b shows that task T1 receives as inputs the values of the

solution points for all the cells (val) and the boundary conditions values (bcv), and generates a

coefficient (res) for every solution. Since T1 is executed in a separate GPU, these three sets of

data are transfered to and from another GPU. The number of floating point elements transfered

is given by:

SizeTPb = 2×
[

#Cells×NSP ×Npar

]
+ #BoundaryFaces×NSPpF ×Npar

= SizeTPa + #BoundaryFaces×NSPpF ×Npar

(4.2)

Equation 4.2 shows that the scenario depicted in Figure 4.5a is more efficient than the

one depicted in Figure 4.5b. However, in either of the two task parallelism scenarios, GPU-1

remains inactive while GPU-0 is busy performing tasks T3 and T4.

4.4.2 Data Parallelism

Task parallelism, introduced in Section 4.4.1, increases the performance by executing in

parallel tasks T1 and T2. However, data dependencies impose large data transfers and li-

mitations in terms of hardware utilization.

Data parallelism can improve the hardware utilization and might reduce the data transfers

by partitioning tasks into N smaller pieces that are executed in parallel on the computing de-

vices available and access only to data stored in local memory. In this context Ti-k denotes
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the kth partition of task Ti that is executed on the kth computing device, and arrayk[·] denotes

the subset of array[·] accessed by task Ti-k and stored in the local memory of the kth com-

puting device. In this work it is assumed that data subsets holds
⋃N
i=1 arrayi = array and⋂N

i=1 arrayi = ∅.

Ideally, tasks should be divided in such a way that no data transfers among GPUs are

needed, i.e. Ti-k accesses only data in arrayk[·], however, this is only possible if there are no

data dependencies among task partitions.

Data dependencies among task partitions are represented by Ti-k → Tj-l, which denotes

that the lth partition of task Tj depends on data generated by the kth partition of task Ti.

The data dependencies that involve tasks executed on different computing devices, i.e k 6= l,

imposes data communication between those computing devices.

As introduced in Section 4.2, tasks T2 and T3 access solution point information, i.e. param-

eters and coefficients, in sequential order grouped by cells. Hence, the subsets of solution point

information read and/or updated by task partitions does not overlap among each other, or in

other words there is no data dependencies among task partitions. On the other hand, tasks T1

and T4 access solution point information sequentially, grouped by cells, and also semi-randomly,

grouped by neighboring relationship. Therefore, the subsets of solution point information ac-

cessed by task partitions does overlap among each other, which potentially introduces data

dependencies among task partitions.

Figure 4.6 presents the data flow between tasks as solid arrows and data transfers among

GPUs as dotted arrows for a parallel execution of Algorithm 2 on two GPUs. For simplicity

only data that is shared and modified by different stages is shown.

Figure 4.6: Task parallelism and data transfers of the algorithm for analysis based on unstruc-
tured grids
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As stated previously, tasks T2 and T3 have no data dependencies, i.e. T2-k and T3-k access

only to resk[·] and valk[·], whereas tasks T1 and T4 have data dependencies that introduce data

transfers among GPUs.

As it can be seen in Figure 4.6, T4-1 utilizes the solution point information updated by T3-2,

val2[·], i.e. T3-2 → T4-1, therefore, val2[·] is transferred from GPU-1 to GPU-0. Similarly the

data dependence T3-1 → T4-2 requires data transfer of val1[·] from GPU-0 to GPU-1. Since

data sets valk do not overlap among each other, the size of the data transferred is given by

Equation 4.3.

SizeDP = #Cells×NSP ×Npar (4.3)

By comparing Equations 4.1 and 4.3, that corresponds to the task and data parallel execu-

tion approaches, it can be clearly seen that data parallel imposes less data transfer overhead.

In terms of computing devices usage, data parallelism presents better utilization since the

workload is evenly divided among the computing devices available.

4.5 Overlapping Computation and Communication

In Section 4.4, task and data parallelism were introduced and analyzed for the the algorithm

of analysis based on unstructured grids. For data parallelism, a case with two GPUs was

considered, and it was clear that it achieves better performance and higher hardware utilization

and reduces communication overhead compared to task parallelism.

Although the amount of data communication overhead was reduced using data parallelism,

it still reduces the overall performance and it can be critical when the communication time is

bigger than the computation time. Figure 4.7 shows the timing for tasks execution and data

communication. It can be seen that during the data communication time, tTX, both GPUs

remain inactive.

In systems with multiple GPUs, communication between GPUs is done through the PCI-

Express (PCIe) interconnection network. The PCIe interconnection network is a point to point

interconnection that can have from 1 to 32 lanes per direction for communication, in practice

PCIe has a power of two number of lines. In PCIe 2.0 each lane transmits up to 500 MB/sec
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Figure 4.7: Data parallel execution timings

of data; for instance PCIe x16 can deliver up to 16 GB/sec of bandwidth, combining both

directions [80]. Data transmission time in the PCIe interconnection network increases linearly

with the size of the data transmitted.

By inspecting Equation 4.3 it can be noticed that as the size of the grid, i.e. number of cells,

increases, more data is communicated using the PCIe interconnection network, which increases

idle times in the GPUs.

Computation-communication overlapping is a technique successfully utilized to minimize

the effects of communication overhead [81]. This technique requires to partition both the task

that generates the data and the data transfers as well.

In general, in multiple GPU applications it is possible to overlap computation with com-

munication since data movement between GPUs is explicitly coded in the program.

Depending on the computation and communication time, the latter can be partially or

completely minimized. The best scenario is when the computation time is larger than the

communication time because the communication can be totally hidden. Figure 4.8a presents

the overlapping computation-communication technique applied to the data parallel execution

previously presented.

In the case depicted in Figure 4.8b the computation time is shorter than the communication

time, hence, the GPUs still remain idle, however, as it can be seen in Equation 4.4 the idle

time is shorter compared to the non overlapping computation-communication case presented

in Figure 4.7.

tidle = tTX −
[ tT3 + tT4

2

]
< tTX (4.4)

It is important to notice that in the approach proposed in Figure 4.8a the communication
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(a) Execution of tasks T3 and T4 overlapped with data com-
munication

(b) Timing for the overlapped execution

Figure 4.8: Computation-communication overlapped execution

from GPU-0 to GPU-1 and from GPU-1 to GPU-0 are performed at the same time. Although

PCIe implements separate lanes for point to point communication, all the lanes share the switch,

which results in additional overhead when more than one device is communicating data. The

ideal scenario is when only one GPU communicates data at each time because it reduces the

pressure on the PCIe interconnection network, see Figure 4.9.

Figure 4.9: A more efficient implementation of computation-communication overlap

The approach presented in Figure 4.9 might require additional space for data transmitted,

and also some task partitions might perform extra computation, which is not an issue because

the extra computation can be performed while the data transfer is taking place. For instance

in this scenario, additional space for the coefficients of the solution points is required, and also

partitions T2-2, T3-1 and T3-2 performs extra computation for some solution points in the grid.

The implementation shown in Figure 4.9 should be applied to the tasks that are more

expensive in terms of execution time. For unstructured grid applications, tasks T1 and T2

are more expensive than T3 and T4, therefore, it is reasonable to partition and overlap their
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execution with data communication.

4.6 Experimental Results

CFD is a scientific area that analyze and solve problems involving fluid flows utilizing

numerical approaches. Aerospace engineering is one of the fields that led the CFD development.

The application utilized in this section solves the Navier-Stokes equations on unstructured grids

utilizing a high order correction procedure via reconstruction methods. Details on this method

are out of the scope of this document, for the further details refer to the paper by Wang [77].

The CFD application was originally implemented and optimized for running on CPUs. The

most important optimization techniques utilized are loop unrolling, improved memory access

and cache utilization.

In this section we present the results of the OpenCL implementation of the CFD application

on a multi-GPU system utilizing the parallel techniques proposed in this chapter. The results

presented correspond to a grid with 447,944 cells, 21 solution points per cell and 4 variables per

solution point. The multi-GPU system utilized is composed by two GPUs NVidia Tesla C2070

with 448 cores and 6GB of global memory, and an Intel Xeon 2.67GHz hex-core processor.

First, the percentages of execution time for every stage in the main loop are given. These

percentages are important because they hint on which task to parallelize. The percentages

were computing by running small problems (around 20,000 cells) on the OpenCL program in

one GPU.

Table 4.2: Time distribution of tasks of Algorithm 2

Task T1 T2 T3 T4

Percentage 47.1% 42% 10.7% 0.2%

Table 4.2 presents the time distribution for each stage. As it was expected the neighbor

analysis and local cell analysis stages, tasks T1 and T2 respectively, account for 89% of the

execution time of one loop iteration, while the local variable update and boundary condition

variables update stages, tasks T3 and T4 respectively, account for the remaining 11%. This

time distribution is consistent with the type of computation performed by every stage. It is
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important to say that while these percentages can slightly change for bigger problems, the trend

will be the same.

As it was mentioned in the Section 4.5, the PCIe interconnection network adds some time

overhead due to the shared switch when several devices are trying to communicate data between

them at the same time. Next, Table 4.3 shows the times for one-way, GPU-0→GPU-1, and

two-way, GPU-0↔GPU-1, communication between GPUs, as well the overhead introduced.

Table 4.3: Overhead introduced by the PCIe interconnection network in simultaneous data
transfers

Size One-way

(msec)

Two-way

(msec)

Overhead

(%)

1
4 ×Cells 26.2 35.4 35.1%

1
2 ×Cells 52.9 71.5 35.2%

3
4 ×Cells 69.2 93.6 35.2%

Cells 86.3 116.7 35.2%

Table 4.3 shows the transfer time and switch overhead for communicating several fractions

of the grid information. The size of the data is with respect to the number of cells in the

grid, and it can be computed using the first equation on Table 4.1. It is interesting to notice,

that the switch overhead is nearly constant at 35%, hence the expected time overhead due to

simultaneous communications increases linearly with the grid size.

The workload of the grid is evenly divided in two GPUs (except for T4, that it is not divided

because of its amount of computation), and as expected the execution times of each half is very

similar. The task execution times for half of the grid and for the summation of the two halves

are shown in Table 4.4.

Table 4.4: Task execution times for the grid

Task T1

(msec)

T2

(msec)

T3

(msec)

T4

(msec)

Half Grid 20.3 17.9 4.6 0.02

Full Grid 40.6 35.9 9.2 0.02

Next, from Tables 4.3 and 4.4 the results for the implementation of the different approaches
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introduced in Sections 4.4 and 4.5 are presented in Table 4.5.

Table 4.5: Execution times for the proposed implementations

Implementation
Computation Communication Total Mem. Saving

(msec) (%) (msec) (%) (msec) (%)

One GPU 85.72 47% 96.57 53% 182.29 48%

Task Parallelism 45.3 21% 172.6 79% 217.9 0%

Data Parallelism 43.0 38% 71.5 62% 114.5 41%

Data Par. C-C Ov. 43.0 39% 66.9 61% 109.9 41%

Cp-Cm Overlap 47.6 58% 34.2 42% 81.8 8%

Task parallelism, as expected, present the worst performance because of the high cost of

data communication, near to 80% of the total time is dedicated to data transfer. Since the cost

of communication is close to five times the cost of computation of T2, i.e. 172.6 msec vs 35.9

msec, implementing computation-communication overlap will not have a big impact hiding the

communication time.

Data Parallelism reduces the total execution time by about 50% compared to the task

parallelism case. However, the communication time still accounts for more than 60% of the

total time, which according to Figure 4.7 means that the GPUs remain idle during that time.

The last approach proposed, based on computation-communication overlap, reduces the

total execution time by about 28% compared to the data parallelism case, and increases the

time that GPUs are busy by about 20% compared to the data parallelism case. It can be noticed

from Table 4.5 that by overlapping communication with computation, 48% of communication

time is hidden by computation, which translates to more efficient utilization of computational

resources.

As a reference and for comparison purposes, Table 4.6 presents the execution times of the

original C/C++ implementation, the OpenCL implementation running in a CPU, one GPU

and the computation-communication overlap approach running in two GPUs. The execution

times shown correspond to the application running 1,000 iterations.

When the OpenCL implementation is executed on the hex-core CPU, all the cores are used,
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Table 4.6: Execution times for 1,000 iterations on one CPU and two GPUs

Implementation # Dev. Time

(sec)
Speedup

CPU (C/C++) 1 3,560 1.0

CPU (OpenCL) 1 1,298 2.7

GPU (OpenCL) 1 336 10.6

GPU (OpenCL) 2 270 13.2

whereas the original C/C++ implementation uses only one core because is single threaded,

which is reflected on the speedup of 2.7 achieved. No higher speedup is achieved in the hex-

core CPU because the application is not tuned for running in this architecture, the main purpose

of presenting this speedup is to demonstrate that an OpenCL application tuned for GPUs can

run on other architecture/platforms with no changes.

It is important to notice that the two-GPU implementation achieves approximately a 24%

speedup with respect to the single-GPU implementation. This is due to the increased communi-

cation overhead, represents 42% of the total computation time. When efficient communication

technologies, or OpenCL library improvements, emerge, the communication overhead will be

reduced and the speedup will improve.

4.7 Conclusions

In this paper we proposed three different schemes for parallel execution in multi-GPU

systems. In terms of added complexity to the application logic, task parallelism adds less com-

plexity, however, the amount of task parallelism achievable is limited by the data dependencies

among tasks.

Data parallelism achieves better performance than task parallelism, however, depending on

the application logic, i.e. data dependencies, requires to transfer data among tasks executed

on different GPUs.

Computation-communication overlapping combined with data parallelism achieves the best

performance, however, adds more complexity than the two previous approaches. The proposed
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scheme that utilizes computation-communication, not only hides communication overhead, but

also decreases the switch overhead on the PCIe interconnection network by not having both

GPUs transmiting data at the same time.

In general, it can be noticed that data communication among GPUs limits the achievable

performance improvement. In current multi-GPU systems, the data exchange is performed

using pinned memory through the host, which imposes the high overhead observed in the

results. In the future, faster communications hardware, and proper software support, will

help to reduce the communication overhead, and by this way our solution will achieve higher

speedup.
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CHAPTER 5. Kernel-Driven Data Analysis of GPU Applications

5.1 Introduction

Our framework for enhancing a single-GPU OpenCL application through program trans-

formation relies on the analysis of the application source code to obtain the data dependencies

among kernels and access patterns. This chapter starts by introducing the framework, and

then the techniques utilized for source code analysis are presented.

5.2 An OpenCL Application

An OpenCL application is composed of pieces of code that are executed by the CPU of the

system, i.e. host code, and also by pieces of code that are executed by an accelerator (GPU,

FPGA, etc), i.e. kernel code or simply kernel.

In general, a scientific application is a sequence of kernels that are executed sequentially and

might be repeated until a condition is satisfied or a number of iterations is reached. Algorithm 3

shows a group of NK kernels executed sequentially, with NK − S kernels executed repeatedly

inside a loop. In between two consecutive kernels, host code can be executed to initialize kernel

parameters, copy information back from global memory to main memory or vice versa.

Enhancing a single-GPU OpenCL application for providing multi-GPU execution support or

application-level checkpointing support at source code level implies program transformation.

The host and kernel source code are modified with constructions that support the desired

feature, e.g. constructions for data and computation decomposition, data transfers, etc.

Program transformation can be done manually, which requires knowledge of the application,

or automatically through a pre-compiler tool that analyzes the application and enhances the

source code with constructions that support the desired feature.
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Algorithm 3 A scientific application

1: Initialize initial state

2: Kernel 0 (input variables, output variables)

3: ...

4: Some host code

5: Kernel S − 1 (input variables, output variables)

6: counter ← 0

7: repeat

8: Kernel S (input variables, output variables)

9: Some host code

10: Kernel S + 1 (input variables, output variables)

11: ...

12: Some host code

13: Kernel NK − 1 (input variables, output variables)

14: Update exit condition variables

15: counter ← counter + 1

16: until ( exit = true ) or ( counter = Max )

17: Finishing code

Next, we propose a framework for enhancing single-GPU OpenCL applications to support

multi-GPU execution or application level checkpointing.

5.3 Framework for Enhancing Single-GPU OpenCL Applications

Our framework for enhancing single-GPU applications has two stages: first, the kernel and

host code are analyzed, and then this source code is transformed into one that supports either

multi-GPU execution or application-level checkpointing. Figure 5.1 shows the two main stages

for transforming single-GPU applications as well as the inputs required and outputs produced.

OpenCL GPU
Application

Application
Structure

Data Analyzer

Data
Dependences

Memory
Access Pattern

Application
Transformation

Kernel Code

Host Code

Enhanced OpenCL
GPU Application

Optimization
Techniques,

Runtime Info,
OpenCL Sintaxis

Figure 5.1: Main stages for transforming a single-GPU application
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This chapter describes the Data Analyzer stage of the framework, its inputs required and

the outputs produced, the Application Transformation stage is described in detail in Chapters 6

and 8.

The major goal of the data analyzer is to provide information that supports the program

transformation. The information required to transform an OpenCL application into one that

supports multi-GPU execution or application level checkpointing is data dependencies among

kernels and data access patterns for each array stored in the memory of the GPU.

In the case of providing multi-GPU execution, the information provided by the data ana-

lyzer allows to determine (i) data distribution, (ii) data transfers required, and (iii) computation

decomposition; whereas in the case of providing application-level checkpointing, that informa-

tion allows to determine (i) the application state, (ii) checkpoint location, and (iii) whether it

is possible to overlap checkpoint operations and kernel execution.

5.4 Application Structure Information

As shown in Figure 5.1, along with the host and kernel source code, the data analyzer

requires information about the structure of the application. Application structure information

simplifies the design and implementation of the data analyzer as it provides the file location of

the kernel body declaration, subroutine names where the kernel parameters are initialized and

the kernels are executed. This information is classified in two types: (i) general declarations,

such as file location, and (ii) kernel information that includes information for every kernel

defined in the OpenCL application, such as name, execution sequence, etc.

In this work, the application structure information is represented using XML language. The

XML language allows to represent the application structure easily and intuitively through a

small set of tags.

Next, Table 5.1 shows the tags, and their description, utilized for describing the structure

of an OpenCL application.

To illustrate the usage of the XML tags presented in Table 5.1, Listing 5.2 shows the XML

representation of the structure of the OpenCL application of Listing 5.1, which is composed of

two kernel functions and the host code.
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Table 5.1: Tags for describing an OpenCL application

Tag Description

kernel Kernel specification

loop Indicates if a kernel is inside of a loop

parallelize Indicates if kernel parallelization is allowed

path Location of the files

file File name

name Name of a kernel or subroutine

init Subroutine where the kernel is initialized

caller Subroutine where the kernel is executed

File: kernel.cl

1 kernel void VectorAdd( global int∗ c, global int∗ a, global int∗ b, int coefficient)
2 {
3 // Index of the elements to add
4 int n = get local id(0) + get local size(0) ∗ get group id(0);
5 unsigned int m = 2 ∗ n;

7 // Sum the nth element of vectors a and b and store in c
8 c[n] = ( a[m] + b[m] ) ∗ coefficient;
9 }

11 kernel void VectorSub( global int∗ c, global int∗ a, global int∗ b, global int∗ geometry)
12 {
13 // Index of the elements to compute
14 unsigned int n = get global id(0);
15 int m = geometry[n];

17 // Substract neighbor elements and scale it properly
18 c[n] = ( a[m] − b[m] ) ∗ c[n];
19 }

File: main.c

20 int main(void)
21 {
22 // Initialize the OpenCL environment: context, queues
23 ...
24 // Create kernel objects
25 VectorAddObj = clCreateKernel(..., ‘‘VectorAdd’’, ...);
26 VectorSubObj = clCreateKernel(..., ‘‘VectorSub’’ ...);
27 // Set parameters for kernels VectorAdd and VectorSub
28 clSetKernelArg(VectorAddObj, 0, ..., (void∗)&arrayC);
29 clSetKernelArg(VectorAddObj, 1, ..., (void∗)&arrayA);
30 clSetKernelArg(VectorAddObj, 2, ..., (void∗)&arrayB);
31 clSetKernelArg(VectorAddObj, 3, ..., (void∗)&coefficient);
32 clSetKernelArg(VectorSubObj, 0, ..., (void∗)&arrayC);
33 clSetKernelArg(VectorSubObj, 1, ..., (void∗)&arrayA);
34 clSetKernelArg(VectorSubObj, 2, ..., (void∗)&arrayB);
35 clSetKernelArg(VectorSubObj, 3, ..., (void∗)&geometry);

37 // Send VectorAdd for execution
38 clEnqueueNDRangeKernel(queue, VectorAdd, ...);
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39 // Send VectorSub for repeated execution
40 do {
41 clEnqueueNDRangeKernel(queue, VectorSub, ...);
42 } while ( !ExitCondition );
43 return 0;
44 }

Listing 5.1: Kernel and host code for an OpenCL application with two kernels

Listing 5.1 includes the body specification for two kernels, i.e. VectorAdd (lines 1 to 9)

and VectorSub (lines 11 to 19), in the file kernel.cl, and the body specification of the main

subroutine (lines 20 to 44) in the file main.c. It is important to notice that the parameter

initialization and kernel execution are in the subroutine main() in the main.c file, lines 28 to

35 and lines 38 and 41, respectively.

1 <configuration>
2 <path>./kernels</path>
3 <kernel>
4 <file>kernel.cl</file>
5 <name>VectorAdd</name>
6 <caller>
7 <file>main.c</file>
8 <name>main</name>
9 </caller>

10 <init>
11 <file>main.c</file>
12 <function>main</function>
13 </init>
14 </kernel>
15 <kernel>
16 <file>kernel.cl</file>
17 <name>VectorSub</name>
18 <loop>true</loop>
19 <caller>
20 <file>main.c</file>
21 <name>main</name>
22 </caller>
23 <init>
24 <file>main.c</file>
25 <function>main</function>
26 </init>
27 </kernel>
28 </configuration>

Listing 5.2: An example of a XML application structure file

The general declarations section, line 2 in Listing 5.2, defines the location of the source files.

The kernel specification section, lines 3 to 27 in Listing 5.2, includes information for the two

kernels defined in the OpenCL application of Listing 5.1. Table 5.2 summarizes the information

presented in the XML structure file listed in Listing 5.2.
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Table 5.2: Summary of the OpenCL application structure represented in Listing 5.2

VectorAdd VectorSub

Description Value Line Value Line

File kernel.cl 4 kernel.cl 16

Execution Sequence 1 - 2 -

Inside of a loop No - Yes 18

Caller
Subroutine main 8 main 21

File main.c 7 main.c 20

Init
Subroutine main 12 main 25

File main.c 11 main.c 24

Although the execution order is not explicitly specified in the XML structure file, it is

implicitly defined by the order in which the kernels are listed in the XML structure file.

5.5 The Set of Kernel Structure Lists

The application structure information provided by the XML structure file is used by the

kernel analyzer to access the appropriate files and to process the subroutines and kernels spec-

ified. This information is used throughout all the steps in the data analysis and program

transformation.

To generate the data usage, access patterns and data dependencies, the data analyzer creates

and maintains a set of kernel structure lists, which contains information of every array utilized

by each kernel.

This set of lists has one list per kernel, i.e. a kernel structure list, where every list is

generated by inspecting the kernel declaration, and it contains the names of the arrays stored

in GPU memory, i.e. global or constant memory, that are utilized by the kernel. Each ker-

nel structure list is described as: kernel<array0:properties0, . . ., arrayn:propertiesn>,

where kernel and arrayi are self-describing, and propertiesi contains the usage, access pattern,

host variable name and dependencies information for arrayi: propertiesi={usagei, accessi,

namei, dependencyi}. For instance the kernel structure list for VectorAdd in Listing 5.1 is:

VectorAdd<c, a, b>. It is important to emphasize that only arrays are included in the lists,
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for example the list correspondent to VectorAdd does not include the scalar parameter, i.e.

coefficient.

5.6 Data Usage and Access Patterns

This information is obtained by analyzing the body of each kernel. From now on the terms

array and data are used interchangeably to refer to an array stored in GPU memory.

Data usage is key to support the data dependencies analysis as it indicates if an array is

utilized by a kernel as an input, output or both. At each occurrence of the array name in the

kernel body, the usage in the kernel structure list is updated appropriately.

The data access patterns can be classified as linear and non-linear (random). The major

goal of determining the data access patterns for each array is to determine if the data access

range of a work-group is bounded to a subset of the data and the subsets are non-overlapping;

otherwise the data access pattern is referred to as unbounded. Equation 5.1a presents the

constraint required for bounded access and Equation 5.1b for non-overlapping data sets, where

N is the number of partitions.

N⋃
i=1

arrayi = array, ∀ arrayi ⊂ array (5.1a)

N⋂
i=1

arrayi = ∅ (5.1b)

Access patterns are crucial for defining data and computation decomposition that allows to

overlap kernel execution and checkpoint operations, and, along with the data dependences,

for identifying the application state at each kernel. In particular, to overlap kernel execution

and checkpoint operations, all its output arrays need to satisfy both constraints defined in

Equation 5.1.

For instance, Figure 5.2a shows the case where the data accessed by two work-groups is

limited to two non-overlapping subsets, while Figure 5.2b shows the case where the ranges of

data accessed cannot be limited to subsets.

In the OpenCL programming model, a kernel defines the data access and computations for

a single work-item, and then those features can be generalized to a work-group. Therefore, the
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(a) Linear (Bounded) data access

(b) Random (Unbounded) data access

Figure 5.2: Array (memory) access pattern

data analyzer analyzes the access pattern of a single work-item and then it generalizes to the

work-group level. Determining the access pattern is achieved by analyzing the index utilized for

accessing data stored in arrays in GPU memory, which simplifies the analysis to determining

if an index is a linear combination of the work-item and/or work-group identifiers.

OpenCL identifies a work-item using a non-unique local identifier, i.e. local id, and an

unique global identifier, i.e. global id [82]. The work-item local identifier is unique inside a

work-group, but it is non-unique among two different work-groups, for instance, in Figure 5.2

the work-items are identified by their local identifier, which is repeated in the two work-groups

presented. The work-item global identifier is unique, regardless the work-group that the work-

item belongs to. This global id can be represented as a linear combination of the local id and

the group id, for instance, the indexes computed in lines 4 and 14 of Listing 5.1 are equivalent.

A linear combination of the global id, or an equivalent expression, guarantees bounded

non-overlapping access, hence, the kernel analyzer verifies that the arrays are indexed using a

linear combination of the global id, see Equation 5.2.

index = α× global id(0) + β, ∀α, β ∈ Z and α 6= 0 (5.2)
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Although OpenCL supports multidimensional kernels, i.e. multidimensional arrays of work-

items, in this work only one dimensional kernels are supported, hence, global id refers to a

unidimensional identifier.

Indexes based on dynamic values, such as values in other arrays, are considered non linear,

and hence the access pattern is unbounded. This scenario is shown in line 15 of Listing 5.1,

where the index m is computed using values from an array.

5.7 Data Dependencies

The data dependencies analysis is performed in two steps: first, it parses the host code to

collect the variable names of the kernel objects and kernel parameters, and then it traces the

variable names of the parameters across kernels.

Although the kernel structure list include the kernel name and the name of its parameters,

it is necessary to parse the host code for collecting the names of the kernel objects and variables

passed as parameters. The XML structure file provides information of the subroutine, i.e. name

and location, where the kernel object and parameters are initialized, see lines 10 to 13 and 23

to 26 in Listing 5.2.

Kernel objects, utilized for passing parameters to kernel functions as well as for executing

kernels, are defined in the host code using the OpenCL function clCreateKernel().

In OpenCL kernel parameters are passed using the function clSetKernelArg(), which

requires a kernel object, the sequence number and variable name of the parameter, among

other parameters. The parameter sequence number refers to the order in which the parameters

were declared on the kernel.

The data analyzer utilizes the kernel object and the parameter sequence number to obtain

the variable name of the parameters and to update the proper kernel structure list.

After the data usage, access pattern and dependence analysis is performed, the updated

kernel structure list for VectorAdd is: VectorAdd<c:{output, bounded, arrayC}, a:{input,

bounded, arrayA}, b:{input, bounded, arrayB}>, and for VectorSub is: VectorSub<c:{input/output,

bounded, arrayC}, a:{input, unbounded, arrayA}, b:{input, unbounded, arrayB}, geome-

try:{input, bounded, geometry}>.
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To determine the transformation details it is important to understand the data flow among

the kernels, and, hence, the data dependencies among them. The data dependencies are pre-

sented using a Dependence Graph, where the kernels are represented as nodes and the depen-

dencies as directed arrows. Data dependencies among kernels are represented by Ki → Kj,

which denotes that Kj depends on data produced by Ki.

Besides information about kernels parameters, data usage and execution order, loop infor-

mation is important, because kernels that are inside a loop can potentially have dependences

from previous iterations, which is not the case for kernels that are outside a loop. Hence, the

first step performed by the data analyzer towards defining data dependencies is to find which

kernels are outside and inside a loop.

As shown in Algorithm 3, a scientific application is a set of NK kernels sequentially executed,

with S kernels executed before the main loop and NK −S kernels executed repeatedly inside a

loop. Hence, finding the kernels that are outside the loop is reduced to finding the value of S.

Once the kernel analyzer has obtained the loop information, it proceeds to find data de-

pendencies among kernels. Finding data dependencies requires searching relationships between

the inputs and outputs of different kernels.

Algorithm 4 presents details for the main steps taken for performing data dependencies

analysis. This algorithm requires two inputs: the set of kernel structure lists and the number

of kernels, which are represented by the array kernel and the variable NK , respectively.

The first section in Algorithm 4 finds the start of the loop, if any, by taking each kernel and

checking if it is inside a loop, i.e. checking the loop flag in each kernel structure list. The next

section, finds data dependencies by taking the input parameters of each kernel (ki), starting

from the the last until the first kernel, and looking for a match with the output parameters

of the previous kernels (kk); this procedure continues for each input parameter of ki until a

match is found or the last possible kernel is reached. The last possible kernel is represented in

Algorithm 4 by the variable lowerLimit, which it can be either the first kernel, i.e. k0, when

the kernel ki is not in a loop or ki+1 when the kernel ki is in a loop. When a match is found,

the dependency kk → ki is created.

Figure 5.3 presents the data dependencies between five kernels executed sequentially inside
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Algorithm 4 Finding data dependencies

1: {This section finds the start of the loop}
2: i← 0

3: loopStart← −1

4: repeat

5: if kernel[i].insideLoop() then

6: loopStart← i− 1

7: end if

8: i← i+ 1

9: until loopStart ≥ 0 or i = NK

10: loopStart← loopStart+ 1

11: {Now finds the data dependencies}
12: for i = (NK − 1)→ 0 do

13: for all input parameters in kernel[i] do

14: current input← current parameter

15: k ← i− 1

16: lowerLimit← 0

17: if i = loopStart and kernel[i].insideLoop() then

18: k ← NK − 1

19: lowerLimit← i+ 1

20: end if

21: found← FALSE

22: while notfound and k ≥ lowerLimit do

23: for all output parameters in kernel[k] do

24: if current parameter = current input then

25: Create: kernel[k]→ kernel[i]

26: found← TRUE

27: end if

28: if k = loopStart and kernel[i].insideLoop() and i < NK − 1 then

29: k ← NK

30: lowerLimit← i+ 1

31: end if

32: k ← k − 1

33: {If no match was found inside the loop}
34: if 0 ≤ k < lowerLimit and notfound then

35: k ← loopStart− 1

36: lowerLimit← 0

37: end if

38: end for

39: end while

40: end for

41: end for
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a loop, where the solid arrows represent data dependences existing in the same loop iteration,

and dotted arrows represent data dependences existing in the next loop iteration.

Figure 5.3: A Data Dependence Graph for an OpenCL application with five kernels

Next, Listing 5.3 presents the set of kernel structure lists generated by the kernel analyzer

for the dara dependence graph of Figure 5.3. Although in general the kernel parameter name

and variable name of the arrays might be different, in this example for simplicity they are the

same.

1 K0<loop, b:{input, bounded, b, K3}, d:{output, bounded, d, unused}>
2 K1<loop, b:{input, bounded, b, K3}, c:{input, bounded, c, K4}, a:{output, bounded, a, unused}>
3 K2<loop, b:{input, bounded, b, K3}, a:{input/output, bounded, a, K1}>
4 K3<loop, a:{input, bounded, a, K2}, d:{input, bounded, d, K0}, b:{output, bounded, b, unused}>
5 K4<loop, b:{input, bounded, b, K3}, c:{output, bounded, c, unused}>

Listing 5.3: The set of kernel structure lists for the Data Dependence Graph of Figure 5.3

The information provided in the set of lists presented in Listing 5.3 is utilized in the next

stage of our framework to transform the application to support the desired feature.
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CHAPTER 6. Parallelization of GPU OpenCL Applications

6.1 Introduction

Running single-GPU applications on multi-GPU systems can be approached by (i) providing

libraries that parallelize a single GPU application at runtime [25, 26] and, (ii) transforming the

application before compiling [27, 36].

Transforming an application implies source to source conversion, i.e. converting a single-

GPU application into a multiple GPU application. Kim et. all present a framework for convert-

ing an OpenCL application into a multi-GPU CUDA application [27]; this framework shows

to be effective for running applications, however, no dependence analysis is performed for de-

termining data transfers requirements and also translating an application into CUDA restricts

the usability of the framework to NVidia GPUs. In [36] a single-GPU CFD application written

in OpenCL is manually instrumented for exploring different levels of parallelism and efficient

techniques for reducing data transfer overhead.

While it is clear that transforming an application for running in multi-GPU systems is more

efficient in terms of performance, manually transforming an application is time consuming and

error prone.

In this chapter we propose a framework and implement a tool for automatic transformation

of OpenCL applications written for running on single-GPU systems into an OpenCL application

that runs on multi-GPU systems.

6.2 Parallelization

This section presents how the information provided by the kernel analyzer is utilized for pro-

gram transformation. The data usage in combination with access patterns and the dependence
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graph allows to determine parallelization details such as parallelism type, kernel (computation)

decomposition, data distribution, data and kernel offsets, data transfer among GPUs and task

synchronization.

The dependence graph helps to determine the type of parallelism that can be exploited,

i.e. task or data parallelism. Although task parallelism is easier to implement, it does not

guarantee load balancing nor reduces the application memory footprint required on a single

GPU. Therefore, this work focuses on exploiting data parallelism.

6.2.1 Data Parallelism

Data parallelism requires to decompose the kernels in N partitions that can be executed

concurrently. Kernel decomposition is achieved by evenly distributing work-groups among

different GPUs. The number of partitions (N) cannot exceed the number of GPUs in the

system (M). Equation 6.1 describes a kernel evenly decomposed into N kernel partitions, i.e.

kerneli, where the last kernel partition might be smaller than the others. The size of the kernel,

i.e. size(kernel), is expressed in terms of the number of work-groups.

size(kerneli) =

⌈
size(kernel)

N

⌉
size(kernelN ) ≤ size(kerneli), 1 ≤ i < N ≤M

(6.1)

Distributing kernels among available GPUs is possible since the OpenCL execution model does

not support synchronization among work-groups, hence, their execution is independent of each

other. Figure 6.1 presents a case where n work-groups are evenly distributed among two GPUs.

Figure 6.1: Kernel decomposition into two GPUs

Work-groups are evenly distributed among the available GPUs, and if data access is linear

then the data is evenly distributed as well. In this context, the number of elements and the
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size of each data partition is given by Equations 6.2a and 6.2b.

elements(arrayi) =
size(kerneli)

size(kernel)
· elements(array) (6.2a)

size(arrayi) = elements(arrayi) · sizeof(data type) (6.2b)

Data access patterns and dependencies among kernels limit the parallelism achieved and

might impose data communication overhead due to data exchange among GPUs. For simplicity,

Figure 6.2 presents for a system with two GPUs the possible data parallelism implementations

of two kernels that have a data dependency, i.e. K0 → K1, and different access patterns for the

output and input of K0 and K1, respectively.

(a) O: Bounded, I: Bounded (b) O: Bounded, I: Unbounded

(c) O: Unbounded, I: Bounded (d) O: Unbounded, I: Unbounded

Figure 6.2: Data parallelism implementations for two kernels with a data dependency and
different access patterns for the output and input

In Figure 6.2, partitions of kernel Ki and data a[·] are represented by Ki-j and aj [·], respec-

tively, where j refers to the j-th data/kernel partition stored/executed in the j-th GPU.

The best and worst cases in terms of kernel decomposition and communication overhead

for exploiting data parallelism are depicted in Figures 6.2a and 6.2d. The best scenario is when

the data subsets accessed by every work-group meet the constraints defined in Equation 5.1,

hence kernel decomposition with no communication overhead is possible. The worst scenario is
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when neither of the kernels have linear access on the data, hence, although no communication

overhead exist, no kernel decomposition is possible either. Figures 6.2b and 6.2c show scenar-

ios where kernel decomposition imposes communication overhead, which will be discussed in

Section 6.2.2.

It is important to highlight from Figure 6.2 that (i) non-linear data access impose data

transfers between GPUs, (ii) synchronization points (SPs) are needed when data is transfered

between GPUs, and (iii) no decomposition is possible when the kernel data access of the output

array is non-linear.

6.2.2 Kernel Decomposition Performance

The performance of a multi-GPU application is determined by (i) the amount of computa-

tion available to keep the hardware busy and (ii) the communication overhead.

In this work it is assumed that there are enough work-groups in each kernel partition to

keep the GPUs busy, hence, no performance loss due to kernel decomposition is assumed.

6.2.2.1 All to All Communication

Figure 6.2b presents the case where kernel decomposition imposes data exchange among

GPUs due to the non-linear access of K1 on the array a[·].

For a general case with N partitions, the amount of information exchanged, as a function

of the number of elements is given by Equation 6.3.

data exchanged =

N∑
i=1

(N − 1) · elements(arrayi)

= (N − 1) · elements(array)

(6.3)

From Equation 6.3 the execution time for the parallelized kernels can be approximated as

indicated in Equation 6.4.

time(multi-GPU) =
time(single-GPU)

N
+ time(data exchanged)

=
time(K0) + time(K1)

N
+ (N − 1) · time(array)

(6.4)

As it can be seen from Equation 6.4, kernel decomposition, i.e. the number of kernel partitions

N, has a dual effect, both favorable and adverse, on the execution time of a multi-GPU applica-
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tion: (i) the computation time is linearly reduced by a factor of N, and (ii) the communication

overhead increases with the number of partitions, i.e. the number of GPUs.

6.2.2.2 One to All communication

Figure 6.2c shows a scenario where a non-linear access pattern not only imposes communi-

cation overhead, but also no kernel decomposition is possible.

In this case the amount of data exchanged and execution time is given by Equations 6.5

and 6.6.

data exchanged = (N − 1) · elements(arrayi) (6.5)

time(multi-GPU) = time(K0) +
time(K1)

N
+ (N − 1) · time(arrayi) (6.6)

Similarly to the previous case, the computation scales linearly, whereas the communication

overhead does not scale as the number of GPUs increases.

6.3 Program Transformation

Transforming a single-GPU OpenCL application into a multi-GPU OpenCL application is

described in this section as a five step process:

• Decomposing the kernel at kernel code level.

• Adding multiple device support to contexts.

• Adding support for multiple device execution.

• Transferring data to satisfy dependencies.

• Adding support for communication-computation overlapping

6.3.1 Decomposing the Kernel at Kernel Code Level

As defined in the previous section, kernel decomposition is achieved by distributing the

work-groups among the available GPUs. In this context, the number and size, i.e. number of
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work-groups, of kernel partitions are given by the number of devices existing in the system,

unless otherwise defined in the host code.

Data and kernel decomposition modify the data indexes, as well as the global and work-

group identifiers, therefore, depending on the data access pattern of a kernel, its code might

need to be transformed into one that supports decomposition. For a kernel with non-linear

access, an offset is required to properly access the data. As shown in Equation 8.9, this offset is

computed based on the kernel partition number and in the number of work-groups per kernel

partition, where the size of a kernel partition was defined in Equation 6.1.

offseti = (i− 1) ·
⌈
size(kernel)

N

⌉
(6.7)

The kernel is transformed by adding a new parameter to the declaration that receives the

offset, and modifying the index of the arrays that have non-linear access using the offset:

n = global id(0) + offset · get local size(0).

6.3.2 Adding Multiple Device Support to Contexts

As introduced previously, an OpenCL context includes devices and objects for kernels,

memory and command queues. The host program places commands in a command queue,

which are scheduled for execution on the device that is associated with the queue. Hence, a

context requires at least one command queue associated with a device.

Providing support for multiple GPUs requires to define and associate separate queues to

the GPUs that will receive commands. In addition to separate queues, GPUs require their

own memory and kernel objects, hence, these objects need to be redefined as object arrays and

associated to GPUs.

Figure 6.3 shows the execution of a single-GPU and multi-GPU applications, emphasizing

that each GPU requires its own object, i.e. kernel, memory and queue, represented as an array.



94

(a) Single-GPU
app.

(b) Multi-GPU app.

Figure 6.3: Context with support for single-GPU and multi-GPU

6.3.3 Adding Support for Multiple Device Execution

The host orchestrates the execution of kernels, which includes placing commands to transfer

data to/from a GPU, set kernel parameters and execute a kernel. For multi-GPU applications

the host code performs these operations for each GPU, with the difference that kernels and

data are decomposed. To support data and kernel decomposition and depending on the data

and kernel decomposition details, the host code: (i) computes offsets and sizes for data access,

(ii) set appropriate kernel parameters, and (iii) computes kernel sizes.

The host transfers the appropriate pieces of data to/from each GPU based on an offset and

a data size for each array, which are computed as shown in Equations 6.7 and 6.2b.

Additionally, the host places commands in the command-queues to assign the appropriate

memory objects and offsets to the kernel parameters.

Finally, the kernel partition size is computed, as in Equation 6.1, and passed with the

command to execute the kernel.

6.3.4 Transferring Data between GPUs to Satisfy Dependencies

As introduced in Section 6.2, data dependencies and access patterns might introduce data

transfers between GPUs. The host code is enhanced with commands to transfer data and to

synchronize execution among different command-queues.

Data transfer between GPUs is performed in two steps: first, from GPU memory to the

CPU memory, and then to the other GPU. Since, the two commands for transferring data
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among GPUs are placed in different command-queues, synchronization between them is needed.

Synchronization among command-queues is achieved through OpenCL events.

6.3.5 Adding Support for Communication-Computation Overlapping

To support communication-computation overlapping further kernel and data decomposition

is required at every GPU. In this work we decompose into two kernels and data subsets.

In terms of structures required to support this overlapping, a new command queue associ-

ated with every GPU is required. This additional command queue is utilized for concurrent

kernel execution and memory operations.

6.4 Experimental Results

In this section we present the results for the parallelization of two applications utilizing

the tool described in this chapter. Interesting applications for demonstrating the tool contain

kernels with data usage and data dependencies as depicted in Figures 6.2a and 6.2b.

The first application performs lineal algebra operations: E = A + B + C × D, which for

demonstration purposes has been divided into two kernels: K0 that computes E = A+B and

K1 computes E = E + C ×D. Kernels are organized in such a way that each element of the

resulting vector is computed by a kernel work-item. It is clear that a dependency exists between

K0 and K1 and due to the organization of the computations the memory access pattern of both

kernels is linear, therefore, this application corresponds to the case shown in Figure 6.2a, where

data parallelism can be exploited with no data exchange among GPUs.

The second application chosen is a CFD application that solves the Navier-Stokes equations

on unstructured grids utilizing a high order correction procedure via reconstruction methods.

We omit details of the method used for the application, for further details refer to the paper

by Wang [77]. Implementation of this method on single-GPU and multi-GPU systems has

been studied in Chapters 3 and 4. This application is composed of four kernels that perform

neighbor analysis (K0), cell analysis (K1), local variables update (K2) and boundary conditions

update (K3). From the analysis in previous chapters, the data dependencies and usage of the

two last kernels correspond to the case shown in Figure 6.2b.
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Single-GPU versions of these two applications are provided as input to the tool for obtaining

multi-GPU versions.

6.4.1 Multi-GPU & Network Performance Issues

The multi-GPU system utilized for testing and benchmarking the applications is composed

by four GPUs NVidia Tesla C2070 with 448 cores and 6GB of global memory, and an Intel

Xeon 2.5GHz quad-core processor, see Figure 6.4.

Figure 6.4: Architecture of the 4-GPU system used

Our system implements two I/O Hubs (IOHs), which introduces non-uniform memory access

(NUMA); notice that GPU-2 and GPU-3 must traverse an additional QPI link. In addition to

NUMA effects, concurrent data transfers increase the contention on shared system resources.

Both, NUMA and contention degrade the effective bandwidth achieved by the GPUs. This

bandwidth degradation has serious implications on achievable performance, as it will be shown

later in this section.

Next, Table 6.1 presents the bandwidth measured for concurrent data transfers (2, 3 or 4

GPUs), and, for comparison purposes, for non concurrent transfers (1 GPU).

Table 6.1: PCI Express bandwidth degradation due to concurrent communication and NUMA
effects

Concurrent GPU-0 GPU-0,1 GPU-0,1,2 GPU-0,1,2,3

Transfer (GB/s) (GB/s) (GB/s) (GB/s)

Host to Device 5.6 5.2 3.5 2.6

Device to Host 6.1 3.9 2.5 1.8
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Table 6.1 shows an almost linear PCI bandwidth degradation with respect to the number

of GPUs concurrently transferring data. Hence, it can be concluded that it is expected more

communication overhead when more GPUs exchange data.

6.4.2 Performance Results

The results for the linear algebra application are summarized in Table 6.2. As expected,

almost linear speedup is achieved because no intermediate results are exchanged among GPUs.

Table 6.2: Execution time for the linear algebra application

K0 K1 Time

GPUs (msec) (msec) (msec) Speedup

One 18.86 27.02 46.03 1.00

Two 9.45 13.53 23.21 1.98

The results for the CFD application are presented in Table 6.3, which correspond to a grid

with 447,944 cells.

Table 6.3: Execution times for single and multiple GPUs implementations of the CFD appli-
cation

GPUs Implementation K0 K1 K2 K3 Comm. Total Speedup

(msec) (msec) (msec) (msec) (msec) (msec)

One Large Data Set 49.45 34.28 9.2 0.02 77.61 170.60 1.00

Two No Overlapping 24.75 17.16 4.6 0.02 50.79 97.32 1.75

Two K2 & K3 Overlap 24.75 17.16 4.6 0.02 46.30 92.83 1.84

Two K0 & K1 Overlap 24.75 17.16 9.2 0.02 31.62 82.75 2.06

Four No Overlapping 12.39 8.6 2.32 0.02 70.88 94.21 1.81

Four K2 & K3 Overlap 12.39 8.6 2.32 0.02 69.89 93.22 1.83

Four K0 & K1 Overlap 12.39 8.6 9.2 0.02 58.69 88.90 1.92

This table includes one, two and four GPUs implementations with and without computation-

communication overlapping. The multi-GPU non-overlapping implementations utilized to pro-

duce the results presented were not produced by the tool described in this work, they are

included for completeness to have a reference of the communication overhead imposed.
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The single GPU implementation assumes that the data does not fit in memory, hence, it

needs to load/unload data into the GPU memory as needed. This implementation is utilized

as a baseline for comparing to the implementations with two and four GPUs. Besides the non-

overlapping implementation, other two implementations are presented: (i) one where K2 and

K3 are utilized for computation-communication overlapping, and (ii) another where K0 and K1

are utilized for computation-communication overlapping (this implementation required some

manual changes). These two implementations present different speedups due to the overlapping

achieved. The implementation where K0 and K1 are utilized for overlapping present higher

speedup for two and four GPUs because of their increased computation time.

As it can be seen in Table 6.3, the communication time is bigger than the computation time

in both cases of parallelization with two and four GPUs, hence, it is crucial to hide as much

communication overhead as possible by overlapping it with kernel computation. However, in

this application not all the communication overhead can be hidden by computation, up to

approximately 40% of the communication overhead still can be hidden by computation on the

GPUs.

Although the two-GPU implementation presents almost linear speedup, the communication

overhead is still high, it accounts for about 38% of the total time in the best case.

The case with four GPUs require more attention, because the performance obtained is

comparable with the performance of a two-GPU implementation, hence, no linear speedup is

achieved. The main reason for this low performance is the increased communication overhead,

it accounts for approximately 75% of the total time presented for the non-overlapped case.

In a multi-GPU implementation of the CFD application, decomposition scales linearly the

computation time with a factor of N , however, the communication overhead does not scale, in-

stead it increases due to (i) the larger amount of information that needs to be exchanged among

GPUs, see Equation 6.3, (ii) the inability to perform direct transfers among GPUs, and (iii) the

PCI Express bandwidth degradation due to concurrent memory operations. As presented on

Table 6.1, the PCI Express bandwidth degrades almost linearly with a factor ofN for concurrent

communication. Besides the bandwidth degradation for concurrent communications, OpenCL

support for data exchange among devices is limited, information exchange has to be performed
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using a host buffer, which involves a read and a write operation, clEnqueueReadBuffer()

and clEnqueueWriteBuffer(). When better hardware communication mechanisms among

multiple GPUs will emerge, our methods will deliver much more effective solutions.

6.4.3 Nvidia GPUDirect

GPUDirect is a feature introduced by Nvidia for its Fermi GPUs. GPUDirect allows direct

data exchange among GPUs connected to the same IOH with no host buffer involved. This

feature allows for faster data exchange and reduced bandwidth degradation for concurrent

communication. Next, Table 6.4 presents the bandwidth achieved for data exchange using a

host buffer and using GPUDirect.

Table 6.4: Bandwidth for communications using a host buffer and GPUDirect

Implementation GPU0 → GPU1 GPU0 ↔ GPU1

(GB/s) (GB/s)

Using Host Buffer 2.95 2.18

GPUDirect 4.95 4.65

As it can be seen in Table 6.4, GPUDirect achieves a higher bandwidth and lower bandwidth

degradation for concurrent transfers.

Next, Table 6.5 presents a projection for the communication overhead and speedup achieved

in the CFD application using GPUDirect.

Table 6.5: Projection of communication times for the CFD application using GPUDirect

GPUs Implementation Comp. Comm. Total Speedup

(msec) (msec) (msec)

One Large Data Set 92.95 77.61 170.60 1.00

Two No Overlapping 46.53 ≈ 25 71.53 2.39

Two K2 & K3 Overlap 46.53 ≈ 20 66.53 2.56

GPUDirect clearly helps to reduce the communication overhead, and by this way higher

speedups can be achieved. However, at the time of this writing no GPUDirect support for

OpenCL is provided by Nvidia.
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6.5 Conclusions

In this chapter we described a framework and implemented a tool for parallelizing single-

GPU OpenCL applications. Besides the single-GPU application, the proposed method requires

as input a XML file that describes information about the application structure.

Data dependence, data usage and access pattern analysis are key for determining data and

computation decomposition, as well as for determining data transfers among GPUs required

for satisfying data dependencies.

Computation-communication overlapping improves the overall performance of the applica-

tion, however, the amount of communication overhead hidden by this technique depends upon

the amount of computation available. In our test application, up to 38% of the communication

overhead is hidden.

Decomposing data and computation across GPUs can potentially (i) speed up the overall

application performance, and (ii) reduce the application memory footprint required per GPU.

In this work, we presented two applications with different data exchange requirements to

demonstrate the effectiveness of our computation decomposition approach for: (i) achieving

almost linear speedup when no communication overhead is imposed or the communication

overhead is completely overlapped with kernel execution, and (ii) partitioning data such that

problems with memory footprint larger than the available GPU memory can be solved by GPU

systems.

In the linear algebra application, where decomposition does not impose data exchange

among GPUs, a linear speedup is achieved; and in the CFD application, no linear speedup is

achieved but the memory footprint is distributed among GPUs.

Although the computation performance of the CFD application scales linearly with decom-

position, the overall performance does not scale linearly because of the increased communication

overhead. This is due to the fact that the PCI Express bandwidth per GPU degrades as the

number of GPUs increases.

The increased communication overhead is due to two factors: (i) bandwidth degradation due

to concurrent data exchange, and (ii) limited support for data exchange provided by OpenCL.
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These two issues, specially the later, should be improved in order to fully exploit the compu-

tational capabilities of systems with two or more GPUs. As noted earlier, in the future with

better hardware communication mechanisms our approach will deliver much more effective

solutions.
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CHAPTER 7. Coarse Grain Computation-Communication Overlap for

Efficient Application-Level Checkpointing for GPUs

7.1 Introduction

GPU design aims to hide memory latency rather than reducing it as in the case of the

CPU. This design philosophy allows for allocating more transistors to computing resources

rather than to logic control, resulting in a GPU design that is composed of hundreds of light

cores with relatively simple logic control.

However, large computation capabilities does not translate directly into high performance.

Even with hundred of cores available, it is possible to have idle computing resources due to

memory latencies.

To hide memory latency and make efficient use of all the computing hardware (hundreds

of light cores), the GPU generates a large number of threads. Threads may be in any of three

states: executing, ready, or waiting. An executing thread is currently running in a GPU core. A

ready thread has all the necessary data and it is waiting for available computing resources (GPU

cores) to begin its execution. Finally, waiting threads are waiting for the required data to arrive

from the host memory. When executing threads stall due to memory latency, the ready threads

start execution while the ones stalling wait for the data to be completely transferred into the

device memory [83]. This technique, known as overlapping computation-communication, has

been largely used for achieving high performance in the presence of large memory latencies [81]

.
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7.2 Application-Level Checkpoint for GPUs

Any checkpoint/restart scheme for a GPU accelerated application must consider the chal-

lenges imposed by the GPU design:

• Slow device-to-host data transfer - GPU-based systems are characterized by slow GPU

(device) to CPU (host) data transfers. Therefore, a checkpoint scheme with large data

transfers, or high frequency of transactions, will have a significant negative impact on the

performance of the application.

• Synchronization - Given the large number of in-flight threads, the global synchroniza-

tion approach commonly found in checkpointing schemes is not desirable. Instead, a

new synchronization approach is necessary to decrease delays and to avoid idle times in

hardware.

• Flexibility - GPGPU programming languages offer great flexibility to the GPU-based

systems. A good checkpointing scheme will take advantage of the flexibility that these

high level languages provide, and be implemented in such a way as to have minimal

interference during execution.

Our scheme addresses these challenges by using a variety of methods.

• To deal with the slow device-to-host data transfer, our checkpointing scheme decomposes

the problem (computation). By decomposing the problem in smaller pieces it is possible

to start checkpointing the process as soon as possible.

• To minimize computation idling due to large data transfers, we propose overlapping GPU

computation with CPU communication. This overlapping takes advantage of problem

decomposition approach and the GPU native block communication paradigm.

• Stemming from our problem decomposition approach, and utilizing the overlapping com-

putation and communication, we achieve low overhead by overlapping checkpointing with

computation.
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7.2.1 Computation Decomposition

A GPU requires that all the data involved in the computation is stored locally before and

after each computation. This means that all required data is transferred from memory before

the computation, and to memory after the computation. Figure 7.1a illustrates the GPU

execution model, where the execution time is

TEXC = TGPU + TComp + TCPU (7.1)

and the checkpoint overhead is

TOverhead = TCKPT (7.2)

In this execution model the GPU waits TGPU before starting the computation. Shown in

Figure 7.1b the waiting time is reduced by dividing the whole process into n smaller subpro-

cesses.

As seen in Figure 7.1b, a subprocess before starting its computation should have all the

data at the device memory.

(a) Standard Execution Model (b) Process divided into n subprocesses, where a =
TGPU

n
and b =

TComp

n

Figure 7.1: Execution and Checkpointing approaches on a GPU

7.2.2 Overlapping GPU Computation with CPU Communication

The objective of dividing the process into n subprocesses is to overlap the CPU communi-

cation with the GPU computation. Ideally, no computation resource idles if each subprocess

computation time is bigger or equal to the transfer time, or

TGPU + TCPU
n

≤ TComp
n

(7.3)
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This ideal scenario is shown in Figure 7.2, and the execution time is given by

TEXC =
1

n
(TGPU + TCPU ) + TComp (7.4)

Figure 7.2: GPU Computation-Communication overlap, where a = TGPU
n , b =

TComp

n and

c = TCPU
n

Recall that the GPU’s computation time TComp, depends on the number of generated

threads. As introduced earlier, a GPU requires a large number of threads to hide latency

and to make efficient use of the computation resources. Therefore, the number of subprocesses

n should be chosen in such a way that there is still enough threads on the subprocess to keep

all the computation resources busy at any time during the execution.

Theoretically, by optimal dividing the problem into n subprocesses, the execution time is

reduced by Treduced that can be achieved to be as given below.

Treduced =
n− 1

n
(TGPU + TCPU ) (7.5)

Where n is the reduction factor. In Equation 7.5 the number of subprocesses, n, is limited by

(i) the amount of computation at any subprocess, i.e. the number of threads available, (ii) the

subprocess creation overhead.

7.2.3 Overlapping the Checkpointing with GPU Computation

As show in Figure 7.2 checkpoint is possible only after the data is stored in the host memory.

In the same way that GPU computation and CPU communication overlaps, it is possible to

overlap GPU computation with the checkpointing process, see Figure 7.3. This overlapping is

possible because the checkpointing process is executed exclusively at the CPU.

In this scenario the execution time is still given by Equation 7.4. However, the checkpoint

overhead is

TOverhead =
1

n
TCKPT (7.6)
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Figure 7.3: GPU Operation overlapped with Checkpointing, where a = TGPU
n , b =

TComp

n ,

c = TCPU
n and d = TCKPT

n

Using Equations 7.5 and 7.6, the total time saved for execution and checkpointing is

TSaved =
n− 1

n
(TGPU + TCPU + TCKPT ) (7.7)

The constraint defined in inequality defined by Equation 7.3 is enough to guarantee cor-

rectness, because (i) the checkpointing process is done at the CPU level using a different bus,

therefore does not increase the traffic at the PCIe bus, and (ii) the checkpoint is saved asyn-

chronously to avoid blocking the CPU.

7.3 Results

Good test cases for our checkpointing scheme are applications whose computation is nicely

divided into sets of smaller processing jobs. Where each processing job modifies a different

set of data. There are several application-types with these characteristics, such as: matrix

multiplication, fast fourier transform, etc. Matrix multiplication is a well known scientific

benchmark [84, 85, 33], and it can be used to show the results achieved by our application-level

checkpointing scheme without loosing generality in our approach.

To illustrate the problem, the matrix multiplication is defined as:

Cm×p = A(m×q) ×B(q×p) (7.8)

Since NVidia SDK provides optimal kernels for square matrix multiplication, the problem

reduces to the case where A and B are square matrices, i.e. m = p = q.

This section shows how the computation decomposition approach was implemented for the

matrix multiplication problem, and the results obtained from this implementation.
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7.3.1 Implementing Computation Decomposition

Figure 7.4 shows the strategy followed to divide the matrix multiplication problem in a set

of smaller chunks or subproblems.

(a) A m×m matrix, m = 6 (b) Division into n2 submatrices, n=3

Figure 7.4: Division strategy for the matrix multiplication

Figure 7.4a shows the resulting matrix C which is divided in Figure 7.4b into n2 smaller

square matrices. This strategy is taken because it optimizes memory transfers, for instance

submatrix k11 requires only rows one and two and columns one and two from matrices A and

B, respectively. To simplify memory transfers we store matrix A row wise and matrix B column

wise, which is possible because transposing a matrix in a GPU requires negligible time.

Although the strategy divides the communication and computation into n2 submatrices, the

checkpoint process is divided only into n subprocesses, each composed of all the submatrices

in the same row. This is done to optimize the data transfer. Instead of saving several smaller

non-contiguous memory areas, only one larger contiguous memory area is saved.

7.3.2 Experimental Results

The proposed scheme is tested on a system composed of an Intel Xeon Quadcore processor

and a Nvidia Tesla T10 GPU. The application and the checkpointing code is written using

CUDA v.2.3.

Table 7.1 shows the matrix sizes and number of subprocesses utilized in our test cases.
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Table 7.1: Parameters used in the test cases of the Matrix Multiplication

Parameter Value

Matrix Size (m) 1,024, 2,048, 4,096, 8,192, 16,384

Checkpoint Subprocesses (n) 1, 2, 4, 8, 16, 32

Next, the execution time and checkpoint overhead for the proposed checkpointing scheme

are presented. Notice that for brevity, we only present results for the two extreme cases in

Tables 7.2 and 7.3 for the smallest and the biggest matrices in the experiments.

Table 7.2: Matrix Multiplication with m = 1,024

n
Execution Time

(msec)

Checkpoint Overhead

(msec)

Total Time

(msec)

1 16.01 1.98 17.99

2 15.72 1.11 16.83

4 19.67 0.64 20.31

8 22.42 0.33 22.75

16 37.06 0.17 37.23

32 126.19 0.08 126.27

Table 7.3: Matrix Multiplication with m = 16,384

n
Execution Time

(msec)

Checkpoint Overhead

(msec)

Total Time

(msec)

1 47,468.03 1,531.50 48,999.53

2 47,105.95 773.06 47,879.01

4 47,154.36 382.36 47,536.72

8 47,610.95 185.26 47,796.21

16 49,089.46 92.09 49,181.55

32 52,379.07 46.77 52,425.84

It can be seen in Table 7.3 that overlapping achieves better execution time until a point

where the execution time starts increasing. This increase starts at n2 = 64 and it is primarily

due to the fact that there is not enough threads to keep the computing resources busy. For the

case show in Table 7.2 with a matrix size of 1024, it is even more critical as the time starts

increasing at n2 = 16, which is reasonable in light of the previous explanation.
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Tables 7.2 and 7.3 shows that the relation showed in Equation 7.6 is met. Notice that

the checkpointing overhead is approximately halved as n is doubled. The checkpoint overhead

decreases as n increases. The value of n is mainly determined by whether or not there is enough

computation on the computing resources.

Figure 7.5 shows the normalized overhead execution time introduced by every implemen-

tation. It can be noticed that for some number of checkpoint subprocesses, the performance is

better than that of the non-overlapped non-checkpointed case.

Figure 7.5: Execution time overhead imposed by the different implementations

7.4 Conclusion

We have proposed an approach for application-level checkpointing that provides flexibility

and different levels of granularity for checkpointing.

Overlapping GPU computation with checkpointing allows for very low checkpoint overhead

with respect to the non-overlapped case. The overhead time for checkpointing can be reduced

by a factor of n. However, notice that both theoretically and experimentally, n is limited by

the amount of computation available to keep the computing resources busy.

We aim for low performance overhead by implementing the checkpoint process as a multi-

threaded process that saves the checkpoint data asynchronously, which releases the CPU to

perform other tasks.

Our implementation results show that indeed overlapping operations and checkpointing

achieves both, the low checkpoint overhead and reduces execution time.
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CHAPTER 8. Data Flow-Based Application-Level Checkpointing for GPU

Systems

8.1 Introduction

Like any computing engine of today, reliability is also a concern in GPUs. GPUs are

particularly vulnerable to transient and permanent failures. Application execution time is

affected negatively by the presence of such failures. A popular fault tolerant scheme is the

Checkpoint/Restart technique [14]. This scheme takes periodic snapshots of the application

state (checkpoints) during the execution. Upon an occurrence of a failure, the application

restarts from the last valid checkpoint.

Application-level checkpointing is more efficient than system-level and user-level checkpoint-

ing because of its efficiency in terms of checkpoint overhead. In application-level checkpointing

the pieces of code that save the application state, i.e. the checkpointing code, are manually

inserted by the application developer, which requires specific knowledge of the application, it

is complex and prone to errors.

An alternative to manually inserting checkpointing code is automatic insertion at pre-

compile or compile time. Inserting automatically checkpointing code at pre-compile time im-

plies program transformation. Program transformation to provide fault tolerance has been

developed in several environments, such as embedded systems [86], MPI systems [87], etc.

In this chapter we describe our scheme for automatic application-level checkpointing of

OpenCL applications. This scheme analyzes data dependencies among kernels and data access

patterns to transform a non-checkpointing capable OpenCL application into one that supports

checkpointing.
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8.2 Application-Level Checkpointing

The major goal of the Application Transformation stage is to enhance an OpenCL applica-

tion with constructions that efficiently save the state of the application. Efficient checkpointing

implies low checkpoint overhead, which is achieved by reducing the amount of data checkpointed

and hiding the checkpoint latency. The pieces of code added to the application perform data

transfers from GPU memory to main memory and optimizations to reduce the checkpoint

overhead.

This section describes how the information provided by the data analyzer is utilized for

program transformation. Data dependencies are utilized to define the application state and

where it is more profitable, in terms of checkpoint overhead, to checkpoint it, while data access

patterns allows to determine if computation-communication overhead can be implemented to

reduce the checkpoint overhead.

8.2.1 Finding the Application State

The first step towards supporting application-level checkpointing is to identify the data that

are part of the state of the application.

The data that compose the state of the application at a given time can be identified by

analyzing the data dependencies. The data dependence graph provides information regarding

the inputs required and outputs generated by kernels, as well as data dependencies among

kernels, which allows to define the state of the application for each kernel.

For an OpenCL application composed of NK kernels, there are potentially NK different ap-

plication states producing different checkpoint overheads. The application state for a snapshot

taken in between two contiguous kernels Ki and Kj executed sequentially is defined by the set

of inputs (I) required by the kernel Kj or the set of outputs (O) generated by the kernel Ki,

and the set of data required by other kernels, i.e. future inputs, (F ), see Equation 8.1.

App. Statei =
⋃
k

Oi,k +
⋃
k

Fi,k︸ ︷︷ ︸
After kernel Ki

=
⋃
k

Ij,k +
⋃
k

Fj,k︸ ︷︷ ︸
Before kernel Kj

(8.1)

Algorithm 5 presents the main steps for building the application state for a kernel Ki, it is
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important to notice that future inputs can be originated by inputs to kernels that are executed

before or after Ki, lines 5 to 7 and lines 8 to 10, respectively.

Algorithm 5 Finding the Application State of the kernel Ki

1: Add all output parameters of Ki to AppStatei
2: {This section finds the Future Inputs}
3: for all kernels Kj in the application with i 6= j do

4: for all input parameters Pk of Kj that depends on an output of other kernel Kr do

5: if kernel Kj is executed before Ki and Kr is executed between Kj and Ki then

6: Add parameter Pk to AppStatei
7: end if

8: if kernel Kj is executed after Ki and Kr is executed before Ki or after Kj then

9: Add parameter Pk to AppStatei
10: end if

11: end for

12: end for

As an example, Table 8.1 shows the inputs, outputs and future inputs for each kernel in the

dependence graph of Figure 5.3.

Table 8.1: Inputs, Outputs, Future Inputs and the Application State for the data dependence
graph defined in Figure 5.3

Kernel Input Output Future App. State

K0 b[·] d[·] b[·], c[·] b[·], c[·], d[·]
K1 b[·], c[·] a[·] b[·], d[·] a[·], b[·], d[·]
K2 a[·], b[·] a[·] d[·] a[·], d[·]
K3 a[·], d[·] b[·] - b[·]
K4 b[·] c[·] b[·] b[·], c[·]

From now on, the application state of a kernel is referred in terms of its outpus and future

inputs, hence, the time for transferring the application state, i.e. the checkpoint latency, is

defined in Equation 8.2.

TApp. Statei =
∑

Oi,j∈Ωi

TOi,j +
∑

Oi,j /∈Ωi

TOi,j︸ ︷︷ ︸
TOutputi

+
∑
j

TFi,j︸ ︷︷ ︸
TFuturei

(8.2)

where: Ωi =
{
Oi,j |Oi,j has linear access

}
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8.2.2 Selecting a Checkpoint Location

Finding where to checkpoint is approached as choosing an application state, among the ones

previously found, that achieves the lowest checkpoint overhead. Low checkpoint overhead is

achieved by checkpointing a small application state and overlapping checkpointing with kernel

computation. Overlapping checkpointing with kernel computation requires linear access on the

kernel outputs in order to decompose kernel computation and checkpointing, otherwise, the

amount of overlapping achieved is limited. Figure 8.1 shows the effect of linear and non-linear

output access on the checkpoint overhead (TK).

Comp. Ki

Ckpt. d[·] a[·]

time

TK

(a) No linear access on output

Comp. Ki−1 Ki−2

Ckpt. d[·] a1[·] a2[·]

time

TK

(b) Linear access on output

Figure 8.1: Overlapping checkpointing with kernel computation

Next, two schemes for choosing the application state are presented: (i) with no runtime infor-

mation, and (ii) with runtime information, i.e. array sizes and kernel execution times.

If no runtime information is provided, choosing the application state that achieves the low-

est checkpoint overhead takes only into consideration the application states previously found.

Towards this objective, only the states that cannot be expressed in terms of other states are

considered, see Equation 8.3.

App. Statei 6⊃ App. Statej , ∀ j < NK , i 6= j (8.3)

For instance in the example shown in Table 8.1 the application states of kernels K0, K1 and

K4 can be expressed in terms of the application state of K3, hence, the potential application

states for checkpointing are the ones for K2 and K3. Among those two potential locations for

checkpointing the application, the one with less arrays is picked as the checkpoint location,

which in this case is K3.
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While choosing an application state based solely on data dependences and number of arrays

that compose the application state is simple, it might not be the best solution because there is

no guarantee that the application state has indeed the smallest checkpoint size or no overlapping

is possible due to a kernel with small execution time.

Runtime information allows to choose a location for checkpointing where a balance between

the checkpoint size and the kernel execution time attains low checkpoint overhead. Runtime

information is provided as part of the XML application structure file, and it can be absolute,

as shown in Listing 8.1, or relative, using percentages or fractions.

1 <runtime>
2 <kernel>
3 <name>K1</name>
4 <time>1,009.15msec</time>
5 </kernel>
6 <array>
7 <name>a</name>
8 <size>128KB</size>
9 </array>

10 </runtime>

Listing 8.1: A XML application structure file with runtime information

Two metrics are identified to select an application state using runtime information: the

checkpoint ratio and the minimum checkpoint overhead, see Equations 8.4 and 8.5. The check-

point ratio provides a measure of the amount of checkpoint overhead that can be overlapped

by kernel execution, hence, the bigger this ratio the better. The minimum checkpoint overhead

provides a measure of the amount of checkpoint overhead that cannot be overlapped by kernel

execution, hence, the shorter the better. The factors for computing the checkpoint ratio can

be expressed as absolute or relative values, while the factors for computing the checkpoint

overhead can be expressed only as absolute values, i.e. time.

Ckpt. Ratioi =
Kernel Computationi∑
j TFi,j +

∑
Oi,j∈Ωi

TOi,j

(8.4)

(TminK )i = max
(
0, Overlappedi

)
+

∑
Oi,j /∈Ωi

TOi,j (8.5)

where: Overlappedi =
∑
j

TFi,j +
∑

Oi,j∈Ωi

TOi,j − TKerneli
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Although the minimum checkpoint overhead metric provides direct information for selecting

the location that achieves the lowest checkpoint overhead, it can be computed only if absolute

runtime information is provided. Therefore, providing absolute information results in a more

accurate selection of the checkpoint location.

To illustrate the usage of relative runtime information, let us assume in the example of

Table 8.1 that the execution time percentage for K1 and K2 is 35% and for K0, K3 and K4 is

10%, all the output data access patterns are linear and the array sizes for a and c is x bytes

and for b and d is x/2 bytes. For brevity, only the two highest normalized checkpoint ratios

are presented, which correspond to K2 and K3. The normalized checkpoint ratios for K2 and

K3, 1.0 and 0.86 respectively, suggest that the best location for checkpointing is K2, which is

different than the location selected with no runtime information.

Next, to compare the results obtained using relative information with absolute information,

let us assume that the execution time percentage for K1 and K2 is 350 msec and for K0, K3

and K4 is 100 msec, and the transter time for arrays a and c is 300 msec and for arrays b and

d is 150 msec. With this information, the minimum checkpoint overhead for K2 is 100 msec

and for K3 is 50 msec, which suggest that the best location for checkpointing is K3. Since the

minimum checkpoint overhead metric provides more accurate information, K3 is selected as the

checkpoint location.

8.2.3 Kernel Decomposition

Once the location for checkpointing have been defined and provided that the kernel output

access is linear, the kernel computation and hence the output data should be decomposed to

allow overlapping kernel execution with application checkpointing.

Kernel decomposition is performed by partitioning the grid of work-groups into smaller

grids as shown in Figure 8.2. Decomposing the kernel computation might have a negative

effect on the overall performance, because as the number of partitions increases, each new

kernel partition might not have enough computation to keep the hardware busy, hence, the

total execution time increases, i.e. imposes partition overhead. Hence, a kernel should be

decomposed into a number of partitions that keeps at the same time low checkpoint overhead
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and partition overhead [88].

Figure 8.2: Kernel computation decomposition into two grids

Although the effect of kernel decomposition depends on certain inherent features of each

application, next, a reference value for the number of partitions is provided. When the check-

point latency is bigger than the kernel execution time and the application state is composed

of future inputs, the number of partitions (M) in which a kernel is decomposed is given in

Equation 8.6.

M = max

(⌈
TKerneli
TFuturei

⌉
,

⌈
TOutputi
(TminK )i

⌉)
(8.6)

The intuitions behind Equation 8.6 are: (i) the overlapping technique cannot hide more

checkpoint latency than what it is possible when data is transferred continuously as in Fig-

ure 8.3a, hence, the kernel is decomposed in fractions equal to the size of either the minimum

checkpoint overhead (Tmin
K ) or the future data (TFuture), and (ii) the size of future data limits

the amount of checkpoint latency that can be overlapped, see Figure 8.3b, hence, increasing the

number of kernel partitions beyond the optimal number does not return any additional gain.

Comp. Ki

Ckpt. d[·] a[·]

time

Tmin
K

(a) Maximum overlap achiev-
able

Comp. Ki−1 Ki−2

Ckpt. d[·] a1[·] a2[·]

time

Tmin
K

(b) Maximum overlap achieved
through efficient decomposition

Figure 8.3: Decomposition when the application state is composed of output and future data
and it is larger than kernel computation

When the checkpoint latency is smaller than the kernel execution time or the application is

composed only of output data, there is no limit for the number of partitions in terms of achieving
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the best overlapping possible. Figure 8.4 shows that increasing the number of partitions, the

checkpoint overhead decreases by a factor of M .

Comp. Ki−1 Ki−2

Ckpt. a1[·] a2[·]

time

TK

(a) Two Partitions

Comp. Ki−1 Ki−2 Ki−3 Ki−4

Ckpt. a1[·] a2[·] a3[·] a4[·]

time

TK

(b) Four parttions

Figure 8.4: Decomposition when the application state is composed only of output data or it is
shorter than kernel computation

The number of partitions can be increased up to a point where the total execution time

starts to increase because no enough computation is available on the kernel partitions to hide

long latency operations. In this context, the limit for the number of partitions is given by the

inherent features of the application, i.e type of computation, memory access, problem size, etc.

In this case, the overhead imposed by data decomposition, i.e. Dovh, is utilized for computing a

reference value for the number of data partitions and, hence, kernel partitions, see Equation 8.7.

In general the total data decomposition overhead should be kept within a percentage, i.e. D%,

of the total output time.

M ·Dovh ≤ D% · TOutputi =⇒ M ≤ D% ·
TOutputi
Dovh

(8.7)

8.3 Adding Application Support for Application-Level Checkpointing

Transforming an application for supporting application-level checkpointing is achieved by:

• Providing support for concurrent checkpoint operations and kernel execution through

OpenCL structures,

• Decomposing kernels and generating offsets, and

• Adding checkpoint operations.

An OpenCL context includes devices, objects for kernels and memory, and command queues.

The host program places commands in a command queue, which are scheduled for execution
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on the device that is associated with the queue. Concurrent memory operations and kernel

execution is supported through separate command queues for memory and kernel execution

commands.

Providing support for concurrent checkpoint, i.e. memory, operations and kernel execution

requires to define and associate an additional command queue to the GPU, which is used for

receiving and scheduling checkpoint operations, as well as to redefine the kernel object as an

array to handle kernel partitions. In addition to those structures, synchronization events are

needed since kernel execution and checkpoint operations are executed in different queues, see

Figure 8.5.

Kernel Queue kernel[0] kernel[1]

Checkpoint Queue future[·] output[0..offset] output[offset..end]

time

Figure 8.5: Synchronization among kernel execution and checkpoint operations

As described in Section 8.2.3, kernel decomposition is achieved by partitioning the grid of

work-groups into smaller grids. This decomposition modifies the work-item global and work-

group identifiers, and therefore, it modifies the data access, because, in general the indexes used

to access data are based on those identifiers. Hence, the kernel code needs to be transformed to

support decomposition, which involves adding a new parameter to the declaration that receives

the offset, and modifying the array indexes using the offset.

At the host code level kernel decomposition is supported by computing offsets and sizes

of data and kernel partitions and passing parameters to every kernel partition. The kernel

partition size is described next in Equation 8.8.

size(kerneli) =

⌈
size(kernel)

M

⌉
size(kernelM ) ≤ size(kerneli), 1 ≤ i < M

(8.8)

The offset is presented in Equation 8.9, which is based on the kernel partition number and on

the kernel partition size.

offseti = (i− 1) ·
⌈
size(kernel)

M

⌉
(8.9)
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The data partition size is computed as in Equation 8.10.

elements(arrayi) =
size(kerneli)

size(kernel)
· elements(array) (8.10)

Checkpoint support is provided by enhancing the host code with memory commands, asso-

ciated to checkpoint command queue, to transfer the application state to the CPU memory, as

well as to flush commands. Next, Listing 8.2 summarizes the checkpoint operations required

at host code level.

0 cl kernel kernel[MAX KERNELS];
1 // ... set kernel parameters for kernel[0] and kernel[1]
2 // ...
3 // overlaps kernel execution and checkpoint operations
4 clEnqueueNDRangeKernel(krnl queue, kernel[0], 1, NULL, PartSize, WGSize, &events[0] );
5 clEnqueueReadBuffer(ckpt queue, future, CL FALSE, 0, size , hFuture, 0, NULL, NULL);
6 clFlush(krnl queue);
7 clFlush(ckpt queue);
8 clEnqueueNDRangeKernel(krnl queue, kernel[1], 1, NULL, PartSize, WGSize, &events[1] );
9 clEnqueueReadBuffer(ckpt queue, output, CL FALSE, 0, offset, hOutput, 1, &events[0], NULL);

10 clFlush(krnl queue);
11 clFlush(ckpt queue);
12 clEnqueueReadBuffer(ckpt queue, output, CL FALSE, offset, offset, hOutput + offset, 1, &events[1],

å NULL);
13 clFlush(ckpt queue);

Listing 8.2: Host code for overlapping kernel execution and checkpoint operations

8.4 The Checkpoint Interval

The checkpoint approach takes periodic snapshots of the application state and saves them

into stable storage, Figure 8.6a; upon a failure occurrence, the application is restarted from the

most recent checkpoint, Figure 8.6b. An efficient checkpointing scheme aims to minimize the

total checkpoint overhead imposed, which is achieved by selecting a checkpoint location where

the checkpoint size is small and by choosing an appropriate checkpoint interval.

The scheme for selecting a location for checkpointing was introduced in Section 8.2.2. This

section focuses on the selection of the checkpoint interval.

For an application with a set of kernels running repeatedly N times inside a loop and a

initialization time TI , the total execution time and checkpoint interval are defined in Equa-

tion 8.11 and Equation 8.12. Equation 8.12 relates selection of the checkpoint interval to the

number of loop iterations between two successive checkpoints and the time for each iteration,
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Init 1 2 k Ckpt k + 1 k + 2 2k Ckpt N-k+1 N− 1 N

1 2 N/k

TI TC TK

(a) The checkpoint technique for an application with N iterations

Init 1 2 k Ckpt k + 1 Rstrt k + 1 k + 2 2k Ckpt N-k+1 N

1 2 N/k

TI TC TK TR

Failure

(b) Restarting after a failure using the most recent checkpoint

Figure 8.6: The checkpoint/restart technique

i.e. k and TC , respectively.

TT = N · TC + TI (8.11)

TCI = k · TC (8.12)

Similarly to other works, in this work the failures in a computational system are modeled as

a Poisson process with the failure rate exponentially distributed [89, 90, 91]. The probability

of occurring and not occurring a failure in an interval ∆t is given by Equations 8.13 and 8.14,

respectively.

P (t ≤ ∆t) = 1− e−∆t·λ (8.13)

P (t > ∆t) = e−∆t·λ (8.14)

In this work we propose to choose the optimal checkpoint interval that guarantees that the

penalty imposed by a failure in an implementation supporting checkpointing is less than that

of an implementation with no checkpoint support, i.e. T
(p)
Non−Ckptd ≥ T

(p)
Ckptd.

The failure interval (Tf ) in a checkpointed application is defined as the interval where a

failure can occur, which includes the checkpoint interval and the checkpoint overhead as shown

below in Equation 8.15.

Tf = TCI + TK = k · TC + TK (8.15)
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8.4.1 One Failure per Execution

The penalty imposed by a failure in implementations with and without checkpoint support

are shown in Equations 8.16a and 8.16b, respectively. Equation 8.16a introduces the probability

of failure per iteration, i.e. Pf to estimate the average penalty. The penalty paid by a non-

checkpointed implementation is computed based on the probability of failure at iteration i,

the amount of work lost at that iteration and the application initialization time (TI); whereas

the penalty paid by a checkpointed implementation is computed based on the time used for

checkpointing, the average amount of work lost due to a failure and the restart time (TR).

T
(p)
Non−Ckptd =

N∑
i=1

(1− Pf )i−1 · Pf · (i · TC + TI) (8.16a)

T
(p)
Ckptd =

(
N

k
− 1

)
· TK +

1

2
· (k · TC + TK) + TR (8.16b)

By using the summation of geometric series and the Taylor expansion equations, the inequality

T
(p)
Non−Ckptd ≥ T

(p)
Ckptd is simplified in Equation 8.17.

Pf ·N · TT ≥
(
N

k
− 1

)
· TK +

k · TC + TK
2

+ TR (8.17)

Which leads to the quadratic expression:

−1

2
· k2 +

[
Pf ·N · TT − TR

TC
+

TK
2 · TC

]
· k −N · TK

TC
≥ 0 (8.18)

According to the quadratic expression of Equation 8.18, the optimal solution for k lies in the

interval:

N · Pf ·
(
N +

TI
TC

)
+

TK
2 · TC

− TR
TC
±

√√√√[N · Pf · (N +
TI
TC

)
+

TK
2 · TC

− TR
TC

]2

− 2 ·N · TK
TC

(8.19)

The interval exists if the discriminant inside the square root of Equation 8.19 is positive.

Assuming at most a single failure during the application execution, i.e. Pf · N ≈ 1, the

condition for a positive discriminant is shown in Equation 8.20, which always holds.

N · TC > TK (8.20)
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The optimal value for k is obtained by differentiating Equation 8.16b with respect to k and

equating to zero.

kopt =

⌊ √
2 ·N · TK

TC

⌋
(8.21)

By plugging in the obtained kopt into Equation 8.18, it is straight forward to prove that this

optimal value falls inside the range of values defined in Equation 8.19

8.4.2 One or More Failures per Execution

To estimate the checkpoint interval based on the penalty associated with more than one

fault, the average number of total and failed attempts needed to complete N calculations of

duration ∆t are given first in Equations 8.22a and 8.22b.

attempts =
N

P (t > ∆t)
= N · e∆t·λ (8.22a)

f(∆t) =
N

P (t > ∆t)
−N = N(e∆t·λ − 1) (8.22b)

Now, the penalty imposed by faults for the checkpointed and non-checkpointed versions are

presented in Equations 8.23a and 8.23b. The penalty paid by the non-checkpointed implemen-

tation is computed based on the number of failed attempts to complete the N iterations, the

average amount of work lost and the initialization time (TI); whereas the penalty paid by the

checkpointed implementation is computed based on the checkpoint time, the number of failed

attempts to complete a failure interval, the average amount of work lost and the restart time

(TR).

T
(p)
Non−Ckptd = f

(
N · TC

)
·
(
N · TC

2
+ TI

)
(8.23a)

T
(p)
Ckptd =

(
N

k
− 1

)
· TK + f

(
Tf
)
·
(

1

2
· Tf + TR

)
(8.23b)

By using Equation 8.22b and the Taylor expansion, the inequality T
(p)
Non−Ckptd ≥ T

(p)
Ckptd is

simplified in Equation 8.24.

N · TC · λ ·
(

1

2
·N · TC + TI

)
≥
(
N

k
− 1

)
· TK +

N

k
· Tf · λ ·

(
1

2
· Tf + TR

)
(8.24)
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Which leads to the quadratic expression:

− k2 − 2

Tc
·
[
TK −

TK
λ ·N · TC

− N

2
· TC − TI + TR

]
· k − 2

Tc
·
[

1

2
· TK + TR +

1

λ

]
· TK
TC
≥ 0

(8.25)

Solving Equation 8.25 provides a range for values for the parameter k for which a check-

pointed application imposes less overhead than a non-checkpointed application.

Similarly to the case with one failure, the optimal solution shown in Equation 8.26 is

obtained by differenciating Equation 8.23b with respect to k and equating to zero.

kopt =

⌊
TK
TC
·
√

2

TK
·
( 1

λ
+ TR

)
+ 1

⌋
(8.26)

8.5 Experimental Results

In this section we present the results for the checkpointing of an OpenCL GPU application

utilizing the framework and tool described in this work.

The application used is a CFD application that solves the Navier-Stokes equations on

unstructured grids utilizing a high order correction procedure via reconstruction methods. We

omit the details of the method used for the application, for further details refer to the paper by

Wang [77]. Implementation of this method on GPU systems has been studied in our previous

works [36, 92]. This application is composed of five kernels that update local initial values (K0),

neighbor analysis (K1), cell analysis (K2), local variables update (K3) and boundary conditions

update (K4). From the analysis in previous chapters, the data dependencies are presented in

Figure 5.3. The single-GPU version of this application is provided as input to the tool for

transforming into one that supports application-level checkpointing.

The GPU system utilized for testing and benchmarking is composed of four GPUs NVidia

Tesla C2070 with 448 cores and 6GB of global memory, and an Intel Xeon 2.5GHz six-core pro-

cessor. This system presents a data decomposition overhead (Dovh) experimentally measured

of 5 µsec.

The results for the CFD application are presented in Table 8.2, which correspond to a grid

with 447,944 cells.
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Table 8.2: Kernel and application state timings for the CFD application

Kernel
TKernel

(msec)

TOutput

(msec)

TFuture

(msec)

Tmin
K

(msec)
M

TK

(msec)

K0 4.54 21.31 21.68 38.45 1 -

K1 49.50 22.36 42.97 15.83 2 -

K2 34.18 22.36 21.31 9.49 3 13.57

K3 9.34 21.66 - 12.32 216 -

K4 0.02 0.02 21.66 21.66 1 -

In Table 8.2 the minimum checkpoint overhead metric (Tmin
K ) is computed according to

Equation 8.5, which helps to identify K2 as the checkpoint location that imposes the least

checkpoint overhead. Although not shown in Table 8.2, the checkpoint ratio metric presented

in Equation 8.4 selects K2 as the checkpoint location as well.

Although only the number of partitions (M) for kernel K2 is needed for implementation

purposes, the number of partitions for the other kernels are presented as well for completion

purposes. For kernel K3, the number of partitions was computed to impose a data decom-

position overhead (D%) of about 5% of the output time. It is important to notice that for

kernels K0 and K4 overlaping kernel execution and checkpointing does not help to reduce the

checkpoint overhead, that is why the number of partitions is 1.

It is interesting to notice in Table 8.2 that data and kernel decomposition allows to overlap

approximately 78% of the checkpoint latency, which represents runtime savings of about 35%

per iteration.

The checkpoint overhead presented in Table 8.2, 13.57 msec, represents an increase of

approximately 14% per iteration, and exceeds by 4.08 msec to the minimum expected, which

is due to the wall timer (1.3 msec), kernel decomposition (175 µsec) and the remaining due to

data decomposition and synchronization.

The optimal value for the checkpoint interval (k) is computed using Equation 8.21 and the

results in Table 8.2; for a iteration time (TC) of 97.58 msec, a checkpoint overhead (TK) of

13.57 msec and 2,000 iterations, the optimal value for k is 23, which translates into 86 check-

points taken. The total checkpoint overhead incurred by using this k represents approximately
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a 4.3% of the checkpoint overhead incurred if a checkpoint is taken at every iteration and an

increase of the 0.6% of the total runtime.

8.6 Conclusions

Data dependence analysis is used to identify the application state at different locations,

which potentially can be selected as the checkpoint location. The checkpoint location is selected

such that the overhead imposed is minimized. Two approaches are identified to select the

application state that minimizes the checkpoint overhead: (i) without runtime information,

and (ii) with runtime information, the later is more precise than the former, however, in some

situations the former can lead to the same result.

Overlapping kernel execution and checkpoint operations is utilized to hide checkpoint la-

tency. The overlapping technique requires to decompose kernel execution, and hence data. We

proposed a scheme to calculate the number of kernel partitions aiming to achieve the minimum

checkpoint overhead possible; the future data part of the application state limits the minimum

checkpoints achievable and, hence, the number of partitions. In our experiments, about 78%

of the checkpoint latency is hidden by the overlapping technique.

We presented two approaches for computing the checkpoint interval in terms of number of

iterations. These methods differ in the fact that the first method assumes one fault per run,

hence, provides an optimal checkpoint interval based on the total runtime, whereas the second

method does not have an assumption on the number of failures. By utilizing the first method

to compute the checkpoint interval, the checkpoint overhead introduced is reduced by about

96% compared to the case where one checkpoint per iteration is taken.
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CHAPTER 9. Conclusion and Future Work

9.1 Conclusion

This research addressed the issues of exploiting higher level of parallelism and developing

support for application-level fault tolerance in applications using multiple GPUs. The proposed

solution is a framework that (i) analyzes the host and kernel code to build a data dependence

graph and to identify data access patterns, (ii) performs kernel and data decomposition, (iii)

minimizes the checkpoint overhead, and (iv) transforms the application to support the desired

feature.

9.1.1 Data Dependencies and Access Patterns Analysis

This research introduced a framework to enhance single-GPU applications through program

transformation. At the heart of this framework is the data analyzer unit. This unit analyzes

the data flow among kernels to generate a data dependence graph and the data access patterns

of each array stored in the GPU memory to classify the access patterns as linear and non-linear

(random) access. The data dependence graph represents kernels as nodes and dependencies as

directed edges among the kernels.

The data dependencies and access patterns identified are extremely important for the ap-

plication transformation, because they (i) define the data organization, i.e. decomposed or

replicated across GPUs, the data transfer requirements among GPUs and the computation

decomposition, and (ii) define the application state, the checkpoint location and the ability of

overlap kernel execution with checkpoint operations.

To simplify the design of the data analyzer unit, as well as the design of the framework, and

to allow for providing optional runtime information, we introduced an application structure
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information file that represents information, such as kernel and runtime information, using

XML language.

9.1.2 Kernel (Computation) and Data Decomposition

Kernel decomposition is the building block that allows to exploit data parallelism and reduce

checkpoint overhead. This research exploited the limited synchronization among threads for

achieving computation decomposition, i.e. no synchronization among threads that belong to

different thread groups is supported. The thread blocks were grouped into sets and executed

separately and independent from each other. Depending on the desired feature, i.e. multi-GPU

execution or application-level checkpointing, these sets of thread groups are executed in parallel

in different GPUs or sequentially in the same GPU overlapped with data transfers to reduce

checkpoint overhead.

Multi-GPU execution require local copies of the data in the memory of each GPU. In this

context, the data dependencies and access patterns identified define the data organization, i.e.

decomposed or replicated across GPUs, and the transfer requirements among GPUs.

Since kernel decomposition modifies the global and group identifiers, which are used for

accessing data stored in the GPU memory, we utilized data offsets to guarantee proper data

access. These offsets are computed based on the number of kernel partitions and passed as

parameters to the kernel.

9.1.3 Minimizing the Checkpoint Overhead

The framework developed approached the issue of minimizing the checkpoint overhead in

two steps: first, it finds a location in the application logic among a set of potential locations

where the checkpoint overhead is potentially the lowest, i.e. the checkpoint location, and

second, it calculates an optimal checkpoint interval.

We developed an algorithm for finding the application state at every kernel, which are

potential locations for taking checkpoints. To find the checkpoint location, three metrics are

defined: (i) the number of arrays to checkpoint, when no runtime information available, (ii)

the checkpoint ratio, when relative runtime information is available, and (iii) the minimum



128

checkpoint overhead, when absolute runtime information is available. We represent runtime

information using the XML language as part of the application structure file.

In an iterative application, the checkpoint interval is defined in terms of loop iterations.

We proposed an optimal checkpoint interval for two scenarios: (i) assuming at most one failure

per run, and (ii) with no assumptions about the number of failures per run.

To further minimize the checkpoint overhead, kernel execution and checkpoint operations

are overlapped, which requires computation decomposition. In this context, we analyzed the

effect of the number of partitions on computation decomposition, and it was shown that up to a

number of partitions the decomposition overhead is negligible; beyond that number of partitions

the overhead is noticeable and it is due to the lack of thread blocks, and hence warps, to hide

memory and pipeline latency. We proposed expressions for calculating the number of partitions

based on the size of the application state and the decomposition overhead.

9.1.4 Automated Application Transformation

The last component of our framework performs automatic program transformation to re-

duce the burden of implementing the techniques required to support the desired feature. In

this direction, the kernel and host code are modified to support data and kernel decomposition.

Moreover, multi-GPU execution requires support for multiple devices at the host code level,

which includes defining and associating separate command queues to every device supported,

redefining kernel and memory objects as arrays, and passing parameters to each kernel par-

tition. We avoid race conditions on data transfers by synchronizing events through OpenCL

events. Application-level checkpoint requires support for copying the application state to host

memory. Finally, overlapping computation and communication operations separate queues are

implemented.

9.2 Future Work

The research addressed the issues of exploiting higher levels of parallelism and application-

level checkpoint for single-GPU applications. A framework for enhancing single-GPU applica-

tion was developed, however, some issues remain open.
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9.2.1 Integrating Application-Level Checkpoint and Multi-GPU Execution

At the current state of the design and implementation of our framework to enhance single-

GPU applications, in a multi-GPU system a checkpoint can be taken to save the application

state of every GPU, however, no coordination among them is implemented. This lack of

coordination might result in an increased checkpoint if common data is checkpointed, and,

even more important, no consistency in the global application state is guaranteed. Therefore,

the natural next step in this research is to implement coordination among the checkpoints taken

to guarantee a consistent application state in the checkpoint taken.

9.2.2 Multi-Dimensional Kernels

Currently, our framework supports access pattern analysis and kernel decomposition of

only one dimensional arrangements of thread blocks and threads. In order to support higher

dimensional arrangements, the access pattern analysis has to consider multiple thread and

thread block identifiers. Also, the kernel decomposition needs to consider data organization to

avoid unnecessary communication overhead.

9.2.3 Incorporating Direct Transfers Capabilities into the Framework Design

The PCIe interconnection network in combination with the inability to perform direct data

transfers between GPUs has proven to be a limiting factor for achieving higher speedups in

multi-GPU systems. PCIe bandwidth degrades considerably for concurrent communications.

GPUDirect, a technique supported by Nvidia, exchanges data directly among GPUs without

copying it first to a buffer in host memory. In this context, concurrent transfers do not degrade

considerably the bandwidth because the PCIe interconnection network implements separate

links for concurrent communication, and hence the communication overhead does not increase

as it does with transfers using a buffer in host memory. Unfortunately, GPU direct works only

with GPUs connected to the same IOH. In this context, achieving higher speedups in systems

where the GPUs are connected to the same IOH might only require to perform direct transfers

among GPUs instead of copying data to host memory first. However, for systems where the
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GPUs are connected to different IOHs data transfers still need to copy the information to a

host buffer, hence, the data, and perhaps kernel, decomposition and transfer should be designed

considering this constraint.

In particular, in the 4-GPU system utilized for our experiments the GPUs are connected

to two different IOHs, hence, a two GPU implementation will benefit from this direct transfer

feature; on the other hand, a four GPU implementation still requires copying the information

to the host memory.

OpenCL is a platform independent programming language specification, however, the sup-

port for the different platforms/architectures is provided by the hardware manufacturers through

libraries. Features such as GPUDirect should be supported by a Nvidia library, however, at

the time of this writing there is no support for GPUDirect in OpenCL.

9.2.4 Incorporating Data Information to Reduce Communication Overhead

Relying on fastest links is not the only way to reduce the communication overhead, reducing

the amount of data exchanged between GPUs will reduce the communication overhead. In this

work, the analysis is done at pre-compile time, where only data dependence and access pattern

information can be extracted from the application. In this context, a non-linear access poten-

tially imposes data exchange among GPUs with no further analysis. By providing information

about the application data: (i) a non-linear access pattern might be transformed into a linear

access pattern, or (ii) only required data might be transferred.
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