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Abstract

This dissertation describes a variety of studies meant to improve the analytical
performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation
(LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an
ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed
during the ablation of silicate glass that would cause elemental fractionation during analysis
by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the
improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon
polyatomic ions (MAr") is observed during ICP-MS analysis. Evidence shows that MAr*
ions are dissociated by collisions with background gas in a shockwave near the tip of the
skimmer cone. Method development towards the improvement of LA-ICP-MS for
environmental monitoring is described. A method is developed to trap small particles in a

collodion matrix and analyze each particle individually by LA-ICP-MS.



Chapter 1. General Introduction

Inductively coupled plasma-mass spectrometry
Merits and general information
Inductively coupled plasma-mass spectrometry (ICP-MS) is a common analytical tool

for the determination of trace elements'®, Many fields employ the technique, including

10-12

geology* ®, environmental chemistry® ’, biochemistry®, semiconductors’, nanomaterials
and nuclear chemistry*®. One of the principal advantages of ICP-MS is its extremely low
limit of detection. For a typical solution analysis, the limit of detection varies from the
parts-per-billion (ng/g) range to the parts-per-quadrillion (fg/g) range depending on the
element of interest. While many methods of sample introduction are employed, the most
common method is the nebulization of solution, after which the resulting aerosol is passed
through a spray chamber and injected into the ICP. The plasma then heats the sample to
~7000 K and ionizes the analyte. A mass analyzer separates the ions by their mass and then
detects them.

Inductively coupled plasma

Figure 1 contains a depiction of the introduction system in ICP-MS. On all
commercial instruments, the plasma is generated from argon gas. The plasma is shaped by a
quartz torch made of three concentric tubes. Three different gas flows contribute to the
plasma. Auxiliary (~1 L/min) and outer (~15 L/min) gases create a stable plasma and
regulate the temperature. The sample gas (~1 L/min) carries the aerosol into the plasma; the
sample gas flow rate also impacts the plasma temperature. The plasma is propagated by the

load coil, a metal coil wound 2 to 4 times around the downstream end of the quartz torch.



The load coil carries an RF wave, typically 27 or 40 MHz. The forward power is generally
around 1200 W, depending on the desired plasma conditions. The electromagnetic field
caused by the RF wave excites free electrons in the plasma, which collide with gas and cause
the heating and ionization of argon.

When the sample aerosol is introduced to the plasma through the centermost quartz
tube, it begins heating and undergoes several physical processes. The sample is dried to small
residues, then vaporized and atomized, and finally ionized. Figure 2 contains a photograph of
the plasma during the introduction of yttrium solution, which well-exemplifies these
processes. The highest sensitivity is achieved when ions are withdrawn from the plasma at
the point of the onset of ionization, at the tip of the initial radiation zone (IRZ)™.

Mass spectrometry

After the sample is ionized by the plasma, the ions are extracted and separated
according to their mass-to-charge ratio (m/z) by means of a mass spectrometer. Two types of
mass spectrometers are used in this work, and they operate under different principles.

A magnetic sector instrument (such as the Element, Thermo Finnigan, Bremen,
Germany) separates ions using a high magnetic field. This magnetic field separates ions
based on their momentum — ions with greater momentum curve less than ions with lower
momentum. An electrostatic analyzer (ESA) then refocuses the ions based on their kinetic
energy. At the end of the ESA, ions of the same m/z value are in the same vertical plane. An
exit slit then removes ions to the left and right (i.e., heavier and lighter than the ion of
interest) so only the analyte ions pass. During analysis, the slit width can be changed to
increase the mass resolution while sacrificing sensitivity. After passing through the exit slit,

the ions strike an electron multiplier and are detected and recorded. Some sector field



instruments are equipped with a multichannel detector (such as the Neptune, Thermo
Finnigan, Bremen, Germany). A multichannel detector can simultaneously measure multiple
isotopes rather than quickly switching between them. This improves the precision of isotopic
and elemental ratios.

A quadrupole mass analyzer (such as the XSeries 2, Thermo Fisher Inc, Bremen
Germany) operates by passing ions through an electric field. lons that are not of a desired
mass undergo unstable trajectories and are lost'. A quadrupole has four parallel metal rods
oriented in a square, with the ion beam entering one end. The sum of a DC voltage and an
AC voltage are applied to each of the four rods - opposite rods have the same voltage,
adjacent rods have opposite voltages. The magnitude of the AC and DC voltages are selected
such that only ions of the desired m/z are stable as they pass longitudinally between the rods.
lons of the wrong m/z are ejected from the quadrupole and do not reach the detector.

The magnetic sector and quadrupole mass spectrometers differ in performance in
several ways. At its lowest mass resolution, a magnetic sector instrument has a 10-fold or
better increase in sensitivity over a quadrupole instrument. The best mass resolution
achievable with the quadrupole instrument is ~300 (m/Am). At its highest resolution, the
magnetic sector instrument can achieve resolution of ~12,000. A quadrupole analyzer can
switch between distant masses more quickly than a magnetic sector instrument, which is
desirable during the analysis of transient signals. A magnetic sector instrument is
significantly larger and more expensive than a quadrupole instrument.

Extraction stage

A mass spectrometer must operate at low pressure (generally 10°° to 10°® mbar). An

important stage of ICP-MS is the transitional period between the atmospheric pressure



plasma and the vacuum of the mass spectrometer. Current ICP-MS instruments employ
multiple stages of differential pumping to maintain the low pressure needed in the mass
spectrometer and still admit analyte ions from the ICP'®. A metal sampler cone with a small
aperture (1.2 mm diameter on the Thermo Finnigan Element, a typical instrument) is inserted
into the plasma; gas flows and plasma parameters are controlled such that the sampler cone is
at the tip of the initial radiation zone (IRZ). Behind the sampler cone is a skimmer cone with
a smaller aperture (1.0 mm on the Thermo Finnigan Element). Between these cones is a
region with intermediate pressure, ~1 torr. On some instruments, ions are drawn into the
mass spectrometer by an extraction lens with a negative voltage on it.

lons, electrons and gas comprise a supersonic jet as they travel through and beyond
the sampler cone®’. The skimmer cone disturbs this expansion, and evidence suggests that a
shock wave occurs at the tip of the skimmer cone®®?. Hence at the tip of the skimmer cone is
a region of background gas at low temperature’® and higher pressure than desired in the
intermediate vacuum stage. This shock wave has numerous consequences, including the

scattering of analyte ions and the possible creation or removal of polyatomic ions® 2*.

Polyatomic ions

Concern

Polyatomic ions are a significant complication to ICP-MS analyses. Ideally, the ICP
would produce only singly charged monatomic ions. While the high temperature of the
plasma is very efficient at atomizing the sample, a small fraction of molecular ions remain.
Argon, oxygen, and hydrogen make up the vast majority of the plasma during analysis of

solutions, so most polyatomic ions have one or more atoms of these elements®. The



abundance of a polyatomic ion depends mainly on its bond dissociation energy, the number
densities of the neutral atom and metal ion, and the plasma temperature. The abundances
vary greatly from one element to another, but generally metal oxide (MO™) signal is between
0.1% and 2% of the M”, metal argide (MAr") is 0.01% to 0.1% of the M" signal, and metal
hydride (MH") is less than 0.01% of the M™ signal.

Polyatomic ions are problematic because they have nearly the same mass as some
analyte ions. For example, “°Ar'®0* (m/z = 55.95729) impairs analysis during the
determination of *°Fe* (m/z = 55.93494). Even though these species have the same number of
protons, neutrons, and electrons, their mass is slightly different because the fraction of their
mass that is converted to nuclear binding energy and bond energy differs with the nuclidic
mass. A mass resolution of 2500 is required to separate *°Fe* from “°Ar*®0*. As such, a
quadrupole mass analyzer is unable to separate the two ions and determination of *°Fe* will
be inaccurate. The resolution necessary to separate polyatomic ions from monatomic ions can
range into the hundreds of thousands; e.g., separating *>’Rb* from ®SrO* requires resolution
of ~600,000. No commercially available ICP-MS instrument can separate these ions.

Methods of reducing polyatomic ion abundance

There are numerous strategies to reduce polyatomic ion abundances in ICP-MS.
Some of these methods are used routinely in commercial instruments and in industrial
applications. However, there is no method currently available that completely eliminates
polyatomic ions without some negative impact on analysis.

A sample is usually introduced as a nebulized solution. Efficient desolvation can
effectively reduce the abundance of MO* and MH" ions?. By removing most of the solvent

before injecting an aqueous sample into the ICP, the number densities of atomic oxygen and



hydrogen in the plasma are greatly reduced. By this method, the abundances of MO™ and
MH" ions can be lowered by at least an order of magnitude?’. However, the need to heat the
aerosol during desolvation causes memory effects for some elements, particularly elements
with very low boiling points like mercury or arsenic. Solvent removal does not significantly
change the abundance of metal-argon (MAr") ions. Desolvation also lengthens the washout:
the amount of time needed after completion of an analysis before the signal returns to
background level?’.

Implementing a collision cell can also reduce polyatomic ion abundance®®. A
collision cell may contain a reactive gas, such as hydrogen or ammonia, to chemically
convert an interfering ion into a different polyatomic ion with a different nominal mass. A
reaction cell generally greatly complicates the mass spectrum by creating numerous new
polyatomic species. If used with careful consideration, it can aid the determination of many
elements. Sometimes a reactive gas is employed by analysts to solve one specific problem;
for instance, introducing oxygen to a collision cell can improve the accuracy and limit of
detection during vanadium measurement®?, but would result in poor performance for most
other analytes.

Alternatively, a collision cell can be filled with an inert gas (usually helium) to
remove polyatomic ions by kinetic energy discrimination (KED)?. Figure 3 contains a
depiction of the Thermo XSeries 2 during KED mode. In this approach, a positive attenuating
voltage is added to the quadrupole - just beyond the collision cell - so only ions with
sufficient kinetic energy can pass to the mass analyzer. Initially, ions of the same mass have
roughly equal kinetic energy™. While the ions pass through the collision cell, collisions with

helium atoms reduce their kinetic energy. Polyatomic ions are larger than monatomic ions



and undergo more collisions, so they approach the attenuating voltage with lower average
kinetic energy. The attenuating voltage is selected such that polyatomics have insufficient
kinetic energy to pass, but a fraction of the desired monatomic ions are above the threshold.
Subsequently, only monatomic ions reach the mass spectrometer. This method can
successfully remove any polyatomic ion from the ion beam; however, it also impacts the
sensitivity of the analysis. In particular, a collision cell does not transmit light analyte ions
(e.g., "Li* or °Be™) well because they are susceptible to scattering. Fortunately, no polyatomic
ions exist at very low mass.

Origins and behavior of polyatomic ions

Investigating the origins of polyatomic ions can aid the development of strategies to
reduce their abundance. One approach to doing this is to calculate the gas kinetic temperature
(Tqas) Of the ions, a method developed by Houk and Praphairaksit®™. If Ty is approximately
plasma temperature, 4000 to 6000 K, then polyatomic ions are present in abundances
expected in the plasma®. If Tgas 1S higher than plasma temperatures, polyatomic ions are
removed at some point after they leave the ICP. If T, is below plasma temperatures, then
additional polyatomic ions are created downstream of the ICP.

Tgas is calculated from the signal ratio between a polyatomic ion and the monatomic
ion that results from its dissociation®. An individual T, value can be measured for every
polyatomic ion. If most polyatomic ions give the same Tg.s, then those polyatomic ions likely
originate from a region that is at that temperature. Such a result could help determine the
stage at which polyatomic ions are created.

Several publications report inconsistencies between Tg.s measurements® %>,

Recently, Witte and Houk?* reported T values for MAr* ions ranging from 8,000 to



227,000 K. The wide variation of these temperatures is as intriguing as their very high
magnitude. The extensive variability between the values cannot be explained by
thermodynamic principles; some non-equilibrium process influences the abundance of
polyatomic ions. The high magnitude of the temperatures implies that MAr™ ions are present
at abundances much lower than expected. The fifth chapter of this dissertation is an
investigation to determine if MAr" ions are eliminated by collision induced dissociation

(CID) during the ion extraction process.

Laser ablation-ICP-MS

Merits and general information

In 1985, Gray*’ established laser ablation (LA) as a method of sample introduction in
ICP-MS. Laser ablation allows the direct analysis of solid samples — a high energy laser
vaporizes a small volume of the sample, resulting in an aerosol which is entrained into an
argon flow and carried to the ICP. The limit of detection for LA-ICP-MS varies from the
ppm (Hg/g) range to the ppt (pg/g) range, depending on the element of interest®. The signal
stability is generally worse during LA analysis than solution analysis. When possible, it is
desirable to analyze a solid sample by digesting it in acid, diluting the acid, nebulizing the
solution, and then injecting it into the ICP.

Dissolving the sample, however, loses spatial information. Laser ablation is capable
of performing spatial imaging and determining the homo- or heterogeneity of trace
elements®**!. LA also holds an advantage over solution ICP-MS when the sample is
exceedingly difficult to digest and to keep in solution*’. For some investigations, laser

ablation is preferred because it is minimally destructive — for instance, when analyzing



emstones®®, artwork®®, or historical artifacts*. For these reasons, LA-ICP-MS is used in
g

40, 41

many fields including geology*® ', biology 18,49,

, and forensics

Fractionation

A literature review reveals that different authors use the term ‘fractionation’ to
describe related but subtly different phenomena®®>*. In this dissertation, fractionation is a
broad term for the processes by which elemental ratios of a solid sample are determined
inaccurately by LA-ICP-MS. The degree of fractionation depends on the matrix of the
ablated material, so an external standard must be matrix-matched to the sample or analysis
will be inaccurate®. Fractionation is a severe limitation on the capability of LA-ICP-MS as a
tool for quantification, and the mitigation of fractionation would make LA-ICP-MS a more
attractive analytical technique™.

Fractionation occurs due to many different processes. The presence of large particles
(>200 nm) in the aerosol introduced into the ICP contributes to fractionation®®>®. This occurs
due to the mechanism by which particles vaporize in the ICP>. Elements with low boiling
points vaporize earlier than elements with high boiling points. If a particle does not vaporize
completely before it reaches the sampler cone, then the portion of volatile elements that
vaporize from the particle will be greater than the portion of refractory elements that
vaporize®®. Thus, a non-stoichiometric fraction of the analyte enters the mass spectrometer —
volatile elements are overrepresented. The incomplete vaporization of sample by the ICP is
sometimes called plasma-induced fractionation.

Therefore, one way to reduce fractionation and improve LA-ICP-MS is to produce an
aerosol with more uniform and generally smaller particles, and particularly to remove the

largest particles. Optimizing the laser spot size, fluence (J/cm?), and power density (W/cm?)
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can reduce the average particle size®’. Physical removal of the largest particles from the
aerosol can be achieved by cascade impaction®, differential mobility>*, and other methods of
filtration®® .

The ablation process itself is also a source of fractionation; that is, the aerosol
generated by laser ablation can have different composition than the actual solid sample®* %,
One crucial source of laser-induced fractionation is preferential vaporization of volatile
elements during laser ablation. This is particularly observed when the laser energy is not
absorbed with complete efficiency — if some energy is transferred to heating the sample
material, volatile elements tend to vaporize more than refractory elements®. Consequently,
transparent samples suffer worse fractionation effects than opaque samples®. Ablating with a
laser in the UV region, rather than IR or visible light, generally improves ablation
efficiency”” ®%. Sample matrices that transfer heat quickly (i.e., metals) suffer worse
fractionation effects than matrices that transfer heat slowly (i.e., silicates), because sample
melting and preferential vaporization are more extensive in the former case.

Laser ablation can produce aerosol in which large particles have different elemental
composition than small particles, usually attributed to the mechanism of particle
recondensation®™ ®*. This effect poses a problem because particles of different sizes are not
transported to the ICP with the same efficiency®. Likewise, large particles are not processed
as thoroughly as small particles by the ICP. This results in a discrepancy between the ion
ratios measured by ICP-MS and the actual composition of the sample.

Yet another manifestation of laser-induced fractionation occurs because of

redeposition of material at the rim of the ablation spot®" ®® ®’. This redeposition is not a

stoichiometric process. If the laser beam is moved laterally across a surface it ablates the
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redeposited material as well as the intended sample. The resulting aerosol will not properly
represent the sample. Due to this effect, in fact, the measured signal ratios between elements
can change over the course of an analysis even if the sample is homogeneous®".

Laser ablation under helium atmosphere

Carrying out laser ablation in a helium atmosphere improves sensitivity and precision
and reduces the effects of fractionation during LA-1CP-MS>" %% Introduction of 100%
helium to the axial channel will extinguish most ICPs, so typically ablation is carried out
with a low helium flow (perhaps 0.6 L/min) and argon makeup gas (perhaps 0.5 L/min) is
added between the ablation cell and the plasma. A number of processes change when
ablation is carried out in helium, most of which are beneficial to analysis.

When ablation is performed in argon, the laser induces a plasma just above the
sample surface. This plasma rapidly expands just as the sample is vaporized by absorbed
laser energy. This expansion results in heating of the remaining sample and redeposition of

sample material

. Helium requires more energy to ionize than argon, so the laser-induced
plasma and sample redeposition are less extensive when ablation is performed in helium
rather than argon’®. This improves the sensitivity of LA-ICP-MS. Furthermore, this reduces
laser-induced fractionation, because redeposition is a non-stoichiometric process™" ®°.
Helium has a higher thermal conductivity than argon. Helium cools the sample more
quickly than argon during ablation, which reduces sample melting and preferential
vaporization of volatile elements. The high thermal conductivity of helium also induces the

formation of smaller particles®® than argon, which reduces the effects of ICP-induced

fractionation. Evidence also shows that helium reduces the average particle size introduced to
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the ICP because helium is lighter than argon and cannot transport the largest particles
generated by laser ablation™.

Femtosecond laser ablation

The laser pulse length is a critical parameter in the efficiency of laser ablation’®. Heat
transfer across a solid medium generally occurs in the picosecond regime®2. Therefore,
femtosecond laser pulses only minimally heat a matrix; absorbed laser energy goes more
fully towards the vaporization of sample. Sample melting is reduced during femtosecond
LA™, thereby reducing preferential vaporization of volatile elements. The aerosols produced
by femtosecond laser ablation have a lower average particle size than those produced by
nanosecond LA™, Femtosecond ablation also produces a more uniform particle size
distribution, with fewer abnormally large particles”. As a result, femtosecond ablation
produces stable ion signals and more accurate and precise elemental ratios than ablation with
ns lasers’.

Dissertation organization

The first chapter of this dissertation is an introduction to ICP-MS and LA, including
basic figures of merit for the techniques, characteristics of and technical information about
the techniques pertinent to the research described in the dissertation, and current issues
limiting the techniques. Chapters 2 and 3 are manuscripts prepared for submission to The
Journal of Analytical Atomic Spectroscopy. These manuscripts describe an examination into
the behavior of droplets and laser-generated particles in the ICP with a high speed, high
frame rate digital camera. Chapter 4 is a manuscript accepted for publication by
Spectrochimica Acta Part B: Atomic Spectroscopy. This manuscript describes a set of

experiments which provide evidence that metal-argon polyatomic ions are lost due to
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collision induced dissociations in ICP-MS. Chapter 5 is a technical report submitted to the
US Department of Energy describing the experiments performed during a visit to Oak Ridge
National Laboratory in February, 2009 and related experiments performed at Ames
Laboratory preceding and following that visit. These experiments compare femtosecond LA
to nanosecond LA and scanning sector field ICP-MS to multiple ion collection sector field
ICP-MS for the isotopic analysis of uranium oxide particulates. Chapters 6 and 7 are
compilations of reported to the US Department of Energy in quarterly reports and other
various reports. Chapter 6 describes experiments which introduce two novel matrices to the
field of environmental contamination detection by LA-ICP-MS. Chapter 7 describes torch
injector and skimmer cone developments designed for the improvement of LA and solution

ICP-MS. Finally, chapter 8 presents general conclusions of the dissertation.
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Figure 1. Depiction of the ICP torch and differential pumping stage of ICP-MS.
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Figure 2. Photograph of the ICP during the introduction of a high concentration yttrium
solution. Emission is observed from YO (red), neutral yttrium (white) and yttrium ions
(blue). The sampler cone is visible on the right end of the photograph. Sensitivity is
optimized when the sampler cone is at the tip of the IRZ (unlike in this photograph).

Another phenomenon of note is the halo of red emission at the skimmer cone. This occurs
due to the reformation of YO near the skimmer cone, because the gas kinetic temperature of
the plasma is lower near the skimmer cone. This region is called the boundary layer.

This photograph is courtesy of Varian, Inc (now Bruker).
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Figure 3. Depiction of the cones, hexapole, and quadrupole on the Thermo Xseries 2 ICP-
MS. The collision cell is intentionally offset relative to the quadrupole and the sampler and
skimmer cones to deter the transmission of neutral species.

When running in KED mode, a small amount of helium is introduced to the hexapole.
Polyatomic ions undergo more collisions than monatomic ions, and they approach the
quadrupole with less kinetic energy than monatomic ions. A portion of polyatomic ions do
not have sufficient kinetic energy to pass into the quadrupole, and are lost. A greater fraction
of monatomic ions pass this threshold than polyatomic ions.
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Chapter 2. Digital photographic studies of vaporization and atomization
in the inductively coupled plasma with fast shutter speed and
high framing rate. Part I: Emission clouds surrounding wet droplets from

a pneumatic nebulizer and solid particles from laser ablation

A manuscript submitted for publication in The Journal of Analytical Atomic Spectroscopy
Chris H. Ebert, Nathan J. Saetveit, Daniel S. Zamzow, David P. Baldwin,

Stanley J. Bajic, and R. S. Houk

Abstract

The emission behavior of individual droplets and particles in an inductively coupled
plasma (ICP) is characterized by high-speed images and videos. With a camera frame rate of
5,000 or 10,000 fps, the emission cloud surrounding an individual droplet or particle is
captured in 8 to 12 successive images, allowing examination of its entire lifetime in the
plasma. Individual yttrium oxide particles (original particle size ~10 um) are introduced by
entraining Y,03 powder into the sample gas flow. Particles are also generated by laser
ablation (LA) of a) a hand-pressed Y,03 pellet or b) NIST 610 silicate glass using a
frequency doubled Nd:YAG laser (532 nm). Large droplets from concentrated yttrium
solution exhibit YO and neutral yttrium emission as far as 2 cm beyond the initial radiation
zone (IRZ), downstream from the typical sampling point for ICP mass spectrometry (MS).
The droplet clouds consist of a core of red yttrium oxide emission surrounded by a thin shell
of neutral yttrium emission, then a thick cloud of blue Y™ emission. This spatial pattern is

characteristic of a kinetic controlled process as yttrium oxide is vaporized, atomized, and
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ionized. Large solid Y,03 particles undergo neutral yttrium emission for the entire length of
the plasma, indicating that some particles are not fully atomized and ionized. Particles
created by laser ablation of NIST 610 exhibit distinct emission regions from sodium and
calcium, often separated by more than 1 cm and more than 300 ps. This is attributed to
sequential vaporization of the two elements, a detrimental phenomenon during LA-ICP-MS

analysis.

Introduction

The inductively coupled plasma (ICP) is an established, highly sensitive source for
either optical emission spectroscopy (OES) or MS*. Visual studies of droplet and particle
behavior in the ICP can lead to improved methodology and better analytical capabilities of
the technique?®. The behavior of small particles and individual droplets in the plasma is of
particular interest considering the emergence of ICP as a tool for the analysis of single
species such as biological cells, colloids, and nanoparticles that yield fast transient signals’™*.

Solid-sample laser ablation is a growing subset of ICP-MS applications, as LA
greatly reduces sample preparation, is minimally destructive, and can provide spatial
information®?’. Fractionation, defined in this work as the measurement of signal ratios for
different elements that are not easily related to the concentration ratios in the sample, limits
the analytical performance of the technique'®?. Fractionation is a consequence of multiple
processes in LA-ICP-MS. It can occur during aerosol generation at the sample surface: by
preferential vaporization of volatile elements and by redeposition of material caused by the

expansion of laser-induced plasma above the sample surface® 2*2*, The creation of aerosol

that is not representative of the sample is often called laser-induced fractionation.
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Fractionation can also occur during atomization and ionization in the ICP due to
incomplete vaporization of the sample, which is exacerbated by large, micron-sized

particles™ %> 2?7 This

is referred to as plasma-induced fractionation. Sufficiently large
particles (generally >200 nm) are only partially vaporized before they reach the MS sampler
cone”®. These overly large particles contribute to fractionation more than small particles,
because refractory elements in them are not efficiently vaporized and ionized so they are
under-represented during analysis.

The degree of fractionation changes depending on the matrix of the ablated solid, so
inaccuracy occurs when attempting quantification without matrix-matched external
standards®® ®. Attempts to quantify aerosols produced by laser ablation with solution
standards have demonstrated reasonable success®*. However, the difference in behavior of
droplets in wet plasma and laser-created dry particles make the comparison non-ideal.
Moreover, this method is still vulnerable to laser-induced fractionation.

Over the last decade, ongoing research in many laboratories aimed at reducing the
extent of fractionation has greatly improved the analytical capabilities of LA-ICP-MS.
Efforts to mitigate fractionation generally do so by two approaches: improving ablation
efficiency and reducing the particle size distribution. Use of UV lasers, optimizing the laser
fluence, and homogenizing the laser energy profile each improve the absorption efficiency of
laser energy™® %34, Ablating in a helium atmosphere reduces laser-induced plasma and
sample redeposition, improves ablation efficiency, aids the generation of smaller particles,
and reduces the transmission of large particles®**’. Using a femtosecond pulse length laser
38-40.

reduces sample heating™™"; a thorough review of the benefits of fs LA is included in the

accompanying paper*'. Other contributions to alleviate fractionation include the physical
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removal of large particles from the laser generated aerosol by means of differential
mobility*?, cascade impaction® or a tightly coiled tube®.

Previous photographic studies contribute to an understanding of droplet and particle
behavior in the ICP. For instance, Winge et al.  used a high-speed camera to study yttrium
emission from droplets of various sizes in the ICP. They observed steady emission in the
initial radiation zone (IRZ) and normal analytical zone (NAZ) attributed to yttrium from fine
droplets that quickly dry as they enter the plasma. Discrete clouds of more intense emission
from larger droplets were found in the axial channel and off-center. These droplets actively
dried as they travel through the plasma and sometimes end in a rapid expansion or explosion
of the droplet cloud. Yttrium oxide slurries (3.2 um or 8.5 um diam.) were also introduced
into the ICP; these particles produced white streaks that survived the entire length of the
plasma.

These early photographic studies used expensive film, the development of which was
slow and costly. Aeschliman et al.® presented digital photographs and movies of the ICP
during the introduction of particles generated by either solution nebulization or laser ablation.
They found that many of the ablated particles traveled the full length of the plasma without
being completely vaporized. They suggested these surviving particles can clog the cones and
even damage the entrance slits of the mass spectrometer. They observed that atomization
occurred at various axial positions and inferred that the laser aerosol contained particles of
widely different sizes. They concluded that the wide particle size distribution was likely

responsible for a number of previously observed problems '

, such as preferential
vaporization and different optimum plasma conditions for different elements and/or sample

matrices.
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Olesik et al. introduced monodisperse droplets to the ICP to investigate their
behavior® > *. Consecutive measurements by OES captured images of emission from a single
droplet for its entire lifetime in the plasma. They also employed laser-induced fluorescence to
estimate the mass of analyte contained in each droplet. They discussed the rates of droplet
drying and diffusion, dried particle vaporization and analyte ionization. Among many other
important observations, Olesik and co-workers showed that while a droplet dries in the
plasma, the sample vaporizes and diffuses faster than it can be ionized.

The behavior of droplets and particles in the ICP may be of interest to those analyzing
single particles in droplets. The analysis of suspended particles by ICP spectroscopy has been

4547 to newer work on

a subject of research for decades, from older research on slurries
nanoparticles'® . In a recent study, Niemax et al.*! dried monodisperse droplets to introduce
individual dry particles to the plasma. They compared emission intensity from droplets that
dry into residues of predicted mass to the emission intensity from gold and silicate
nanoparticles. They found they could distinguish nanoparticles of 20% difference in mass,
and suggested that variability in particle trajectory limits the accuracy of the measurement.
Gunther et al. measured gas and particle velocities in the ICP from laser ablation
using particle image velocimetry®®. They found particle velocities could be varied
significantly by changing the fraction of helium in the sample gas, the gas flows, the injector
diameter, and the forward power. They compared the velocity of laser-generated particles to
measured sensitivity in ICP-MS analysis; decreasing the particle dwell time decreased the

sensitivity for M" ions from refractory elements, while the sensitivity for volatile elements

was relatively unchanged.
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Our previous digital photographic studies® of particle and droplet behavior in the ICP
implemented either a still camera or a video camera with a fast shutter speed but a slow
frame rate. The present study shows improved images and movie clips of an open ICP taken
with a 5,000-10,000 fps shutter speed camera. A single droplet or particle produces a
spherical emission cloud, as described by Olesik and co-workers®, which can be observed in
many successive frames during its lifetime in the plasma. The emission behavior of
individual particles in laser-induced aerosols is compared to the emission zones observed
during solution nebulization. We discuss the possible repercussions the observed phenomena
have on the analytical capabilities of ICP-MS, such as how they impact sensitivity, signal

stability, calibration and fractionation using LA.

Methods

The experiments performed used an ICP (RF Plasma Products ICP-16L, 40 MHz)
that was similar to, but not the same device as, the plasma used by our group in previous
photographic studies (27 MHz)°. The plasma flows vertically; images are sometimes rotated
90 degrees to conserve space. While the present work largely discusses how observed
phenomena impact ICP-MS, this is an open plasma with no sampler cone or vacuum system.

The ICP conditions are listed in Table 1. The outer diameter of the torch is 20 mm,
which is often used to estimate sizes and distances since it is visible in all images. The torch
has a tubular quartz injector (1.4 mm ID x 15 mm long).

An Olympus i-Speed?2 video camera captured videos and images of droplets and
particles. A Navitron 25 mm focal length lens focused light from the plasma onto the camera.

Images were recorded at 5,000 fps (320x240 pixels) or 10,000 fps (224x168 pixels),
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depending on whether image quality or frame rate was more important for the experiment. A
shutter was used to shorten the exposure time to 20 ps unless otherwise noted.

Samples were ablated with a Big Sky CFR-200 laser, frequency doubled to 532 nm.
The laser operating parameters are listed in Table 1. The laser beam was focused at the
sample surface. The ablation cell was a homemade, double-walled quartz cell. The ablated
aerosol passed through tygon tubing (4.76 mm ID x 6 m long) from the ablation cell to the
plasma torch. Ablation experiments were always single-spot analyses with approximately
one second of ablation.

For solution samples, three different sample introduction systems were used. To
produce an ICP typical of that used in most ICP-MS experiments, a concentric nebulizer
(PFA400, Elemental Scientific) with a peristaltic pump sprayed 10,000 ppm solutions at an
uptake rate of 400 pL/min. The images included in this work were taken during rinse-out as
the analyte solutions were being washed out by the blank. The particular images shown
below were chosen because they are just intense enough to show all the emission zones
without saturating the camera. The emission zone locations do not noticeably drift during the
rinse-out, only the emission intensity changes.

To deliberately introduce very large droplets to the plasma, a 10,000 ppm yttrium
solution was aspirated at 1.9 mL/min with a Meinhard nebulizer at 35 psi argon pressure
(approximately 0.65 L/min). This sample uptake rate was faster than typical for ICP-MS
experiments, but it was helpful to generate many overly large droplets to study the desired
phenomena. Finally, to mimic the emission zones from LA, dried aerosols from solutions of
yttrium, sodium, calcium and silicon were introduced to the plasma using an ultrasonic

nebulizer (CETAC, U-5000 AT") with a single-pass spray chamber and desolvator.
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Solid Y03 (original particle size ~10 pm) was introduced to the plasma by two
different methods. The first was entraining Y,Os particles into the axial channel by shaking a
vial of the powder (with the largest particle size ~10 microns) with the sample Ar gas passing
through it. This direct introduction was compared to laser ablation of a loose hand-pressed
pellet of Y,03 mixed in a 1-to-1 ratio with a binding agent (Spectroblend powder, Chemplex
Industries Inc., Palm City, FL). NIST 610 glass was introduced to the ICP by laser ablation;

this material is nominally 33.7% silicon, 10.4% sodium, and 8.6% calcium by mass™.

Results and discussion

During the course of experimentation, several hundred videos were recorded during
the introduction of solutions or ablated aerosols. Every video and image cannot be included
due to space limitations; the figures and videos reported in this work are those that best
illustrate the interesting phenomena that occurred repeatedly during the experiments. In this
study, particles and droplets are periodically described as ‘large’. This term ‘large’ does not
define a specific size; rather, a particle or droplet is considered ‘large’ if it creates a
distinguishable cloud that perturbs the normal, steady-state emission background.

Droplets from nebulized yttrium solutions

Plasma photos during introduction of yttrium and blank water solutions are shown in
Figure 1. The photograph taken during nebulization of pure water blank (Fig. 1a) shows
slightly blue plasma emission - a property of the camera which tends to bias the colors. The
familiar axial channel is darker because it is cooler than the rest of the plasma.

Yttrium has distinct visible emission spectra for excited YO (deep red), neutral

yttrium (pale red, appears white) and Y™ (blue). The emission profile of yttrium shows
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predominantly YO emission in the initial radiation zone (IRZ) and Y™ in the normal radiation
zone (NAZ) with a distinct region of neutral yttrium emission at the outer boundary of the
IRZ. During ICP-MS experiments the signal is maximized when the ICP is located so the tip
of the IRZ is just upstream from the sampler cone orifice.

Previous studies® ® showed a “streaky” zone on center just downstream from the IRZ,
which was attributed to the juxtaposition of clouds from dried particles. This zone is noted
by the gray arrow in Fig. 1.

Video 1 (5,000 fps) shows a set of clouds from many large droplets from 10,000 ppm
yttrium solutions for the duration of their time in the plasma. The sequence in Fig. 2 shows
the first eight consecutive frames from Video 1. The sequence displays the fate of an
unusually prominent cloud from a single individual droplet as it traverses the ICP. The
droplet itself is too small (50 um diam. or less) to be detected; the camera can only observe
the cloud of yttrium cooled by passage of the droplet* °. An expanded image of the frame at
t = 0.6 ms is also pictured (Figure 2b). This sequence is presented because this droplet cloud
clearly exemplifies the different emission regions observed. There is a core of red radiation
ascribed to YO emission, with a shell of “white” emission attributed to neutral Y lines.

As the droplet travels downstream, the cloud appears to get smaller due to several
processes. The cloud diffuses, the outer shell of neutral yttrium is ionized so it is no longer
distinguishable from Y™ emission in the NAZ, and the core of the droplet heats so the YO
dissociates to neutral yttrium. This progression is previously described by Olesik et al*. This
same progression presumably occurs in small droplets as they enter the ICP, but the events
are less prominent to the camera. The cloud of neutral yttrium does not appear to expand

much until t = 1.0 ms; in fact the cloud gets smaller until t = 0.8 ms. This indicates that
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yttrium is ionized as quickly as it diffuses from the center of the droplet. The droplet core is
apparently still present even when the droplet is some 10 mm downstream from the end of
the torch (t = 0.8 ms). This is well beyond the sampling point in ICP-MS, so the extraction of
Y™ from this droplet would have poor efficiency compared to a smaller droplet. This would
also result in the deposition of residue onto the extraction system of a mass spectrometer.

Video 1 also displays a wispy red plume at the downstream end of the plasma due to
YO emission. Yttrium oxide is recreated at the end of the plasma by reaction between Y*
ions and O, from entrained air, which cools the plasma and increases the gas density of
oxygen. This YO cloud exhibits the swirls and eddies seen previously. This entrainment of
air causes the familiar audible “whine” of the ICP?.

Entrainment of yttrium oxide powder into sample gas flow

Figure 3 contains a series of frames recorded during the manual introduction of
yttrium oxide powder. This method of sample introduction has an advantage over laser
ablation for the purposes of this study because the IRZ and NRZ contain no background
emission of any yttrium species. Instead, emission is confined to distinct analyte clouds
vaporized from the individual particles as they are heated during their travel through the
plasma. Furthermore, by this method the particle frequency is lower than during ablation of
an Y,0j3 pellet, so tracking the fate of one individual particle during its course through the
plasma is easier.

The particle cloud observed in Figure 3 exhibits a faint core of neutral yttrium
emission and a surrounding sphere of blue Y emission. The plasma is dry and yttrium oxide
emission is faint in the particle cloud until the particle reaches the end of the plasma, where it

meets entrained oxygen from room air and starts cooling. While the cloud moves
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downstream and expands, Y(I) emission intensifies. There are two competing processes
occurring: the neutral yttrium atoms heat, diffuse away from the center of the cloud, and are
converted to Y™ ions. At the same time, the particle at the center of the cloud evaporates,
depositing additional cool yttrium in the cloud core. Neutral yttrium emission persists in the
cloud until at least 20 mm downstream from the end of the torch at t = 0.9 ms, so the particle
contents are not fully vaporized and ionized until well beyond the sampling position in
ICP-MS. As a result, particles of various sizes vaporize and ionize to different degrees before
they reach the sampler cone during analysis, contributing to signal instability and
fractionation.

The particles recorded during these experiments travel at approximately 20 m/s.
Particle velocity was calculated using the frame rate and the number of pixels particle clouds
moved between frames. This finding is slower than a previously published measurement of
27 to 30 m/s from our group®, but the sample gas flow in the present work is ~1.0 L/min,
lower than the 1.5 L/min used in the previous study. These previous studies estimated
particle velocity by measuring the elongation of a particle track and dividing by the exposure
time, so this difference in method could also explain the inconsistency. The examined
particles do not appear to change velocity as they traverse the ICP; however, the spatial
resolution is poor when recording at 10,000 fps so a small change in velocity is not easily
measured.

Laser ablation of yttrium oxide powder

Aeschliman et al.® noted that LA of this type of yttrium oxide pellet mainly removes
material by chipping large “flakes” from the sample, rather than true ablation of material

directly under the laser beam. Figure 4 shows the ablation cell while the laser impacts the
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sample and the assembly of particles created. The aerosol includes visible large particles and
agglomerates. The large, asymmetric flakes of material were probably ejected by laser-
induced vibration of the sample. Videos of the ablation cell during ablation show particles
swirling slowly during the rinse-out phase (data not shown). This process is thoroughly
described by Giinther et al.*®

Figure 5 contains successive frames of a typical cluster of particles generated by laser
ablation of a loosely packed Y,0; pellet and binder mixture. Video 2 (10,000 fps) shows
many such particles and clusters. Like when the sample was introduced as a powder, far
more emission originates from discrete clouds of yttrium surrounding large particles than
from continuous emission in the IRZ or NAZ. Furthermore, an individual Y,03 particle
produced by laser ablation behaves much like a particle introduced by powder entrainment.
The particle cloud has an emission intensity gradient across its diameter and significant time
IS necessary to vaporize the particle and heat the core. White emission from neutral Y or YO
persists in the center of the cloud until the particle travels at least 20 mm past the end of the
torch. Consequently, ICP-MS measurements of such transient analyte would be susceptible
to plasma-induced fractionation, i.e., there is no single sampling position that is good for
particles of such a large range of sizes.

Solution emission profiles of Si, Na, and Ca

The glass samples contain large amounts of SiO,, CaO and Na,O. Dried solution
aerosols from these elements were used to characterize the visual appearance of the plasma
when fine particulates of the elements were introduced. Typical individual images of the ICP
during introduction of highly concentrated Si, Na, and Ca solutions and a mixed solution of

Si, Na and Ca are shown in Figure 6. Si (1), Si (11), and SiO have little emission in the visible
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spectrum®*®%, The observed emission in the outer edge of the IRZ is attributed to a weak
neutral silicon emission line at 390 nm or a stronger emission line at 288 nm. This second
wavelength is not visible to the naked eye, but may be detected by the camera and displayed
in the visible region.

The spatial emission profile for sodium (Fig. 6b) has emission localized to the IRZ,
and only a small amount of emission in the normal analytical zone. Neutral sodium emits at
589 nm (yellow-orange), but ionized sodium does not emit in the visible region. As expected,
sodium is almost entirely ionized beyond the tip of the IRZ.

Neutral calcium (Fig. 6¢) emits at 422 nm, in the purple-blue region. Singly-charged
calcium emits at 393 and 397 nm, in the purple region. The profile of calcium contains
appreciable Ca (11) emission in the NAZ. It has less visible emission in the IRZ, only a faint
halo of neutral calcium emission at the outer boundary of the zone. A possible cause of the
lack of emission in the IRZ by calcium could be that most calcium in this zone is bound to
oxygen or hydroxide. CaO has weak emission lines in the blue region®, but they may not be
visible because the camera imparts a slight blue tinge to the entire plasma.

The appearance of the plasma is different when all three elements are atomized and
ionized together (Fig 6d). The observed color from overlapping emission of sodium and
calcium in the IRZ is magenta. Emission in the NAZ is dominated by purple Ca(ll); the
sodium atoms are ionized here. Silicon emission is not discernible in this mixture because
visible emission from sodium and calcium are more intense, which simplifies the

interpretation of results during the ablation of NIST 610.
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Ablation of NIST 610

Figure 7 and Video 3 present images of clouds from discrete particles generated
during the ablation of NIST 610 glass. A faint trace of continuous calcium emission is visible
in the NAZ. This is evidence that many small, indistinguishable particles are generated
during the ablation of glass. These small particles vaporize and the resulting atoms diffuse
quickly when introduced to the plasma. This contrasts with the ablation of the yttrium oxide
pellet, when the perceived emission is localized in large distinct particle clouds. For glass,
the steady-state background contains little or no sodium emission; presumably, sodium in
these small particle clouds is already ionized before the clouds come into the = field of vision
of the camera.

Along with the background emission from many small particles are intermittent larger
particles that generate distinct emission clouds. These particles exhibit separate regions of
calcium and sodium emission in different zones than the overlapping emission profiles
observable during introduction of the multielement solution. During LA, the IRZ is a thin,
scraggly line along the central axis, in contrast to the wide, brightly colored zone during
solution nebulization.

The particle cloud observed in Figure 7 is typical of that from the many large
particles generated in this experiment. Orange sodium emission is observed from the particle
cloud during the first 200 to 300 us that it is in view of the camera. For about 5 subsequent
frames there is no discernible emission from the cloud surrounding the large particle. From
this particular particle, calcium emission is not observed until t = 0.8 ms, nearly 20 mm
downstream of the end of the torch and well beyond the sodium emission zone and the

sampling position used in ICP-MS. It is possible that the particle cloud is, in fact, emitting
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calcium during the intermediate 300-500 ps, but the emission is not distinguishable from the
background calcium emission in the NAZ. However for this particle and many like it,
calcium emission is most intense when the particle is beyond the faint, continuous emission
of the NAZ. For instance, the calcium emission from the particle cloud at t = 1.0 ms is much
more intense than the NAZ background.

This phenomenon is attributed to the sequential vaporization of sodium and calcium
(or their compounds) from a large particle. As the particle heats toward plasma temperature,
it first reaches the temperature where sodium is vaporized. For a period of time, the particle
heats more slowly while the sodium removes energy to convert to vapor. Little calcium is
vaporized during this time. After most of the sodium evaporates the particle heats further, but
it takes several hundred microseconds before it becomes hot enough to vaporize calcium.
During this interval sodium is already ionized, but calcium remains in the particle so calcium
emission is not detected by the camera. The detrimental consequences of this event have

been discussed at length'® #4243 |f g

laser-generated particle is too large, the relative
signals for different elements at a single sampling position during ICP-MS do not represent
the actual composition of the ablated sample.

This effect can be further observed in Figure 8a. Att = 0.0 ms, a large particle emits
sodium just above the load coil (yellow-orange arrow). A second particle cloud is visible just
upstream from the first, beginning at t = 0.2 ms. This second particle, however, emits only
calcium (purple arrow). For the entire length of the plasma, each particle only exhibits
emission from one element.

It is tempting to claim the elemental composition of these particles are different, an

instance observed by Kuhn et al. during the ns-laser ablation of silicate glass and attributed to
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laser-induced fractionation®®. However, this incident could also occur because the two
particles have similar initial composition but vastly different size. The particle at the center
of the orange cloud is very large and sodium is still being vaporized as it exits the field of
vision of the camera. Meanwhile, the particle at the center of the purple cloud is smaller and
all the sodium it contained was already vaporized and ionized before it came into the frame.
This second explanation is a manifestation of plasma-induced fractionation. Examination of
many such sequences containing these particle clouds suggests that the primary cause of this
phenomenon is the sequential vaporization of sodium and calcium from an individual particle
that initially contains both elements. In any event, the apparent composition of these particles
would differ dramatically when analyzed by ICP-MS, even though they came from the same
sample.

Careful inspection of the orange cloud in Figure 8 reveals another interesting
phenomenon. The sodium-emitting cloud is not in the middle of the axial channel as it first
comes into view. The solid particle itself stays slightly left of center as it traverses the
plasma, but once the sodium is vaporized the atom cloud drifts toward the center of the
plasma. Particularly at t = 0.2 ms (Figure 8b), bright emission from the core of the particle is
not in the center of the particle cloud. By t = 0.4 ms, the cloud looks centered. This is
attributed to the boundary between the axial channel and the outer gas. After being vaporized
from the particle, the analyte cannot move into the hotter outer gas as easily as it diffuses into
the cooler, laminar flow axial channel, so the orange cloud appears to correct its course. The
particle itself is too small to be seen, but it likely stays off-center for its entire transit through

the plasma.
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This observation also helps explain the observation of short-lived signal spikes during
LA-ICP-MS analysis*® **. The sampler-skimmer combination transmits ions from a small
zone just in front of the sampler. The diameter of this region is approximately equal to the
skimmer diameter>. When particles are slightly off-center, the only metal ions extracted and
analyzed are those that diffuse to the center of the plasma. If a particle is directly on center,
its vapor cloud is extracted more efficiently, and a much larger fraction of its ions passes
through both the sampler and skimmer cones. This yields a very sharp signal spike lasting 1

ms or less® F19-3

. This occurrence will also impact single-particle analysis if the ions from
occasional particles (i.e., those that are exactly on the axis through the sampler and skimmer)
undergo extraction with much higher efficiency than most others. The variability in particle

trajectory also complicates the analysis of colloids and nanoparticles, as described by

Niemax et al.'!

Conclusions

This study demonstrates that nanosecond laser ablation generates particles that the
ICP are not completely atomized and ionized before they reach the tip of the IRZ, which is
the usual sampling position for ICP-MS experiments. The camera used in this study offers an
advantage over previous photographic studies because its high frame rate allows the capture
of a given droplet or particle cloud in many successive images. Some particles and droplets
observed in this study do not undergo complete vaporization and ionization until they are
deep into the ICP, well beyond the normal ICP-MS sampling point. This corroborates
previous assertions that wide particle size distributions lead to poor analytical measurements.

During the ablation of NIST 610 glass, fractionation is exemplified by the greatly different
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zones of emission from calcium and sodium. This is ascribed to the sequential vaporization
of calcium and sodium. Due to this concern, there is no optimum sampling point for
extracting sample ions during LA-ICP-MS if the particles are too large. Finally, the
abundance of off-center particles must be considered by those studying transient
nanoparticles or biological cells because species of different axial position may have

different extraction efficiency.
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Table 1. Operating parameters for ICP and laser

RF Plasma Products
ICP ICP-16L Laser Big Sky CFR-200
RF Power 1100 W Pulse Length 11 ns
RF Frequency 40 MHz Spot Size ~100 pm
Sample Gas 1.0 L/min Pulse Energy 10 mJ
Outer Gas 15.0 L/min Repetition Rate 30 Hz
Auxiliary Gas 0.5 L/min Fluence 32 Jlem®
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Figure 1. A high-speed photograph of the ICP during introduction of a) water and b) yttrium
solutions by PFA nebulizer at 400 pL/min. Frame rate is 5,000 fps. The region of pink-red
emission from yttrium oxide and neutral yttrium is referred to as the Initial Radiation Zone
(IRZ), and the region of blue Y™ emission is the Normal Analytical Zone (NAZ). Frame b was
selected so that droplet clouds are not evident. Gray arrow denotes “streaky” region attributed
to passage of solid particles® 3.
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Figure 2a. Consecutive images of a large droplet cloud produced from a 10,000 ppm Y solution
by a Meinhard nebulizer at 1.9 mL/min. Frame rate is 5000 fps, frames are ordered from left to
right and top to bottom. Exposure time during this recording is reduced to 10 ys, to avoid
camera saturation.
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Figure 2b. Single high-speed image of the cloud surrounding a droplet produced from a
Meinhard nebulizer at 1.9 mL/min. Notice the red YO emission in the core of the droplet and
the neutral emission in the outer shell.
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Figure 3. Consecutive images of the ICP during introduction of yttrium powder by
entrainment into transport gas. Frame rate is 10,000 fps. Note bright blue Y™ emission cloud,
and that there is no continuous yttrium background emission from the ICP.
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Figure 4. laser ablation cell. A laser pulse (532 nm) strikes a pressed pellet of yttrium oxide
powder. This double-walled ablation cell is similar to designed to the CETAC LSX-100
ablation cell. The ablated material consists of many large particles that are swept toward the
sample outlet on the left wall by argon flow. Arrows denote approximate gas flow
directions. The pellet diameter is ~13 mm.
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Figure 5. Consecutive images of the ICP during introduction of aerosol generated by
ablation of a hand-pressed yttrium oxide pellet. Frame rate is 10,000 fps. The many visible
particles behave similarly. Observations are made regarding the bright particle just
approaching the end of the torch at t=0.0 ms, chosen because it is visible in all twelve frames.
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d)Na, Ca, Si

Figure 6. High speed photographs of the ICP during the rinse out of 10,000 ppm a) Si, b) Na,
c) Ca, and d) 3,300 ppm Si, Na & Ca solution. Samples are introduced by ultrasonic
nebulizer. Frame rate is 5,000 fps.
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Figure 7. Consecutive frames showing large particle generated by ablation of NIST 610
glass. Frame rate is 10,000 fps. Yellow-orange arrow denotes sodium emission, purple arrow
denotes Ca emission from same particle further downstream. Notice the distinct emission
regions of Na and Ca from the particle cloud —sodium emission occurs from t=0.0 to t=0.2
ms and calcium emission from t=0.8 to t=1.1 ms. The particle cloud is not discernible for a
period of 400-500 ps. This contrasts the elemental emission zones during solution
introduction, where sodium and calcium emission overlap.
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Figure 8a. Consecutive frames of the ICP during laser ablation of NIST 610 glass. Frame
rate is 10,000 fps. A particle cloud exhibiting sodium emission (0.3 ms, yellow-orange
arrow) is just ahead of a second particle exhibiting calcium emission (purple arrow) for the
entire course through the plasma. This is a clear demonstration of fractionation.
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Figure 8b. Single image of a particle cloud during the ablation of NIST 610 glass. The
brightest emission surrounding the particle is off-center from the larger cloud, signifying the
cloud has drifted since it vaporized from the particle.
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Chapter 3. Digital photographic studies of vaporization and atomization
in the inductively coupled plasma with fast shutter speed and
high framing rate. Part I1: Effects of solid particles from laser ablation

at 266 nm with 10 ns and 150 fs pulses using helium and argon carrier gas.

A manuscript submitted for publication in The Journal of Analytical Atomic Spectroscopy
Chris H. Ebert, Nathan J. Saetveit, Daniel S. Zamzow, David P. Baldwin,

Stanley J. Bajic, and R. S. Houk

Abstract

The emission behavior of particles generated by UV (266 nm) laser ablation (LA) of
NIST 610 silicate glass and introduced to an inductively coupled plasma (ICP) is studied
using a digital camera with fast shutter speed and high frame rate. Silicate glass is of
particular interest because particles generated in this manner exhibit distinguishable calcium
and sodium emission in the ICP. During typical ablation with a 20 Hz nanosecond laser and
argon carrier gas, the plasma contains little visible background emission from the sample;
emission is limited to discrete particle clouds. These clouds from ablated glass particles
evince distinct regions of sodium emission first, followed by Ca emission well downstream.
This behavior is attributed to sequential, spatially segregated vaporization of the two
elements. With helium sample gas, the particle clouds are much larger and brighter and
calcium emission is observed much earlier in the plasma. Femtosecond ablation at high

repetition rate (1000 Hz) reduces the number of individual particles and produces intense
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steady-state emission in the IRZ and NAZ. Implementing helium carrier gas with fs ablation

further reduces the number of individual particles observed.

Introduction

LA-ICP-mass spectrometry (MS) is an established technique for the trace elemental
analysis of solid samples™™. The method is attractive because it is highly sensitive, it requires
very little sample preparation, it is minimally destructive, and it can measure spatial images
of the elemental composition of solids. The accuracy of determined concentration ratios in
LA-ICP-MS is limited by fractionation, defined here as the difference between elemental
concentration ratios measured from MS signals and the actual concentration ratios in the
sample. Studying the behavior of laser-generated particles in the ICP could contribute to the
development of strategies to alleviate fractionation and improve laser ablation as a sampling
method® ®.

In an accompanying study’, large droplets, individual particles, and aerosols produced
by a green ns laser were introduced to an open ICP. Emission clouds from these species were
observed by a high-speed digital camera (0.1 ms temporal resolution) that captures separate
images of a particle or droplet during its entire trip through the ICP, which was not possible
in previous studies® ® °. Clouds surrounding droplets of yttrium solution exhibit an emission
gradient from the center of the cloud to the outside, with emission from YO molecules in the
core of the cloud, neutral yttrium emission in an intermediate shell and Y ions in an outer
shell. Often, large particles and droplets did not completely succumb to the high temperatures
for the entire length of the plasma - i.e., some 20 mm downstream from the torch end, well

past the usual sampling point for ICP-MS experiments. Emission observed during
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introduction of laser-generated aerosols was produced extensively from discrete particles,
with little steady-state emission from the initial radiation zone (IRZ) and normal analytical
zone (NAZ). Large particles produced during ablation of NIST 610 glass showed signs of
fractionation, exhibiting first sodium and then calcium emission in very different axial
positions. This is attributed to the sequential vaporization of sodium and calcium from large
particles.

The present work is intended to supplement the accompanying study by focusing only
on LA with newer lasers and helium carrier gas and observing the changes in particle
behavior that ensue. Previous studies have demonstrated that ablation in helium atmosphere
reduces fractionation and improves the analytical performance of LA-ICP-MS™ ! Helium
has a higher thermal conductivity than argon, which cools the laser-vaporized sample as it
recondenses and creates an aerosol with a more uniform particle distribution'* *3, The higher
thermal conductivity of helium also helps cool the sample during ablation, which reduces
sample melting and preferential vaporization of volatile elements. Ablating in helium also
reduces fractionation because the laser-induced plasma is less extensive than that created
during ablation in an argon atmosphere, reducing the non-stoichiometric redeposition of
material'®. Subsequent removal of such previously-ablated, altered material is one cause of
fractionation.

Reducing the laser pulse length has also proven to reduce fractionation’®. When the
pulse length is in the femtosecond range, more laser energy contributes to sample
vaporization and less energy is converted to heat than with a nanosecond laser'®. Chichkov
et al.*” used scanning electron microscopy to observe craters left after ablation of steel with

ns, ps, and fs lasers. They found extensive sample melting by ns pulses and reduced melting
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with shorter pulses. Russo et al.'® found the same effects, and determined elemental ratios to
be more accurate and precise when laser heating of the sample was reduced by use of a fs
laser.

Furthermore, fs laser ablation produced fewer large, micrometer-sized particles than
ns laser ablation'®, although Neimax et al. reported that at fluence above 5 J/cm? large
particles were still plentiful during fs LA%. Giinther et al. found that aerosols produced by ns
LA exhibited a bimodal particle size distribution, while the distribution for fs LA produced

aerosol was unimodal®

. Nanosecond ablation produced an aerosol with a correlation between
particle size and particle composition — large particles were less representative of the original
sample than small particles. This non-stoichiometric effect was alleviated (but not completely
eliminated) during femtosecond ablation?.

The present study contains high-speed images and movie clips of the ICP during the
introduction of laser generated aerosols, with individual particle clouds visible in many
successive frames. These photographs are used to draw qualitative conclusions about laser

ablation and fractionation. Ablation is accomplished with either fs or ns lasers. The particle

behavior using helium or argon as carrier gases are compared.

Methods

The ICP device used in this study is the same instrument used in Part 1 of this study
(RF Plasma Products ICP-16L, 40 MHz). The plasma flows vertically; images are sometimes
rotated for formatting considerations. The operating parameters of the ICP were the same as
the previous study. Once again, all experiments were performed using an open plasma, with

no extraction system or mass spectrometer.
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Some laser ablation experiments were done in a helium atmosphere rather than argon.
For such experiments, the helium flow was 1.0 L/min and no argon gas was added to the
sample gas beyond the ablation cell. Usually when ablation is carried out in helium, makeup
argon is added before the plasma to help stabilize the plasma. This plasma remained stable
with 100% helium in the axial channel, so no makeup argon was added. Thus, the effect of
helium in the axial channel is exacerbated and differences in emission behavior are more
easily observed.

Nanosecond laser ablation was carried out with a Q-switched laser ablation system
(LSX-500, CETAC Technologies, Omaha, NE). This is a Nd:YAG laser that is frequency
quadrupled to 266 nm wavelength. Femtosecond ablation was achieved using a Libra laser
(Coherent, Inc., Santa Clara, CA) with a home-built enclosed ablation system. This is a
Ti:Sapphire laser, frequency tripled to 266 nm using a harmonic box (HGS-T, Coherent Inc.).

The laser parameters are reported in Table 1. For each laser, the parameters used are
typical for their operation during LA-ICP-MS. Most notably, the laser repetition rate for the
fs laser is 1000 Hz, much higher than that for the ns laser (20 Hz). There is no simple way to
reduce the repetition rate for the fs laser; this must be considered while comparing the
behaviors of aerosols created by each laser. Laser power was adjusted on the ns laser by
controlling the flash lamp current through the software. On the fs laser, laser pulse energy
was controlled by inserting one of a series of neutral density filter between the harmonic box
and ablation cell.

All ablation experiments were ~15 second raster analyses. The same ablation cell,
from the LSX-100, was used with both lasers. The ablated aerosol particles were transported

through approximately 6 m of tygon tubing (4.76 mm ID) to the plasma torch.
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An Olympus i-Speed2 video camera recorded videos of the plasma during the
introduction of laser-ablated particles. A Navitron 25 mm focal length lens was implemented
to focus light from the axial channel on the camera. All images were recorded with an
exposure time of 50 ps. At 10,000 fps, particles generated by laser ablation are typically
observed in eight to twelve consecutive frames before emission ceases or the particle leaves
the plasma. The image sizes are 224 by 168 pixels. All videos included in this publication
were recorded during the steady-state introduction of sample after the rinse-in and before the
rinse-out.

NIST 610 silicate glass is the only solid sample used in this study. This standard
contains 33.7% silicon, 10.4% sodium, and 8.6% calcium by mass. The appearance of the
plasma during the introduction of these elements by solution nebulization is discussed in the

adjoining study’.

Results and discussion

As in Part 17, the figures and videos discussed below are selected to best illustrate
interesting phenomena seen in many such video measurements. Space considerations
preclude a description of every photographic experiment done. In the text of this study,
particles are described as ‘large’ if they generate a particle cloud that is distinguishable from
steady-state background emission. The term ‘large’ does not imply a specific threshold for
particle diameter.

Solution emission profiles of Si, Na, and Ca

The emission profiles of the ICP during the introduction of silicon, sodium, and

calcium solutions are displayed in Figure 6 of the accompanying paper’. The visible emission
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from sodium and calcium are easily distinguishable by the camera and the human eye.
Sodium emission (Na (1) 589 nm) appears orange and is generally limited to the IRZ.
Calcium emission (Ca (11) 393 and 396 nm and Ca (I) 422 nm) appears purple or blue-purple,
and occurs in both the IRZ and the NAZ. During simultaneous introduction of calcium and
sodium, the resulting combination of lines in the IRZ appears magenta to the eye. This color
is readily distinguishable from sodium emission alone and from calcium emission alone.
Silicon undergoes only faint emission in the visible region. In this study, orange light is
attributed to Na I emission. Purple light is attributed to calcium emission, mainly Ca (1)
lines. Na, Ca and Si and O make up 98% of the material in NIST 610 silicate glass®®.

Nanosecond laser ablation in argon

The particles generated by LA from glass are generally no larger than several um in
diameter, too small to be observed directly by the camera. Instead, emission emanates from
the cloud of material that is steadily vaporized from the particle. During the ablation of NIST
610 silicate glass standard by the nanosecond UV laser, the regions of sodium and calcium
emission in the ICP are significantly different than those observed during solution
introduction.

Video A shows the ICP during introduction of NIST 610 by ns laser ablation. There is
an occasional orange flash in the IRZ from Na (I) emission followed by a diffuse purple
cloud of Ca (I1) emission in the NAZ. We attribute this behavior to a large particle. Figure 1
shows twelve consecutive frames of the first particle in Video A. This particle cloud exhibits
distinct emission zones of first Na (I) (orange cloud and arrow), then little emission for
several frames (about 1 cm or 500 ps), then Ca (11) emission (purple cloud and arrow). This

phenomenon is also observed with a green nanosecond laser and was reported in the
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adjoining study’. There is little steady-state analyte emission from the NAZ during ablation
with the ns laser, so clearly there is no visible emission from the particle cloud in the hiatus.
During the transitional period between sodium and calcium emission, the plasma looks no
different than when material is not being ablated at all. In our opinion, the lack of emission
for a number of frames occurs because a) the Na from the particle has been lost and any
residual Na has been ionized and does not emit, and b) the particle is not hot enough for Ca
to be vaporized. This is a clear demonstration of fractionation.

Changing the pulse energy of ns laser ablation does not impact the behavior of the
ablated particles. Reducing the laser flash lamp power by 25%, 50% and 75% did not change
the lack of steady-state emission (data not shown). The only observable change during the
reduction of laser power was the corresponding reduction in the number of individual
particles. Table 2 lists the average frequency of discrete particles observed in the plasma
during ablation of glass at different laser energies. These rates are determined by manually
counting visible particle clouds for ~2500 consecutive frames during a period of time well
after the onset of particles and before the laser ablation ended.

Nanosecond laser ablation in helium

When NIST 610 glass is ablated by the ns laser in helium rather than argon, the
visible emission is again limited to discrete particle clouds - the IRZ and NAZ contain little
discernible emission except when a particle is passing through. The particle clouds
themselves behave quite differently in helium. Video B shows such a plasma; large particle
clouds are less prominent than when using Ar carrier gas. Of the few particles seen, Figure 2
displays one prominent cloud from a particle formed during ns laser ablation and carried to

the plasma by helium. The particle cloud is much brighter and wider than typical particle
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clouds observed in an argon center channel. Furthermore, the particle cloud exhibits purple
Ca (I1) emission very early in the plasma. Calcium starts to evolve off the particle by the time
it reaches the ICP-MS sampling point several millimeters downstream from the end of the
torch, so even such a large particle would yield Ca” ions in an ICP-MS experiment.
Apparently, helium facilitates the heating of particles more than argon does. Consequently,
the photos show that vaporization and ionization are more extensive and occur farther
upstream in helium than argon, especially for large particles.

Figure 2 and Video B show that sodium emission is never observed alone during
ablation in helium, unlike the situation in argon. The particle cloud might undergo
simultaneous emission from calcium and sodium for the first 3 or 4 frames of Figure 2. The
core of the particle cloud in these early images does have a pink or magenta tint, similar to
the color of the IRZ during introduction of Na and Ca together in solution” 19 % |f so,
calcium and sodium are vaporized concurrently. Subsequent views of this particle show only
a purple cloud with no magenta core, characteristic of Ca emission only. Vaporizing and
ionizing a greater portion of the laser-generated aerosol is expected to reduce fractionation,
although use of He carrier gas may not totally eliminate it.

Particle velocity is not appreciably different with helium carrier gas rather than argon.
Particle velocities for both carrier gases are approximately 20 m/s, measured using the known
diameter of the torch as reference to determine the distance a particle moved each frame, and
the frame rate of 10,000 fps.

Femtosecond laser ablation in argon

During the introduction of NIST 610 by fs laser ablation, the emission observed in the

ICP is considerably different than during ablation by the ns laser. Video C and Figure 3
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display images of the plasma during the introduction of fs LA generated aerosol. For this
particular clip, few discrete particles are observed. Unlike ns laser ablation, the center
channel exhibits continuous, steady-state emission of sodium and calcium. The IRZ, while
thinner and not as sharply defined as during solution introduction, contains the orange-pink
color characteristic of the superposition of emission from both neutral sodium and calcium.
The NAZ primarily exhibits Ca(ll) emission, similar to the introduction of the multi-element
solution observed in the accompanying paper” 7% . This is evidence that material introduced
to the plasma during fs LA undergoes more extensive vaporization before it enters the field
of view of the camera than material generated by ns LA. This will generate more a stable,
analytically desirable signal. If ICP-MS experiments are carried out with the sampler cone at
the tip of the IRZ, both sodium and calcium are vaporized and ionized prior to reaching the
cone, so the measured mass spectrum will more accurately represent the composition of the
sample aerosol.

Along with this continuous emission, fs LA occasionally generates particles that are
large enough to produce discrete emission clouds. Figure 4 shows a sequence with one such
particle, which is not fully vaporized before it comes into view. It is difficult to ascertain the
behavior of this particle because steady-state emission from the IRZ and NAZ competes with
emission from the particle cloud at times. In the first two frames in Fig. 4, the particle cloud
appears magenta to the eye, i.e. a combination of yellow Na (I) and Ca (1) lines. The particle
cannot be distinguished from emission in the NAZ until at least t = 0.6 ms, where it is barely
discernible from the background. For the last 2 to 3 frames, the particle cloud is exiting the

plasma and exhibits calcium emission.
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In the course of several thousand frames (i.e., approximately 3 s), several similar
large particles were produced by fs LA. Not one of these particles exhibited discrete calcium
emission above the background for the period between the tip of the IRZ and a spot ~20 mm
downstream of the torch - i.e., the first position when this purple particle cloud is visible
again in Fig. 4. This leads to the conclusion that the largest particles created in fs laser
ablation still undergo spatially segregated vaporization of sodium and calcium, although this
behavior is much less common than for the particles created in nanosecond laser ablation.

Judging from these observations, fs LA-ICP-MS analyses would produce a steady
baseline signal from material that is fully vaporized and ionized well before the sampler
cone. This signal would fairly accurately represent the composition of the laser produced
aerosol, and plasma-induced fractionation would be minimal. However, on top of that steady
signal there would be occasional transient spikes from particles too large to be fully
processed before reaching the sample cone. The determined elemental ratios from these
spikes may differ from the baseline signal; specifically the refractory elements may be under-
represented. This explanation is consistent with literature reports by several groups®**’. So
while plasma-induced fractionation may be improved by using fs laser ablation rather than ns
ablation, it is not fully eliminated so long as even a few of these larger particles persist.

Figure 5 contains images of the plasma during fs LA at various laser pulse energies.
Increasing or decreasing the laser energy changes the intensity of steady-state emission from
the IRZ and NAZ. There is little change in the spatial location of Na and Ca emission. When
decreasing the laser energy, there is a slight reduction in the number of large, unvaporized
particles that pass through the plasma (Table 2). The overall number of distinguishable

particles is much lower for fs ablation than ns ablation.
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Femtosecond laser ablation in helium

Video D and Figure 6 are recorded during the introduction of aerosol generated in He
by fs LA. During fs ablation of NIST 610 glass in a helium atmosphere, as seen in Video D,
discernible individual particles are even less frequent. The axial channel of the plasma is very
diffuse; the IRZ and NAZ are ill-defined. All visible analyte emission occurs as continuous
radiation from the center channel. To the extent that the IRZ is perceivable, it contains
emission from both sodium and calcium.

Using helium as the carrier gas reduces the number of large, unvaporized particles for
a number of reasons: a) ablation in helium generally produces aerosols of narrower particle
size distribution, b) helium is lighter than argon and cannot transport the largest particles to
the plasma, and c) with helium in the axial channel of the ICP the large particles are more

completely vaporized and ionized before they enter the camera’s field of view.

Conclusion

Short laser pulse lengths and helium carrier gas have beneficial effects on the ICP
emission behavior of aerosol generated by laser ablation of NIST 610 glass. Using helium in
the axial channel causes particle clouds to diffuse more quickly and to vaporize and ionize
earlier in the plasma. If so, helium is expected to not only improve laser-induced
fractionation, as reported extensively, but also improve ICP-induced fractionation.

Ablating with a femtosecond laser at high repetition rate reduces the number of
discrete particles compared to nanosecond ablation. Femtosecond ablation induces intense
steady-state emission in the IRZ and NAZ of the plasma. At the tip of the IRZ during fs laser

ablation, overlapping sodium and calcium emission are visible - just like during the
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introduction of Na and Ca solution. Thus, during fs-LA-ICP-MS experiments, the sample
cone can be placed at the tip of the IRZ and extraction of both elements will be efficient.
Performing ICP-MS by fs laser ablation in helium is expected to improve precision and
accuracy when compared to ns ablation in argon due to the juxtaposition of several beneficial

effects.
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Table 1. Laser and Ablation Parameters

Laser CETAC LSX-500 | Coherent Libra
Laser wavelength 266 nm 266 nm
Pulse width 10 ns 90 fs
Repetition Rate 20 Hz 1000 Hz
Pulse Energy 560 uJ 75 W
Power 11.2 mW 75 mW
Spot Size 100 um ~100 pm
Fluence 1.78 J/cm® 0.23 J/cm®
Raster Speed 100 pum/sec 100 pm/sec
Beam homogenized yes no

Table 2. Influence of laser power on number of unvaporized particles observed per second

Pulse Length Laser Pulse Energy (uJ) Particles/sec
10 ns 560 1271
10 ns 374 1189
10 ns 182 876
10 ns 44 55
90 fs 171 134
90 fs 76 89
90 fs 36 30
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Figure 1. Consecutive images of the ICP during nanosecond ablation of NIST 610 glass with
argon sample gas. This individual particle cloud exhibits sodium emission at t=0.0 to t=0.2
ms and calcium emission from t=0.8 to t=1.1 ms. No visible emission occurs for a distance of
about 1 cm between the zones of Na and Ca emission. The orange arrow indicates the first
visible Na emission; the purple arrow shows the initial location of Ca emission.
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t=0.3ms

Figure 2. Consecutive images of the ICP during nanosecond laser ablation of NIST 610 glass
with helium sample gas.
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Figure 3. High speed photograph of the ICP during femtosecond laser ablation of NIST 610
glass in argon. This image is representative of the steady-state emission from fs LA when no
discrete particle is traversing the plasma.
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t=0.3ms t=0.5ms
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Figure 4. Consecutive images of the plasma during femtosecond laser ablation of NIST 610
glass in argon. A discrete particle cloud (mauve arrow) is visible before t=0.2 ms and after
t=0.6 ms, but it is not distinguishable for the intervening 400 ps.
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Figure 5. High speed photographs of the steady-state emission during femtosecond ablation
of NIST 610 glass in Ar with laser pulse energies of a) 0 uJ, b) 36 pJ, ¢) 76 pJ and d) 171 pJ.
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Figure 6. High speed image of the ICP during the introduction of femtosecond laser ablation
generated aerosol of NIST 610 glass with helium sample gas.
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Chapter 4. Investigation into the behavior of
metal-argon polyatomic ions (MAr”) in the extraction region

of inductively coupled plasma-mass spectrometry

A manuscript accepted for publication in Spectrochimica Acta Part B: Atomic Spectrosopy

Chris H. Ebert, Travis M. Witte, R.S. Houk

Abstract

The abundances of metal-argon polyatomic ions (MAr™) are determined in
inductively coupled plasma-mass spectrometry (ICP-MS). The ratios of MAr" abundance to
that for M ions are measured experimentally. These ratios are compared to expected values,
calculated for typical plasma conditions using spectroscopic data. For all metals studied
(Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), the measured ratios are significantly lower than the
calculated ratios. Increasing the plasma potential (and thereby increasing the ion kinetic
energy) by means of a homemade guard electrode with a wide gap further reduces the
MAr*/M" ratio. Implementing a skimmer cone designed for high transmission of light ions
increases the MAr" abundance. Considering this evidence, the scarcity of MAr" ions is
attributed to collision induced dissociation (CID), likely due to a shock wave at the tip of or

in the throat of the skimmer cone.

Introduction
ICP-MS is a robust, highly sensitive technique for trace elemental analysis. It is

widely used in a broad array of applications'™. The ICP is a successful ion source because it
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is efficient at atomization and ionization, but polyatomic ions still persist in small amounts in
accordance with thermodynamic principles®. These polyatomic ions cause poor accuracy
during the determination of analyte ions of the same nominal mass. A thorough
understanding of the origins of these polyatomic ions could reveal tactics to remove them and
thus improve the analytical capabilities of ICP-MS.

Several methods are currently in use to attenuate polyatomic interferences.
Desolvating the sample aerosol’, using a chemical reaction or kinetic energy discrimination

|8-10

in a collision cell**°, running in ‘cool plasma’ mode™, or adding alternative gases to the

central channel*?

reduces the abundance of some polyatomic ions. As a more direct approach,
high resolution instruments™ can physically separate polyatomic from monatomic ions.
However, none of these strategies completely remove polyatomic ions from the ion beam
without negatively impacting the analytical capabilities of the technique. They generally
involve a loss of sensitivity, desolvation can increase memory for some elements, and
collision cells can create new polyatomic interferences. Further research into the behavior of
polyatomic ions could improve these methods or produce new methods of controlling them.

In 2001 Houk et al.® published a method to calculate a theoretical ratio between the
abundance of a polyatomic ion and the most likely monatomic ion resulting from its
dissociation. By assuming the ions and background gas are at equilibrium, they employ
thermodynamic equations for the dissociation reaction of the polyatomic ion and physical
characteristics of the involved species to determine the expected extent of atomization at
typical plasma temperature and conditions. In subsequent studies, poor agreement is

observed between calculated and experimentally determined ion ratios for some polyatomic

ions. Some of these ions are overabundant, including Ar,", COH*, and ArH* ® ¥**'_ Others



77

like NO*, ArO", OH", and numerous MAr" ions are underrepresented in the mass
spectrum®® 1%,

If ions achieve equilibrium at the sampling position in the plasma, these deviations
from calculated distributions must result from the creation or removal of polyatomic ions
further downstream. Two likely locations for such events to transpire are during the
supersonic expansion as the plasma proceeds past the sample cone and during the
transmission of ions through the skimmer cone. This intermediate stage seems the most likely
place for changes in the abundance of polyatomic ions because there is still enough
background gas from the ICP for the analyte stream to undergo many collisions and because
the gas kinetic temperature in this region is expected to be much lower than in the plasma
itsel !,

Several labs study supersonic jets and the expansion and extraction processes of
ICP-MS?*#*, It is a crucial stage of ICP-MS that delivers the analyte ions from the
atmospheric pressure plasma to the high vacuum necessary for mass analysis. In an ideal
expansion, ions and background gas travel with approximately the same velocity, determined
by the gas kinetic temperature (Tgss) in the plasma at the position sampled®. In such an
expansion, collisions between ions and background gas are of low energy, and large changes
in the abundance of polyatomic ions would not be expected.

However, evidence suggests that the expansion may not be ideal due to a shock wave
at the tip of or inside the skimmer cone?®?. The presence and nature of a shock wave in the
skimming region evidently depends on the geometry of the skimmer, the skimmer orifice
diameter, the sampler-skimmer distance, and the interface pressure?**!. Collisions between

high kinetic energy ions from the plasma and this cold gas could be sufficiently energetic to
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cause dissociation of weakly-bound polyatomic ions. Such collision induced dissociation
(CID) is observed in during the ion extraction process in electrospray ionization MS,
especially when ions are accelerated by a potential applied to the skimmer®.

The extent of polyatomic dissociation also depends on the magnitude of ion kinetic
energy, which directly contributes to the energy of collisions in the expansion/extraction
region. The ion energy is determined by two properties: a) the high temperature of the
plasma, which imparts more kinetic energy to heavier ions than lighter ones, and b) the
positive potential of the plasma, which contributes the same magnitude of kinetic energy to
all singly-charged ions®® ®. The plasma potential on modern instruments is generally low,

partially due to the use of shielded load coils®* 3*

which are meant to eliminate the secondary
discharge and reduce the spread of ion Kinetic energies.

Of the various types of polyatomic ions, argon adduct ions (MAr*) could be
particularly affected by the expansion and extraction processes. They typically have much
lower binding energies than oxides or hydroxides so they are most vulnerable to collision-
induced dissociation, and they are most likely to be produced during extraction because
argon comprises well over 90% of the background gas®*. Witte and Houk® measured
MATr*/M" signal ratios during laser ablation (LA) of pure metals. They determined the Tgas
values necessary to achieve the measured ratios; these temperatures ranged from 8000 to
200,000 K. The high temperatures between species show that the MAr" ions are being
removed somewhere during ion extraction. The variable temperatures between different

MAr" species show that they are not removed by an equilibrium process. This previous work

suggested CID as a possible cause of the loss of MAr" ions.



79

The purpose of the present work is to investigate the behavior of MAr* ions during
solution introduction, and to determine how the extraction conditions — specifically the cone
geometry, the extraction voltage, and the plasma potential — affect the abundance of argon

adducts. The results here provide additional evidence that CID causes the loss of MAr" ions.

Method — Calculations

Expected M*/MAr” signal ratio

Houk and Praphairaksit® describe how to calculate a theoretical ratio between the
abundance of a polyatomic ion and the monatomic ion resulting from its dissociation by the
high temperatures and energetic collisions in an ICP. The normal dissociation of a diatomic
ion will have one neutral atom and one monatomic ion. As the first ionization energy of
argon (15.75 eV) is significantly higher than metals (typically 6-9 eV), calculations in this
paper will exclusively assume the charge is on the metal product and the argon is neutral.
Therefore the dissociation reaction and dissociation constant are:
MAr" = M* + Ar AH =D, (M*-Ar) Kg = Nar = N+ / Nart (1)
where n is the number density of the gas or ion in the plasma at the sampling position and Do
is the dissociation energy of the polyatomic ion. In a dry plasma, neutral argon atoms are by
far the most abundant species, so narcan be determined easily from the ideal gas law. The
number density ratio ny+ / nuast is determined from the signal ratio of the corresponding
species in the mass spectrum.

The dissociation constant can also be derived from statistical thermodynamic

principles:
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where kp is the Boltzman constant; Tg.s is the gas kinetic temperature at the tip of the sampler
cone (in K); and Z is the total partition function of each species, derived from the electronic,

vibrational, rotational, and translational partition functions. This equation is converted to

M .M
—%+1.5I09M’*—B+Iog(zN Zg) +
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where M is the mass of each species (g/mole); o is the vibrational constant (cm™); Bis the
rotational constant (cm™); z is the electronic partition function® at the plasma temperature
(K); g is the statistical weight of the ground electronic state, determined by the term symbol
of the polyatomic ion; and Dg is in eV. The constant 20.432 is correct only for a
heteronuclear diatomic ion. Also this equation only holds if the polyatomic ion is in its
ground electronic state. If the polyatomic ion has low-energy electronic levels that are
populated, further corrections must be made to the calculations®®. Note that adjusting for low
excited electronic levels would increase the expected abundance of polyatomic ions. Thus,
the measured scarcity of metal-argon ions reported previously®® and below cannot be
explained by the omission of these excited state populations from calculations.

By combining equations (1) and (3) and inserting necessary spectroscopic data®, the
expected ratio ny+ / nyar+ becomes a function of plasma temperature. Comparing this

expected ratio to the experimentally measured abundances of M* and MAr™ reveals if argide
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ions are being apparently created or removed during the expansion and extraction process or
if they are present in quantities similar to those expected in the plasma itself.

Mass bias corrections

Between the sampling point of the plasma and the detector, space-charge repulsion
and ion focusing lenses impact the ion beam. Usually, light ions are under-represented in the
mass spectrum. Consequently, the M*/MAr" signal ratio as measured is inaccurate, as MAr"
ions outweigh their M* partners by a large amount (40 Da). To distinguish between these
effects, which impact monatomic and polyatomic ions alike, and the creation or removal of
polyatomic ions by other phenomena, a mass bias ratio is employed to adjust measured ion
signals.

The response of 10 elements from "Li to ***Eu at known concentrations produces a
curve used to correct for mass bias effects (Figure 1). The matrix of the standard is matched
to the samples used during the experiment, and the responses are adjusted for ionization
efficiency®® and isotopic abundance. A 2" degree polynomial curve is fit to the data, and the
mass bias correction ratio is determined by the masses of the analyte ions. The general shape
of this plot is similar to many others reported previously®’. A different mass bias curve is
generated for each experimental setup, since some changes made to the plasma conditions
and interface are expected to cause a change in the mass bias curve.

Correction for background monatomic ions

Polyatomic ions are typically said to interfere with monatomic ions of the same
nominal mass. A more difficult problem arises when a polyatomic ion is, in fact, the ion of
interest and a monatomic ion, typically from an impurity element, obstructs its measurement.

Interfering monatomic ions produce much more signal than polyatomic ions (relative to the
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culprit’s concentration in solution), so special care must be taken to account for their
presence when trying to measure polyatomic ions of low abundance.

Blank subtraction was generally found wanting as a method to account for monatomic
interferences. As little as one part-per-trillion difference between the blank and standard of a
possible interfering ion is enough to impact the results of this investigation. Such a small
amount of contamination could occur from the elemental standards used, even if cross-
contamination and leaching from the solution bottles are avoided.

Therefore, interferences from monatomic ions were generally corrected by isotopic
subtraction. Using chromium as a typical case, *CrAr* had monatomic interferences %zr*
and %Mo*. While determining Cr* and CrAr* signals, *'zr*, ®Mo* and *’Mo* were also
measured. “'Zr*, ®*Mo* and *’"Mo" signals were then adjusted for isotopic abundance and
mass bias corrections to find how much signal at m/z = 92 were zirconium and molybdenum;
then this was subtracted to determine how much signal was actually *’CrAr",

There was one exception to this method. Net TiAr" signals were determined by blank
subtraction because none of its isotopes could be adjusted for atomic ion interferences by
isotopic subtraction. The titanium standard used has a ~10 ppt zirconium contamination,
sufficient to make *°TiAr" undetectable. The isotopic pattern of ®Sr, 8Sr, and ®Sr is too
similar to the isotopic pattern of “°Ti, *’Ti, and **Ti to make satisfactory adjustments, and
831" signal was too low to be used dependably for accurate isotopic subtraction. Finally,
89y* is monoisotopic. “*TiAr", “'TiAr", ®TiAr*, and ““TiAr" were therefore blank subtracted,
and as long as the ratios between them were reasonable this had to be sufficient. The *TiAr"
was typically three to five times higher than the blank signal at m/z=88. That was high

enough to consider the data reportable, and the precision of MAr*/M” signal ratios
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(represented by 95% confidence intervals) is not appreciably worse for titanium than for
other elements.

Determination of plasma potential

The kinetic energy of ion-argon collisions in the expansion and extraction region of
ICP-MS directly impacts the extent of collision-induced dissociation or creation of

polyatomics. The average kinetic energy is given by:

mion 5
KBy, = ST, v @

where Vp is the plasma potential and KE is reported in eV *. In the present work, the kinetic
energies of ions of various masses are measured by attenuating the ions with increasingly
positive DC bias on the quadupole mass filter, generating a stopping curve®®. The refocusing
effect of increasing the pole bias makes determining the average ion kinetic energy
unreliable, so the maximum kinetic energy is reported. The maximum KE is the DC
quadrupole bias voltage when 99% of the analyte has been lost; the average kinetic energy is
presumably several eV lower. The stopping potential is recorded for singly-charged ions of
several m/z values, and the slope and y-intercept of the fit line are inserted into equation (4)
to determine the potential and temperature of the plasma. A typical stopping curve is

discussed in the Results and Discussion section.

Method — Instrumentation
ICP-MS device
Experiments are conducted with an XSeries 2 quadrupole ICP-MS (Thermo Fisher

Scientific, Inc., Bremen, Germany), the same instrument used for our previous studies of
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MAr" ions?. Typical operating parameters of the ICP are reported in Table 1. The sample
gas flow and ion lens voltages are adjusted for a balance between maximum sensitivity and
minimum metal-oxide ion formation and varied from day-to-day. The instrument includes a
hexapole collision cell, but no collision gas was added and the cell was used only to transmit
ions. The detector is cross-calibrated between analog and counting modes using a
multielement standard.

The sample is introduced with a PFA-400 uL nebulizer and APEX desolvation
system (Elemental Scientific Inc., Omaha, NE). Efficient solvent removal is helpful in the
present research because at times MAr™ ion signal is very low and accounting for interfering
MO*, MOH", and MO," ions would introduce severe complications and deteriorate accuracy
and precision. With this introduction system the solvent load is ~12 pL/min, as determined
by the difference in mass gained by the drain solution and mass lost by the sample solution
over three hours of analysis.

Shielded load coil

On an ICP with an unbalanced load coil and no shield, the plasma potential is high

relative to the grounded sampler cone due to capacitive coupling between free electrons in

the plasma and the voltage gradient of the load coil®*

. The shield is a grounded, slotted metal
cylinder inserted between the load coil and torch; free electrons in the metal shield prevent
the voltage gradient on the coil from reaching the plasma. In Thermo instruments, the shield
is often referred to as a guard electrode. The benefits of using a shield include the reduction

of multiply-charged ions and the avoidance of a secondary discharge or ‘pinch’ between the

plasma and the sample cone®.
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As described by Gray*, a small gap is necessary in the shield. If it were a complete
cylinder, electrons in the metal would revolve completely around the cylinder due to the
electromagnetic field induced by the current on the load coil. This would rapidly heat the
shield and melt it. We suggest that widening this gap would expose the underlying plasma to
more of the load coil, reduce the extent of shielding, and thus increase the plasma potential.
The XSeries 2 typically employs a silver shield with a narrow slot of only ~2 mm wide, just
enough to prevent arcing across the gap and melting. For some experiments, this standard
guard electrode is replaced with a homemade aluminum electrode with a larger gap
approximately 6 mm wide, Fig. 2. This homemade guard electrode is otherwise identical in
shape to the standard guard electrode: 16 mm in length, long enough to cover the entire
length of the load coil, and with a grounding arm that reaches back to a grounding pin near
the middle of the torch. The guard electrode is grounded during all measurements.

Skimmer geometry

lons are extracted through the same sampling cone in all experiments. Either an Xt or
an Xs nickel skimmer cone (Thermo Fisher Scientific Inc.)* is used. The Xt cone is designed
for matrix tolerance, while the Xs cone is designed for softer extraction and higher sensitivity
for low mass ions. The same nickel sampler cone is used for all measurements. Experiments
are conducted with a positive (+4 volts) or high negative voltage (-100 to -250 volts,
optimized for sensitivity) on the extraction lens. When the extraction lens is positive, the
response is decreased from the optimum sensitivity by approximately 40-fold and the

precision for some MAr" ions deteriorates as their response approaches the background.
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Samples

MAr*/M" signal ratios are determined using 1 ppm or 10 ppm single-element
standards diluted from 1,000 ppm stock solutions (Plasma Chem Associates, Inc.) in 2%
nitric acid. Stopping curve plots and mass bias curves are generated using a 10 ppb
multielement standard in 2% nitric acid. This multielement standard includes cerium, which
is used for optimization of ICP operating conditions and for estimation of T, using the

signal ratio CeO*/Ce".

Results and Discussion

Measured MAr*/M” signal ratios under standard operating conditions

Table 2 contains the MAr*/M" signal ratios with 95% confidence intervals for Ti, V,
Cr, Mn, Fe, Co, Ni, Cu, and Zn during analysis with the Xt skimmer cone and standard guard
electrode. All signal ratios in this work are presented in ppm, i.e., a measured MAr*/M" ratio
of 31 ppm means the actual signal ratio is 31x10°. The confidence interval was determined
from five repetitions of data recorded on five separate days. These intervals include
imprecision caused by the day-to-day variation of the instrument. Signal ratios within a given
day’s experiment are much more precise.

These ion ratios during the introduction of solutions are comparable to those
measured during laser ablation of pure metals by Witte et al.?° They measured MAr*/M*
ratios during ns laser ablation of pure metals with the same instrument and operating
parameters as the present study. Seven of their nine measurements were within the 95%

confidence interval reported in the present study.
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Table 2 also reports the calculated values for the abundance of MAr" ions at 6000 K.
For all nine metals studied, the expected MAr*/M™ ion ratio is more than double the upper
bound of the 95% confidence interval of the experimentally determined MAr*/M" ratio. The
bond energy of these polyatomics is very low, but these measured ratios are still far lower
than expected. The plasma temperatures necessary to achieve these measured MAr*/M*
ratios in the ICP range from 8000 to more than 100,000 K?°; these values are not realistic
physically. If the analyte ions leave the plasma at equilibrium, some process(es) reduce the
abundance of MAr" during or after their extraction.

A trend is observed between the dissociation energy of the MAr™ ion and the
discrepancy between the expected and measured MAr*/M” ratio. For the weakest bound
species (FeAr’, MnAr", ZnAr", and CrAr") the fraction of ‘missing” MAr" ions are highest,
over 99% in all cases. For the stronger bound argon adducts, the measured ratio is closer to —
albeit still well below - the calculated ratio. This correlation merits consideration; such a
trend would be observed if CID is the cause of the scarcity of MAr" ions. That is, a stronger-
bound ion requires a more energetic collision to dissociate than a weaker-bound ion.
Therefore, when an ensemble of ions undergo collisions of a range of energies, a larger
fraction of weakly-bound MAr" ions will dissociate than the more strongly-bound MAr™ ions.
This observation led us to investigate the possibility that CID removes most of these
polyatomic ions.

Effect of skimmer cone on MAr*/M* ratios

The Xs skimmer cone for the XSeries2 instrument is designed for higher transmission
of light analyte ions®. Table 3 contains the MAr*/M" ratios measured using the Xs cone. For

all nine metals, the MAr*/M” signal ratios are higher during analysis with the Xs skimmer
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than with the Xt skimmer. For eight of nine cases with the Xs cone, the MAr" ion abundance
is outside the 95% confidence intervals during analysis with the Xt cone (see Table 2). The
skimmer cone does not influence the equilibrium between M* and MAr™ ions in the ICP.
Instead, analysis with the Xs cone results in higher MAr* abundance because more MAr*
ions survive the extraction process with the Xs cone than with the Xt cone.

Taylor and Fansworth® demonstrate that many different commercially available
skimmer cones produce a shock wave (although they did not study the Xt or Xs cones
specifically). Furthermore, they found the extent of the shock wave depends on the geometry
of the skimmer cone. The presence and intensity of a shock wave is a likely explanation for
the difference in MAr*/M" ratios for the Xs and Xt cones.

Effect of plasma potential and ion kinetic energy on MAr*/M* ratios

If CID causes the loss of MAr™ ions, then increasing the plasma potential and the ion
kinetic energy should attenuate them further. To that end, the usual silver guard electrode
with a 2 mm slot was replaced by a homemade aluminum shield with a 6 mm slot. Figure 3
compares the stopping curves for **In* during analysis with the standard and homemade
guard electrodes. The median In* kinetic energy, determined by the quadrupole bias voltage
at which the In" signal falls to 50% of the maximum signal, is approximately 3 eV higher
with the homemade guard electrode than with the standard guard electrode. The stopping
potential is also much higher with the homemade guard electrode, 9.8 V compared to 5.8 V.
The stopping voltages for several ions are plotted against their isotope masses in Figure 4.
The plasma potential (i.e., the y-intercept) is several volts higher with the homemade guard

electrode than with the standard guard electrode.
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Table 4 presents the MAr*/M” ratios measured with the homemade guard electrode.
For all nine metals, this guard electrode reduces MAr"™ abundance. For seven out of nine
metals, the MAr*/M™ ratio with the homemade guard electrode is below the 95% confidence
interval for the MAr*/M" ratio with the standard guard electrode, despite the wide range of
the latter values. This observation suggests that collision induced dissociation is a likely
mechanism for the deficiency of metal argon ions. Increasing the gap in the guard electrode
causes an increase in the plasma potential, which in turn increases the kinetic energy of ions
leaving the plasma. Then, a greater portion of MAr" ions have sufficient kinetic energy to
dissociate when they collide with argon gas.

Changing the guard electrode could admittedly change the plasma temperature, the
effects of which must not be disregarded. The temperature of the plasma can be estimated by
the determined signal ratio CeO*/Ce™®. CeO" has a bond energy of 8.81 eV, making it far less
susceptible to CID than the MAr" ions studied in the present work. CeO" is generally
considered a reliable polyatomic ion for the determination of Tgs'® *°. Optimizing plasma
operating conditions to achieve a consistent CeO*/Ce” ratio when each of the two guard
electrodes are used should reproduce conditions at the sampling position fairly closely.

Table 5 contains the CeO*/Ce* and Ce?*/Ce" signal ratios determined with standard
and homemade (i.e., wide-gap) guard electrodes. The Ce**/Ce* ratio is 5-fold higher with the
wider gap in the guard electrode, a clear indication that the plasma potential is higher with
the homemade guard*. The CeO*/Ce" signal ratios are not significantly different for the two
guard electrodes, and T, for each guard electrode only differs by 30 K. This small
temperature difference in the plasma would not induce the significant change in calculated

MAr*/M" signal ratios. Therefore, the decrease in MAr*/M” ratios with the homemade guard
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electrode is attributed to the increase in ion kinetic energy and to more extensive CID. The
CeO"/Ce" signal ratio is lower than the usual 1 to 3% because the aerosol was desolvated in
these experiments.

Effect of extraction lens voltage on MAr*/M” ratios

On the instrument used in the study with the Xt skimmer cone, sensitivity is
optimized with the extraction lens voltage between -100 and -250 volts; the optimum value
varies from day to day. At this voltage, collisions between analyte ions and background gas
at the extraction lens are far more energetic than collisions occurring at the tip of the
skimmer cone. This makes the region between the skimmer tip and the entrance to the
extraction lens a potential place for CID. Setting the extraction voltage near zero will greatly
weaken the energy of collisions at the extraction lens, which in turn reduces the extent of
CID.

Table 6 compares the measured MAr*/M" signal ratio with the extraction lens voltage
optimized to that with the extraction lens voltage set to +4 volts. Data are included for both
the Xt and Xs skimmer cones. For each skimmer cone, data were recorded sequentially
without turning off the plasma in between measurements. With each skimmer cone,
variations occur between the MAr*/M" ratios when the extraction lens is positive and
negative. However, there is no consistent trend correlating the MAr™ ion abundance to the
extraction voltage.

If CID occurred extensively between the skimmer tip and the extraction lens, setting
the extraction voltage near the plasma potential would be expected to dramatically reduce the

energy of those collisions and cause an increase the MAr*/M" ratios. The lack of a large
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effect on measured MAr*/M" ratios by the extraction voltage suggests that the bulk of the

CID process has occurred before the ions traverse this region.

Conclusions

During solution nebulization analysis with the XSeries2 ICP-MS, MAr" ions are
present in far lower abundances than predicted by thermodynamic calculations using
conditions in the ICP region being sampled. The data reported in this study suggest collision
induced dissociation as a likely mechanism for the loss of MAr*. The abundance of MAr"
ions can be predictably increased or decreased in a manner agreeing with the known behavior
of CID; two such manipulations are demonstrated in this work. First, using a skimmer cone
designed for higher transmission increases the ratio of MAr*/M" ions, possibly by reducing
the number of collisions that occur at the skimmer cone region. Second, increasing the
kinetic energy of MAr" ions decreases the abundance of MAr”, because a larger fraction of
collisions are sufficiently energetic to cause dissociation of the polyatomic ion.

The location of such CID process(es) is of some interest. While the present study
does not thoroughly investigate this question, some conclusions can be drawn from the data
here. There was no correlation observed between MAr* abundance and the extraction lens
voltage. This means CID probably does not occur at the extraction lens, as changing the
extraction voltage from <-100 volts to +4 volts would extensively reduce the collision energy
and cause an increase in MAr" abundance. This observation indicates that background gas
exists at a low pressure at the extraction lens and only a small fraction of ions undergo a
collision there. Therefore, CID occurs in the short distance between the tip of the sampler

cone, where Ty, ~ 6000 K, and the region just behind the skimmer tip.
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Table 1. ICP-MS operating parameters

Forward power 1400 W
Outer gas flow 13.0 L/min
Auxiliary gas flow 0.7 L/min
Sample gas flow (argon) 0.9 L/min
Detector mode (M) Analog
Detector mode (MAr") Counting
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Table 3. MAr'/M” signal ratios with Xs skimmer cone and the relative increase when Xs
cone replaces Xt cone. Measurements taken with 10 ppm solutions.

Species MAr /M (ppm) Relative increase
with Xs skimmer cone compared to Xt cone

FeAr" 0.51 1.6
MnAr* 1.12 3.2
ZnAr" 9.37 4.9

CrAr" 2.11 1.7

TiAr 12.22 3.2

VAr* 4.69 5.8
CoAr" 41.05 13.6
CuAr? 19.42 2.4

NiAr 42.32 5.3
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Table 4. MAr'/M” signal ratios with homemade aluminum guard electrode and percent of
signal lost when homemade guard electrode replaces standard guard electrode.
Measurements taken with 1 ppm solutions.

_ ot . Additional
Species MAr*/M” (ppm) with MATr" loss(%) with
homemade GE .
wide slot
FeAr 0.08 75.4
MnAr* 0.12 67.0
ZnAr" 0.48 75.3
CrAr 0.51 57.5
TiAr 0.75 80.1
VAr" 0.26 67.8
CoAr" 1.01 66.7
CuAr 3.11 61.7
NiAr* 2.63 67.3

Table 5. CeO*/Ce" and Ce™*/Ce" signal ratios and Ty, values determined by CeO*/Ce™ with

standard and homemade guard electrodes.

Homemade Guard Standard
Electrode Guard Electrode
Ce™/Ce" 10.37% 1.79%
CeO*/Ce" 0.334% 0.359%
Tas 6230 K 6200 K
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with normal Xt skimmer cone, guard electrode, and negative extraction voltage.
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Chapter 5. Elemental and isotopic analysis of uranium oxide and
NIST glass standards by femtosecond-LA-ICP-MIC-MS

A technical report for the US Department of Energy, report number 1S-5194
Chris Ebert, Daniel S. Zamzow, Eddie H. McBay, Debra A. Bostick, Stanley J. Bajic,

David P. Baldwin, and R. S. Houk

Introduction

The objective of the work was to test and demonstrate the analytical figures of merit
of a femtosecond-laser ablation (fs-LA) system coupled with an inductively coupled plasma-
multi ion collector-mass spectrometer (ICP-MIC-MS). The mobile fs-LA sampling system
was designed and assembled at Ames Laboratory and shipped to Oak Ridge National
Laboratory (ORNL), where it was integrated with an ICP-MIC-MS. The test period of the
integrated systems was February 2-6, 2009.

Spatially-resolved analysis of particulate samples is accomplished by 100-shot laser
ablation using a fs-pulsewidth laser and monitoring selected isotopes in the resulting ICP-MS
transient signal. The capability of performing high sensitivity, spatially resolved, isotopic
analyses with high accuracy and precision and with virtually no sample preparation makes
fs-LA-ICP-MIC-MS valuable for the measurement of actinide isotopes at low concentrations
in very small samples for nonproliferation purposes. Femtosecond-LA has been shown to
generate particles from the sample that are more representative of the bulk composition,
thereby minimizing weaknesses encountered in previous work using nanosecond-LA

(ns-LA)*3. The improvement of fs- over ns-LA sampling arises from the different
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mechanisms for transfer of energy into the sample in these two laser pulse-length regimes.
The shorter duration fs-LA pulses induce less heating and cause less damage to the sample
than the longer ns pulses. This results in better stoichiometric sampling (i.e., a closer
correlation between the composition of the ablated particles and that of the original solid
sample), which improves accuracy for both intra- and inter-elemental analysis.

The primary samples analyzed in this work are a) solid uranium oxide powdered
samples having different 2°U to #*®U concentration ratios, and b) glass reference materials
(NIST 610, 612, 614 and 616). Solid uranium oxide samples containing **U in depleted,
natural and enriched abundances were analyzed as particle aggregates immobilized in a
collodion substrate. The uranium oxide samples were nuclear reference materials (CRMs
U0002, U005-A, 129-A, U015, U030-A, and U050) obtained from New Brunswick

Laboratory-USDOE.

Experimental

Femtosecond-LA sampling was accomplished using a Coherent Libra fs-laser system
with UV harmonic generation. The Libra laser system was placed on a 1.83-m x 0.91-m steel
cart along with its ancillary components (e.g., power supplies and water recirculator). The
266-nm output from the Libra was directed through a beam tube into an interlocked
enclosure, which was also located on the cart. The enclosure housed optics, an electronic
shutter, gas lines, and valves for the argon carrier gas, an x-y-z translation stage, and the
ablation cell. Since the entire laser beam path was enclosed in beam tubes and an interlocked
enclosure, laser ablation sampling was performed in a Class-I laser hazard mode. Class-I

signifies that the LA system is considered safe from any potential laser exposure hazards to
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operators. Having the fs-LA system on a cart allowed the system to be moved into a separate
room where it could be operated in a non-Class-I mode safely during initial set-up and
optimization at ORNL.

The Ti:Sapphire output from the Libra laser was frequency-tripled to a wavelength of
266 nm, with an energy of 180 pJ per pulse, a pulse with of approximately 100 fs, and a
repetition rate of 1 kHz. The laser beam spot size used in these tests was approximately
35 um. A programmable shutter was used to control the number of laser pulses for a
particular ablation event. A 100-ms shutter-open duration was used (i.e., 100 laser shots) for
the uranium oxide measurements. The shutter-open duration was varied from 10-ms to
500-ms for the single-spot analyses of the glass reference samples. Only results using 100-ms
shutter-open duration are reported here.

The ICP-MS instrument used at ORNL was a Thermo Finnigan NEPTUNE ICP-MS
quipped with a multi-ion collector (MIC) detector array and a Faraday cup detector array.
The MIC array configuration used during the test period is shown in Table 1. Table 2 shows
the Faraday cup configuration used. Thorium-232 was added to the Faraday cup array during
some of the testing to detect Th for the inter-element measurement of the glass reference
samples. The detector integration time was 131-ms for all transient measurements, generally
using 400 points (~52 s) for each LA run. The ICP-MIC-MS was operated in low resolution
mode for maximum sensitivity. Other instrumental laser ablation and ICP-MS parameters
were optimized daily. ICP-MS operating conditions were chosen to maximize U" signal from
a nebulized aqueous solution of ~100 ppb U.

Samples for laser ablation sampling were prepared by spreading very small amounts

of uranium oxide powder onto an acrylic disk, which had a 2-cm diameter with a 2-mm deep
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depression on one face. The powder was suspended in a less than 200-um layer of collodion,
at a loading of approximately 5-mg of uranium oxide per disk. Single-spot analyses of the
samples were restricted to an approximate 35-pum diameter area for each run, the diameter of
the focused laser beam. This was the beam diameter selected for these tests, but not the

minimum size for this instrument.

Results and discussion

Uranium isotope ratios

Figure 1 shows representative transient signals acquired from a 100-shot
fs-LA-ICP-MIC-MS analysis of a 1.5% enriched uranium oxide sample (U015). The 2*U,
25, %y, and #*8U signal intensities are plotted on a logarithmic scale for clear
visualization. (The observed gaps in the plotted traces at low signal intensities are due to
occasion negative values, which cannot be plotted on a logarithmic scale.) From these traces,
the 2°U/*®U ratios were determined for the set of depleted, natural, and enriched uranium
oxide samples. Since pure uranium oxide samples were analyzed to establish the analytical
figures of merit for the state-of-the-art fs-LA-ICP-MIC-MS system, strong %*®U intensities
(>10 volts) were commonly observed during these tests. The strong ***U signals required
measurement of these samples using Faraday cups rather than the more sensitive electro
multiplier available on this instrument. The ion collectors have an upper voltage threshold of
~3 mV and would be readily saturated and the data useless for such larger ion concentrations.
No measureable uranium background was detected for the collodion or acrylic substrate.

The results from the 100-shot fs-LA-ICP-MIC-MS for two days of analyses of the

uranium oxide samples are shown in Table 3. There is excellent agreement between the
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measured 100-shot laser ablation values and the certified values of the CRMs. The measured
ratios include small corrections for mass bias; details of the method for such corrections can
be obtained from the authors. The relative standard deviation (RSD) for the two data sets is
less than 0.75% for the multiple runs done for each of the uranium oxide samples. These
results demonstrate the significant improvement in precision and accuracy that this state-of-
the-art fs-LA-ICP-MIC-MS provides over a more conventional commercial ns-LA-ICP-MS
system?”.

Table 4 shows results for the analysis of the same uranium oxide samples using both
a commercial ns laser for ablation sampling (CETAC LSX-500) and the fs-LA system used
during the site test, coupled with a sequential-scanning ICP-MS (Thermo Finnigan Element)
at Ames Laboratory. Please note that this is not data generated using the ICP-MIC-MS at
ORNL. Even though the fs-LA system generally provides better results than the ns-LA
system, poorer accuracy and precision are observed for either LA system when integrated to
a sequential-scanning ICP MS compared to the results obtained with the fs-LA-ICP-MIC-MS
setup used during the site test.

A least-squares fit of the entire dataset was performed and the results are shown in
Figure 2. (Figure 3 shows an expanded view of the fit around natural isotope abundance
uranium.) The measured 100-shot fs-LA-ICP-MIC-MS data for the uranium oxide samples
are plotted against their known values. The 95% prediction and confidence intervals and the
literature value for **U/%®U in natural uranium, 0.725%, are also plotted. The linear-
regression fit to the data yielded a correlation coefficient of R=0.99999. From the data, one
can determine that a single ablation measurement that yielded a value of 0.725% 2**U/?8U

(natural abundance) would be 95% likely to lie in the prediction range of 0.707 to 0.742%.
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The 95% prediction interval from the previous study for the same hypothetical natural
abundance sample, performed with a conventional commercial ns-LA unit and sequential
ICP, was 0.611 to 0.826%". This demonstrates a distinct improvement in precision (over six
times more precise), due to the incorporation of fs-laser sampling and the multi-ion collector
MS, thus meeting one of the project’s most significant goals. The much higher precision
obtained with the tested state-of-the-art system means that error contributions from the
plasma or laser are now the most significant limitation to improved accuracy, sensitivity, and
precision. These error contributions may be addressed by more frequent renormalization of
the measured system response to isotopic standards. For example, the analytical protocol
would likely be modified to perform normalization between each sample or after every third
sample, rather than once per sample set as was done for the site test data, by performing a
mass-bias correction. (Additional normalization data were not collected during the site test
because of time limitations.)

The least-squares fit in Figure 2 shows that a known natural abundance sample would
yield a measurement within a 0.723 to 0.728% confidence range 95% of the time, determined
from this calibration dataset. The same hypothetical natural abundance sample yielded a
measurement within a 0.718 to 0.745% confidence range 95% of the time, in the previous
study with poorer precision®. The confidence intervals are significantly improved with the
fs-LA-ICP-MIC-MS system (0.005% versus 0.027%). Thus, much smaller enrichment or
depletion levels can be accurately measured using the fs-LA-ICP-MIC-MS system.

Thorium/uranium concentration ratios

Measurement of the Th/U signal ratio is a convenient way to determine if the particles

produced by the LA process are small enough to be effectively converted into atoms and ions
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in the ICP. A measured Th/U ratio less than the known concentration ratio in the sample
indicates that the particles are too large to be completely atomized and ionized in the plasma,
leading to low results for Th (Since Th is not as readily atomized and ionized in the plasma).
This study was conducted using NIST reference glass standards; the Th/U concentration
ratios for these samples are near unity (see Tables 5 and 6).

Measurements were taken by both scanning the laser over the sample surface and
sampling at a single spot. Results of the fs-LA-ICP-MIC-MS analyses during the site test
were compared to similar analyses of the reference standards performed with a) a
commercial ns-LA system connected to a sequential-scanning ICP at Ames Laboratory and
with b) the same fs-LA system connected to the sequential-scanning ICP-MS. The results are
shown in Table 5 for scanning LA sampling and in Table 6 for single-spot LA sampling.

It should be noted that the reported 2*Th/?*®U values for the sequential-scanning
ICP-MS were obtained after the instrument was optimized with a 100 ppb U tuning solution
for maximum signal intensity. The results are presented to illustrate the improvement in
accuracy and precision obtained with the state-of-the-art fs-LA-ICP-MIC-MS system.
Experiments in our lab have shown that varying the scanning ICP-MS operating parameters,
such as gas sample flow, can readily affect the measured *Th/?*®U values. Adjusting various
plasma and MS parameters affects the mass bias observed in these measurements. These tests
illustrate that independent ratios obtained at optimized signal levels are much closer to the
certified values using fs-LA compared to ns-LA. They are close enough that accurate inter-
elemental ratios may be obtained with little optimization or with non-matrix-matched

standards. We still need to perform tests to determine whether any residual mass bias
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observed using fs-LA could be corrected using liquid standards for normalization, something
that could not be done previously with ns-LA sampling.

Since fs-LA greatly minimizes fractionation during sampling, measurements taken
with the fs-LA-ICP-MIC_MS system yield **Th/**®U values much closer to the certified
stoichiometric ratios for these samples. This is readily illustrated in Tables 5 and 6. The
precision obtained for both single-spot LA and laser scanning analyses are significantly
improved with the state-of-the-art system compared to the commercial ns-LA and scanning

ICP-MS system, as shown in Tables 5 and 6.

Conclusions

This study demonstrated significant improvement in the precision and accuracy in the
measurement of uranium oxide using a state-of-the-art fs-LA-ICP-MIC-MS system compared
to a conventional commercial ns-LA-ICP-MS system. A six-fold increase in precision was
observed during the site test due to the incorporation of fs-laser sampling and the multi-ion
collector MS, meeting one of this project’s most significant goals. There is excellent
agreement between the measured 100-shot ablation 2°U/**®U values and the certified values.
With the exception of the analysis of one depleted uranium oxide sample, the differences
between the measured values and the certified values were less than 0.5%.

Thus single-shot LA-ICP-MS can readily differentiate between very small samples of
depleted, natural and enriched uranium samples. From the reported data, a known natural
abundance sample particle would yield a measurement within a 0.723 to 0.728% confidence

range 95% of the time. Similarly, a sample that resulted in a measured value of 0.725% #*°U
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would be 95% likely to lie in the prediction range of 0.707 to 0.742%, based on the
calibration and standards used during the test at ORNL.

This study also demonstrated that fs-LA greatly minimizes fractionation during
sampling, thereby improving inter-elemental ratio analyses of samples. Measurements taken
with the fs-LA-ICP-MIC-MS system yielded ***Th/**®U values much closer to the certified
stoichiometric ratios for these samples, compared to the results obtained previously for

ns-LA-ICP-MS.
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Table 1. Multi-ion collector array configuration used during the ORNL test. IC# =

designation of ion counter.
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IC2 IC3

IC5

L4

231Pa 232-|-h

233U

234U

m/z 237

Table 2. Faraday cup configuration used during the ORNL test. L# or H# = designation of

Faraday cup detector.

L1 L2 L3 Center H1 H2 H3
Configuration for m/z
uranium oxide 234y 235y 236 237 28y | B%py
measurements
Configuration for 232 233 234 235 236 m/z 238
232Th/?8U measurements Th U U U U 237 U
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Table 3. Measured 2%23U for uranium oxide in collodion analyzed by fs-LA-ICP-MIC-MS

Day 2 Day 1
Certified ratio 0 %Dif 0 %Dif
(2351238 ) Avg YoRSD | Reps | %Di Avg %RSD | Reps | %Di
.0528 0.052906 | 0.33 4 0.20 | 0.052983 | 0.23 7 0.35
.0314 0.031396 | 0.41 4 -0.01 | 0.031433 | 0.35 7 0.11
.0156 0.015669 | 0.73 5 0.44 | 0.015556 | 0.52 6 |-0.28
.00726 0.007289 | 0.43 6 0.40 | 0.007253 | 0.34 5 |-0.10
.00509 0.005101 | 0.54 4 0.21 | 0.005071 | 0.41 5 |-0.38
.000176 0.000174 | 0.52 5 -1.17 | 0.000175 | 0.65 6 |-0.30
Table 4. Uranium oxide in collodion measured on a scanning ICP-MS
ns-LA, scanning MS fs-LA, scanning MS
Ce(rgé';}%%g’)‘“o Avg | %RSD | Reps | %Dif | Avg | %RSD | Reps | %Dif
.0528 0.04878 | 7.25 5 -7.61 | 0.04676 | 27.93 6 |-11.4
.0314 0.03359 | 19.87 5 6.97 | 0.03035 | 7.29 6 |-3.33
.0156 0.01862 | 33.25 5 19.4 | 0.01545 | 8.08 6 |-0.96
.00726 0.00502 | 50.18 5 -30.9 | 0.00652 | 17.47 6 |-10.2
.00509 0.00414 | 23.67 5 -18.5 | 0.00491 | 1.06 6 | -3.54
.000176 0.00017 | 23.07 5 -4.91 | 0.00018 | 28.55 6 |-1.08
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Table 5. Measured **Th/?*®U ratios obtained for scanning laser ablation on NIST glass
standards

LA, MS NIST 610 NIST 612 NIST 614

system
Avg | %RSD | %Dif | Avg | %RSD | %Dif | Avg | %RSD | %Dif

ns-LA,

. 052 | 728 |-49.11 | 051 | 998 | -50.86 | 0.42 | 2.08 | -54.79
scanning MS

fs-LA,

. 086 | 220 | -1575 091 | 093 |-1291 | 0.80 | 2.94 | -14.07
scanning MS
fS'L':/l’SMIC 0.96 | 0.83 -6.30 | 0.96 | 1.59 -7.38 | 0.86 | 0.93 -7.59
Certified | 4 o) 1.04 0.94

value

Table 6. Measured ?**Th/?*®U ratios obtained by single-spot laser ablation on NIST glass
standards

LA, MS NIST 610 NIST 612 NIST 614
system
Avg | %RSD | %Dif | Avg | %RSD | %Dif | Avg | %RSD | %Dif

ns-LA,

. 0.64 | 15.28 | -36.80 | 0.53 | 30.72 | -49.41 | 0.52 | 1.75 | -44.38
scanning MS

fs-LA,

. 1.02 | 10.72 | 0.18 | 0.97 | 18.87 | -6.69 | 0.94 | 16.82 1.02
scanning MS
fs-Lﬁ/l,SMIC 099 | 1.16 -2.84 | 099 | 1.87 -490 | 091 | 4.03 -2.46
Certified | 4 ) 1.04 0.94

value
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Figure 1. Typical transient signals from a single 100-shot fs-LA-ICP-MIC-MS analysis
(Faraday cup data) of an enriched uranium oxide sample containing 1.5% 2*°U.
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Figure 2. Linear-regression fit of the entire dataset of uranium oxide samples, analyzed by
100-shot fs-LA-ICP-MIC-MS at ORNL (Faraday cup data). The 95% upper and lower
confidence intervals and the 95% upper and lower prediction intervals are plotted.
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Figure 3. An expanded view (approximately centered around natural isotope abundance
uranium) of the least-squares fit of the entire dataset acquired at ORNL. The 95% upper and
lower confidence intervals and the 95% upper and lower prediction intervals are plotted. The
dashed vertical and horizontal lines represent natural abundance uranium ratio.
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Chapter 6: Laser ablation ICP-MS method developments

for environmental contamination detection purposes

Material submitted to the US Department of Energy

Chris H. Ebert, Daniel S. Zamzow, Stanley J. Bajic, David P. Baldwin, R. S. Houk

Abstract

The suitability of laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS) for the removal and elemental analysis of individual dust or soil particles from
two novel matrices is examined. These matrices are of particular interest for the purposes of
environmental contamination monitoring. Femtosecond laser ablation is more successful than
nanosecond laser ablation at removing soil particles from grease matrices. Determined
25*238U* signal ratios of analyzed soil particles are at natural abundance with greater than
95% confidence. Femtosecond LA-ICP-MS is used to determine the thorium and uranium
content of dust particles trapped in spider silk samples obtained from a site with known
thorium contamination and from a neutral site. Particles found in spider silk from a known
contamination site produced thorium signal more than an order of magnitude higher than
particles contained in spider silk from a neutral site. 2?Th*/?*®U* signal ratios of individual
dust particles trapped in spider silk from the neutral site were approximately normally
distributed, while particles trapped in spider silk from the contamination site produced

Z2Th*/8U* signal ratios that were not normally distributed.
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Introduction

Environmental analysis by atomic spectrometry is a widely studied area of
instrumental chemistry™ %, ICP-MS and LA-ICP-MS are particularly successful methods for
the monitoring of concerning elemental species * ("oduction. 3.4 | A_JCP-MS is a competitive
choice among sampling methods because it directly samples solid materials and can be used
to analyze many samples and matrices>’. LA is capable of selectively removing individual
particles from a matrix for elemental analysis, which is often preferable to bulk analysis’™.
Researching the capability of LA to ablate particles out of additional matrices can help the
efforts of environmental monitoring.

Without appropriate sample preparation, LA can liberate particles outside the ablation
spot. Collodion is an established matrix used for the trapping of particles so they can be
ablated individually®. Collodion is a solution of nitrocellulose dissolved in 1:1 ethanol:ether.
When collodion is applied to a surface, it rapidly dries into a thin, translucent coating of
plastic-like nitrocellulose. Applying collodion to a surface with particles of interest
effectively contains those particles without obscuring them™®. Laser ablation of a single
particle in this matrix successfully removes the target particle without disturbing neighboring
particles.

The present work evaluates LA-ICP-MS as a method for determining the uranium or
thorium content in dust or soil particles trapped in two novel matrices. These matrices are
common in production facilities, factories, and laboratories from which environmental
contamination may originate. Nanosecond and femtosecond LA-ICP-MS is used to
determine **U*/**®U* signal ratios of soil particles contained in a collodion matrix. These

results are compared to the ns and fs LA-ICP-MS determination of 2°U*/?8U* signal ratios
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of the same soil contained in two grease matrices. A comparison between femtosecond and
nanosecond lasers for the removal of soil particles from these greases by LA-ICP-MS is
presented. LA-ICP-MS is also used to determine uranium and thorium in dust particles
trapped in spider silk obtained from an area known to have thorium contamination. The
resulting thorium and uranium signals are compared to those from dust particles trapped in
spider silk obtained from a neutral site.

The research in this chapter is a compilation of data taken by the author and reported
to our funding source in the form of various reports; additional data were included in such

reports but were taken by other researchers so they are not included here.

Methods

Inductively coupled plasma mass spectrometry

ICP-MS experiments were performed on a quadrupole instrument (XSeries 2, Thermo
Fischer Scientific Inc., Bremen, Germany). Experimental conditions are listed in Table 1. All
gas flows were argon during these experiments. The ICP-MS was operated such that the
quadrupole switched between m/z values very quickly (10 ms dwell time). This was the
optimal way to evaluate the signal ratio during a transient sample like an ablated soil or dust
particle without the use of a multichannel mass spectrometer''. Most particles produced data
for approximately 3 to 5 seconds, but the mass spectrometer recorded data for a full twenty
seconds. The ion signals reported in this chapter were the integrated signal over the full

twenty seconds.
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Laser ablation

Ablation was carried out with a nanosecond laser (LSX-500, CETAC Technologies,
Omaha, NE) or a femtosecond laser (Libra, Coherent Inc., Santa Clara, CA). General
parameters for these lasers are reported in Chapter 3, Table 1. With each laser, an integrated
camera was used to locate and target an individual soil or dust particle. Ablation was then
carried out at this location; 20 laser pulses at 20 Hz were used during ns LA and 100 laser
pulses were used at 1000 Hz during fs laser ablation. The camera on the fs LA system can
detect a particle as small as ~10 um; the camera on the ns LA system can detect a particle as
small as ~3 um.

Samples

The soil used in this work was collected from a non-contaminated site. Analysis by
microwave digestion and subsequent ICP-emission spectroscopy determined this soil
contains 5 ppm uranium. For this work, soil samples were prepared in two ways. By the first
method, soil was spread across a clean cloth (ITW Texwipe, Mahwah, NJ), covered with
collodion, and allowed to dry. This effectively trapped the soil particles and allowed the laser
to selectively ablate a single soil particle without jarring other particles into the ambient
argon stream and into the plasma. The second method of soil preparation was to spread soil
across a surface and mix it with one of two grease matrices. The grease-soil mixture was then
spread across a clean cloth.

Spider silk samples were collected from two sites. The first site was known to be
contaminated with thorium; the second site was believed to be non-contaminated. Uranium is
not a suspected contaminant at the first site, so 2**U was chosen as an internal standard to

compare to thorium. Spider silk was collected by swiping a web with a clean cloth, then
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covered with collodion and allowed to dry. Preliminary testing with a Geiger counter
revealed the spider silk obtained from the contaminated site emitted alpha radiation, while
the spider silk from a neutral site did not. When observing these samples with the integrated
camera on a laser ablation system, individual strands of spider silk and larger round
particulates were observed (Figure 1). These large particulates were believed to be dust
particles from the environment of the spider silk and were ablated for analysis.

The soil and dust particles selected for analysis were roughly 50 to 100 um in
diameter, ideally just smaller than the laser spot size. Blank ablations of the clean cloths,
dried collodion, and grease samples revealed no uranium or thorium above the argon blank

while no ablation was performed (< 3 cps).

Results and Discussion

When determining an elemental or isotopic ratio, counting error must be carefully
considered as it can negatively impact the precision of ratio measurements. This is a danger if
one or both species are very near the background level. To avoid this limit to precision, the
data obtained during the ablation of a soil particles are only used to determine a 2°*U*/?®u*
ratio if the 2°U" signal was greater than 100 cps for at least one full second. Signal lower
than 100 cps at peak is considered insufficient to determine a ratio. The ablation of some
particles do not result in achieving this threshold because the particles did not contain
sufficient uranium; however, in some cases the threshold is not reached because the particle
is not completely ablated. This is an important distinction that arises during comparison

between the grease and collodion matrices.
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No such threshold is implemented when determining ***Th*/*®U* signal ratios during
the ablation of dust particles in a spider silk matrix. During this analysis, the full distribution
of elemental ratios is desired rather than an aggregate ratio. In this situation, removing data
points would introduce bias so counting error must be accepted.

Ablation of soil particles in collodion matrix

Table 2 contains the ?*°*U*/?*®U* signal ratio in soil particles removed from a
collodion matrix by ns or fs LA and determined by ICP-MS. During ns LA, 7 out of 12
ablated particles resulted in 2°U* signal greater than 100 cps. During fs LA, 8 out of 13
particles were above this threshold. Since collodion is an established medium for the
containment of particles and their removal by LA, this establishes that approximately 60% of
the particles analyzed in this soil sample have sufficient uranium to determine a ratio. The
255U/7*8U ratio of natural uranium (atomic ratio = 0.00726) is well within the determined
95% confidence interval for ablation by either the ns or fs laser.

Ablation of soil particles in grease matrices

Table 3 contains the ?**U*/*®U* signal ratio in soil particles removed from grease
matrices by ns or fs LA and determined by ICP-MS. During ns LA of soil particles in grease
matrices, only 2 out of 12 ablated particles generated 2*°U* signal greater than 100 cps.
Nanosecond LA is significantly worse at removing particles from these matrices than
removing particles from a collodion matrix. This problem is attributed to heating of the
grease matrices by the ns laser. Greases are softer than collodion and more prone to melting.
The particles are not entirely vaporized or ejected; rather they stick to the residual grease
matrix in the ablation crater. Attempts to remove these particles with 100 laser pulses (rather

than 20) were equally ineffective; these results are not included.
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During fs LA of the soil particles in greases matrices, 23 out of 32 ablated particles
generated sufficient **U" to determine a **U*/**®U* signal ratio. Approximately the same
portion of ablation attempts generate sufficient signal during the analysis of soil in grease and
collodion matrices. Vaporization of grease matrices is more efficient, less matrix heating
occurs, and particles are more successfully vaporized or ejected during fs LA than ns LA.

Ablation of dust particles in spider silk matrix

Thorium and uranium were determined in 111 individual dust particles trapped in
spider silk from a site of known thorium contamination and 98 individual dust particles
trapped in spider silk from a neutral site by fs LA-ICP-MS. Figure 2 contains a histogram of
the integrated thorium signal from each site. The average thorium signal of the analyzed
particles from the contamination site is 318000 counts, more than an order of magnitude
higher than the 1210 counts of those from the neutral site.

Although the difference between the determined thorium signals in particles from the
two sites is considerable, a possibility remains that the particles chosen from the two sets are
of vastly different size and the total concentration of thorium in the particles is not
significantly different. To verify that thorium concentrations are different between the two
groups of particles, the Th* signal from each particle was compared to that for U”. Figure 3
shows a histogram of ?**Th*/?*®U* signal ratios on a logarithmic scale for dust particles
contained in spider silk from a neutral site as determined by fs LA-ICP-MS. The signal ratios
of these particles fit a normal distribution with R* = 0.9346. Figure 4 contains a histogram of
22Th*/*8U" signal ratios on a logarithmic scale of dust particles contained in spider silk from
the contamination site as determined by fs LA-ICP-MS. The signal ratios from this sample

do not fit a normal distribution. Furthermore, the distribution of signal ratios from the
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contamination site is broader than that from the neutral site. The comparison between these
two sets of data provides a clear demonstration that thorium contamination is prevalent at the

site.

Conclusions

Two novel materials are introduced as possible matrices for the capture of particles
for environmental monitoring. Femtosecond LA-ICP-MS is a suitable method for
determining elements of interest in individual soil particles contained by grease matrices.
Nanosecond LA-ICP-MS could not accomplish this task because ns laser pulses could not
remove particles from the matrix, most likely due to sample heating and melting. Spider silks
were found to be a possible source for detecting environmental contamination. Analysis of
dust particles trapped in spider silk from a known contamination area by fs LA-ICP-MS

revealed thorium content an elevated level compared to samples from a neutral area.
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Table 1. ICP parameters
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Operating parameter

Standard setting

Forward power 1400 W
Cooling gas flow 13.0 L/min
Auxiliary gas flow 0.80 L/min

Sample gas flow

~0.90 L/min, adjusted for
optimum sensitivity

Table 2. 2°U*/*®U* signal ratios with 95% confidence intervals determined during the
analysis of individual particles trapped in collodion matrix by ns and fs LA-ICP-MS.

Nanosecond laser

Femtosecond laser

2BU* 78U signal ratio

0.00756 + 0.00043

0.00725 + 0.00034

Number of particles

7

8

Table 3. 2°U*/*®U* signal ratios with 95% confidence intervals determined during the
analysis of individual particles trapped in grease matrices by ns and fs LA-ICP-MS.

Nanosecond laser

Femtosecond laser

ZSU*7BU7 signal ratio

0.00715 + 0.00024

0.00736 + 0.00032

Number of particles

2

23
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Dust particles

Figure 1. Image of spider silk captured on a clean cloth and covered in collodion. Individual
silk fibers and individual dust particles are visible. The large grey area in the upper left is a
matted clod of spider silk.
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Histogram of thorium content in ablated dust particles
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Figure 2. Histogram of the determined thorium signal generated by laser ablation of
individual dust particles trapped in spider silk gathered from a known contamination site and
a neutral site.
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Histogram of 232Th*/238U* signal ratios in
individual particles from neutral site
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Figure 3. Histogram of 22Th*/***U" signal ratios determined in 98 individual dust particles
trapped in spider silk gathered from a neutral area. The ratios fall near a normal distribution.
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Histogram of 232Th*/238U* signal ratios in individual
particles from contaminated site
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Figure 4. Histogram of 2*Th*/**®U" signal ratios determined in 111 individual dust particles
trapped in spider silk gathered from a known contamination area. The ratios are not fit by a
normal distribution.
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Chapter 7. Improvements to the torch injector
and skimmer cone for LA-ICP-MS

Material submitted to the US Department of Energy
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Abstract

Figures of merit are reported for a wide-orifice (1.0 mm diam.) skimmer cone in
inductively coupled plasma mass spectrometry (ICP-MS). This skimmer cone achieves an
improvement in sensitivity during solution ICP-MS and in limit of detection during
femtosecond laser ablation (LA) ICP-MS over a standard skimmer cone (0.8 mm diam.). A
glassy carbon injector is implemented which extends 15 to 20 mm further downstream than a
standard quartz torch. An increase in sensitivity is observed with this longer injector.
Evidence presented suggests that this glassy carbon injector reduces the effects of elemental

fractionation during nanosecond ablation of a silicate glass standard.

Introduction

Since the initial development of laser ablation (LA) as a method for sample
introduction in inductively coupled plasma-mass spectrometry (ICP-MS) in 1985 by Gray",
there has been extensive research and countless publications toward LA-ICP-MS
development. Much of this work has focused on introducing LA-ICP-MS to new fields,
including geology, medicine, biology, semiconductors, forensics, and materials science.

Other research has focused on improving laser ablation as a sampling technique by studying
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the effects of various laser parameters on ablation efficiency. This research has resulted in
many improvements to laser ablation, i.e., optimizing laser fluence and laser power, ablating
with femtosecond lasers, using helium as a carrier gas, selecting the proper laser wavelength,
and beam homogenization. Still other research has focused on the transportation of laser
produced aerosols from the ablation cite to the ICP.

Comparatively little research has gone towards tailoring ICP-MS specifically for the
purpose of analyzing laser-generated aerosols. In the ICP, there is a significant difference
between the behaviors of a nebulized solution and an assembly of particles produced by LA,
even beyond the difference between a wet plasma and a dry plasma®. As such, the optimal
conditions and physical characteristics of ICP-MS may be different for the two methods of
sample introduction. The sensitivity, stability, and accuracy of the signals obtained during
LA-ICP-MS analysis could perhaps be improved with modification to the ICP torch, injector,
sampler cone, and skimmer cone.

Vaughan and Horlick® studied the effect of the skimmer cone orifice diameter on
analyte and analyte-oxide ion signals in solution ICP-MS. They determined that increasing
the skimmer diameter increased the sensitivity of monatomic ions. This result is
unsurprising; the analyte ions and background gas comprise a supersonic jet as they leave the
sampler cone”, and a larger skimmer cone is expected to pass a greater portion of the analyte.
They also found that once the skimmer cone orifice diameter is as large as the sampler cone
orifice diameter, the signal level of metal-oxide polyatomic ions increases steeply. These
MO ions originate from the boundary between the plasma and the relatively cool sampler
cone (Chapter 1, Figure 2). A skimmer cone with an orifice larger than the sampler cone will

transmit an undesirable portion of these polyatomic ions. Thus, during solution ICP-MS a
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skimmer cone is chosen with an aperture that is slightly smaller than the sampler cone, even
though this will result in poorer sensitivity.

However, this conclusion may be different when performing laser ablation ICP-MS or
solution ICP-MS experiments with thorough sample desolvation. Little to no water is
introduced to the plasma during these experiments, so the number density of oxygen in the
plasma and the abundance of MO™ ions are much lower. Using a larger diameter skimmer
cone may result in a less substantial increase in MO™ ion abundance during ablation
experiments, and a small increase in MO™ ions may be acceptable if the sensitivity is
increased.

During LA-ICP-MS, many particles travel through the ICP off-center in the axial
channel®. A smaller fraction of the material atomized from these particles is extracted and
analyzed than that for a particle that is exactly on axis. Minimizing the number of particles
that are off-center has the potential to increase the throughput and sensitivity of LA-ICP-MS.
Lengthening the sample injector may have this effect. A typical injector is made of quartz,
and sits about 5 mm downstream of the plasma. The injector cannot sit any closer, because it
would erode or warp due to the high plasma temperature. The sample gas flow carries the
aerosol the distance between the end of the injector and the downstream end of the plasma.
Houk, et al.® demonstrated the use of a graphite injector, which can extend well into the ICP.
Graphite vaporizes but does not melt, so it can function as an injector for several hours. They
characterized graphite injectors for solution ICP-MS, and found an increase in sensitivity, a
reduction in the optimal sample gas flow, and a reduction in metal-oxide polyatomic ions.

Houk et al.® did not use the graphite injector for analysis in laser ablation ICP-MS.

Using a longer injector may particularly improve LA analyses, because it may keep a greater
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fraction of particles on axis. A longer injector also has the potential to reduce the effects of
fractionation. During operation the injector reaches temperatures 2000 K or greater®, so it
may initiate sample heating earlier and more completely vaporize laser-generated aerosol.
Furthermore, if the optimal sample gas flow is lower, the plasma temperature is generally
hotter. A hotter plasma can better process the large particles generated in laser ablation’.

The present study characterizes glassy carbon as an injector material in LA-ICP-MS.
Like graphite, glassy carbon vaporizes rather than melts. Glassy carbon is more rugged than
graphite, and has a higher vaporization temperature® °. This study provides general figures of
merit for the injector, and presents preliminary data supporting the hypothesis that using a
heated injector reduces fractionation. This work also compares the figures of merit for a
skimmer cone with a 0.8 mm and 1.0 mm diameter.

The research in this chapter is a compilation of data taken by the author and reported
to our funding source in the form of various reports; additional data were included in such

reports but were taken by other researchers so they are not reported here.

Methods

Instrumentation

ICP-MS experiments were performed on a quadrupole instrument (XSeries 2, Thermo
Fisher Scientific, Inc., Bremen, Germany). ICP conditions are reported in Table 1. All gas
flows are argon during these experiments. This instrument was chosen because the ICP is
fairly robust, which is necessary when attempting torch improvements.

During the characterization of the skimmer cones, laser ablation experiments were

carried out with a femtosecond laser (LIBRA, Coherent Inc., Santa Clara, CA). General
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information about this laser can be found in chapter 3, Table 1. Femtosecond laser ablation
experiments were carried out in ‘single spot’ mode, in which the laser ablates one location
and the sample is not moved. A laser shutter opens and then closes 100 ms later, allowing
100 laser pulses to ablate the sample for each measurement.

During fractionation studies, laser ablation was performed using a nanosecond laser
(LSX-500, CETAC Technologies, Omaha, NE). General information about this laser can be
found in Chapter 3, Table 1. A nanosecond laser was chosen for fractionation studies because
an improvement in fractionation is more readily observable during ns laser ablation than fs
laser ablation. Nanosecond LA experiments were carried out in ‘raster’ mode, in which the
laser fired for 20 seconds and the sample was moved laterally at 150 um/sec so the laser was
constantly ablating fresh surface.

A PFA 400 uL self-aspirating nebulizer and a sample desolvator (APEX, Elemental
Scientific, Inc., Omaha, NE) was used during all solution experiments.

Skimmer cone

The XSeries 2 typically operates using a sampler cone with a 1.0 mm diameter orifice
and an Xt skimmer cone with a 0.8 mm diameter orifice. A second Xt skimmer cone was
drilled out to a 1.0 mm diameter orifice. During operation with this large-orifice skimmer
cone, the instrument pressure increased from 5.5e-7 mbar to 8.5e-7 mbar. This increase in
pressure is directly related to the increase in skimmer cone orifice area, as described by
Douglas and French®.

Injector

Figure 1 depicts the ICP during operation with a) a quartz injector and b) a glassy

carbon injector. The standard quartz injector implemented was 4 mm OD, ~1.5 mm ID, and
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16 cm in length. This quartz injector can be used for years without damage. Since glassy
carbon injector degrade over a period of 8 to 12 hours, a total of four different glassy carbon
injectors were used during the course of data collection for this work. A glassy carbon tube
(4 mm OD, 1.2 mm ID, 30 mm length; SPI Supplies, West Chester, PA) was inserted into a
long stainless steel tube. The total length of this injector was 17.5 to 18 cm at first use.
During operation, the glassy carbon tube glowed bright orange, indicating it was 2000 K or
hotter®. After 8 to 12 hours of experimentation the glassy carbon tube was 2 to 5 mm shorter
and the ID increases by 1 to 2 mm, at which point it is discarded. The glassy carbon injector
protruded into the plasma, just past the first turn of the load coil.

Samples

A 10 ppb multielement standard containing uranium and thorium in a 2% nitric acid
matrix was used for all solution experiments. The NIST 610 silicate glass series were used
for laser ablation experiments. The NIST 610 series are a set of four silicate standards doped
with trace metals. NIST 610 has a nominal 500 ppm various metals added, NIST 612 has
nominally 50 ppm, NIST 614 has nominally 1 ppm, and NIST 616 has nominally 20 ppb
metals added®.

Total sample gas flow

For many experiments, the sample gas flow rate was varied for optimization or other
purposes. In these instances, a constant 0.6 L/min argon flow was used to nebulize a sample
solution or to carry an aerosol generated by laser ablation. A makeup argon flow was then
added just before the sample was injected into the plasma. This makeup gas flow rate was
incrementally increased during an experiment. Such a setup was necessary because directly

varying the nebulizer gas or ablation carrier gas can impact the total sample load that reaches
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the plasma. By adding and adjusting a makeup gas, the influence of the total gas flow can be

investigated without changing the amount of sample analyzed.

Results and Discussion

Large orifice skimmer cone — figures of merit

Figure 2 shows the U*, UO", and Th" signal during the introduction of a 10 ppb
multielement solution as the makeup gas flow is increased with the standard 0.8 mm orifice
diameter skimmer cone. The U" and Th" ion signals are optimized at a total sample gas flow
of 0.90 L/min. Figure 3 shows the U*, UO", and Th" signals during the introduction of the
same sample as the makeup gas flow is increased while using the new 1.0 mm orifice
skimmer cone. With this large-orifice skimmer cone, the optimum total sample gas flow rate
is slightly higher, at 1.04 L/min. The optimum uranium signal is increased by ~50% with the
large-orifice skimmer cone compared to the normal skimmer cone.

With the 0.8 mm orifice skimmer cone at the optimum gas flow, the UO*/U" signal
ratio is 0.31%. The 1.0 mm orifice skimmer cone generates a UO*/U" signal ratio of 0.37% at
the optimum flow rate, a significant but small increase in uranium oxide abundance
compared to the standard skimmer. This increase in uranium oxide abundance can be
attributed to the higher total sample gas flow. When a total gas flow of 0.90 L/min is used
with the large-orifice skimmer cone, the UO™/U" signal ratio is 0.31%, almost identical to the
normal skimmer cone. With the 1.0 mm orifice skimmer cone at this lower gas flow, the
signal is 92% of the signal level when the small-orifice skimmer cone is used at 0.90 L/min.

With the instrument and sample desolvator used here, a increasing the orifice diameter can
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increase the sensitivity of solution ICP-MS experiments with only a minimal increase in
oxides.

Table 2 reports the limits of detection (LOD) for sixteen elements during the fs laser
ablation of NIST silicate glasses during operation with each skimmer cone. Generally, the
LOD is lower when the large-orifice skimmer cone is used, with a few exceptions. Arsenic
and selenium have a much poorer limit of detection with the large-orifice skimmer cone than
with the small-orifice skimmer cone. These species each have a high ionization energy,
which may explain the abnormality. The plasma temperature is cooler when using the large-
orifice skimmer cone because the total sample gas flow is higher, so perhaps a significantly
smaller fraction of arsenic and selenium are ionized during analysis with the large-orifice
skimmer cone. Lithium also has a poorer LOD with the large-orifice skimmer cone than the
small-orifice skimmer cone. This occurs because the background at m/z=7 is about 3-fold
higher with the large-orifice skimmer cone, due to a higher blank for either "Li* or **N*2, an
interference for “Li*. With these exceptions, the limit of detection is better during the ablation
of NIST silicate glass standards. This improvement in the LOD is only partially due to the
increase in sensitivity with the large-orifice skimmer cone; the LOD is also driven by the ion
background during analysis with the two cones.

During the fs laser ablation of silicate glasses, the UO*/U" signal ratio is not
significantly different for each skimmer cone. The average UO*/U" ratio during operation
with the 1 mm orifice skimmer cone was 0.025%, while that for the 0.8 mm orifice skimmer
cone was 0.031%. These ratios are low enough to consider MO™ polyatomic ions a very

small concern, which is typical during laser ablation experiments.
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Glassy carbon injector — figures of merit

Figure 4 shows the U*, UO", and Th" signals during the introduction of a 10 ppb
multielement solution as the makeup gas is increased while using the standard 0.8 mm
skimmer cone and an extended glassy carbon injector. The monatomic ion signal is
optimized at a total sample gas flow of 0.83 L/min, significantly lower than with a shorter
quartz injector. With a glassy carbon injector, the maximum sensitivity is increased by
~125% compared to a standard quartz torch despite a lower flow rate.

When operating at a low total sample gas flow rate (say, 0.65 L/min), a large loss in
sensitivity is observed with a standard quartz injector. Operating at a low sample gas flow
with a glassy carbon injector results in a less extreme loss in sensitivity. This was also
observed by Houk et al.® with an extended graphite injector. The comparative increases in
sensitivity at optimum and low total sample gas flows are evidence of a reduction in the
radial diffusion of ions between the injector and the sampler cone when a glassy carbon
injector is employed.

At the optimum gas flow the UO*/U" signal ratio is 0.55%, moderately higher than
that when a quartz injector is used. This result is unexpected; decreasing the sample gas flow
generally increases the plasma temperature, which should in turn decrease the abundance of
metal-oxide polyatomic ions. A possible explanation is that the presence of the glassy carbon
injector in the plasma physically reduces the plasma temperature. The total sample gas flow
must be reduced to 0.72 L/min in order to decrease the UO*/U" ratio to the level obtained
with the quartz injector. Using the glassy carbon injector at this gas flow, the sensitivity is

still ~100% better than the optimum sensitivity using the quartz injector.
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The durability of a glassy carbon injector is an important concern. The high
temperature of the ICP slowly erodes the injector and the lifetime of a single injector is
approximately 8 to 12 hours, at which point it does not provide a notable improvement over a
normal quartz injector. The lifetime of these glassy carbon injectors is longer than that of
graphite injectors studied previously®, but not long enough to make general use of glassy
carbon injectors practical. Figure 5 shows the loss in signal for the total of the major isotopes
of twenty-five elements at the optimum sample gas flow during operation with the quartz
injector or the glassy carbon injector. The glassy carbon injector loses signal every hour as it
is vaporized by the ICP. After six hours of operation using the glassy carbon injector, the
sensitivity decreases 40% if the sample gas flow is not changed to compensate. After seven
hours, full sensitivity could be restored by increasing the makeup gas flow so that the total
sample gas flow was 0.89 L/min.

Glassy carbon injector — impact on fractionation

Plasma temperature plays an important role in fractionation. Since fractionation, in
part, arises from the incomplete vaporization and ionization of particles in the ICP, a cooler
plasma is more likely to induce fractionation than a hotter plasma’. This effect is observed
when changing the total sample gas flow. Figure 6 shows how the Th*/U" signal ratio is
dependent on the total sample gas flow during ns LA of NIST 612 silicate glass and during
the introduction of a 10 ppb multielement solution with the quartz injector. During solution
ICP-MS, the Th*/U" signal ratio decreases moderately as the total sample gas flow is
increased. This occurs because Th has a higher atomization energy than U, so at high gas

flow and cool temperature thorium is atomized slightly less than uranium.
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During LA-ICP-MS, the Th*/U" ratio decreases much more extensively when the
total sample gas flow is increased. This effect is attributed to fractionation. Thorium has a
higher vaporization point than uranium (5061 K and 4091 K, respectively). Thus, while large
laser-generated particles travel through the ICP, thorium is less fully vaporized than uranium.
This effect happens to a greater extent in a cool plasma than in a hot plasma. As a result,
Th*/U" decreases much more quickly as the total sample gas flow is increased during LA
experiments than solution experiments.

Figure 7 shows the change in Th*/U" signal ratio as the total sample gas flow rate is
increased during ns LA of NIST 612 glass and during the introduction of the 10 ppb
multielement solution using a glassy carbon injector. With a glassy carbon injector, the
Th*/U" ratio decreases with an increasing total sample gas flow at approximately the same
rate during LA-ICP-MS and solution ICP-MS. This is evidence that fractionation is reduced
when a glassy carbon injector is implemented. A possible explanation for this occurrence is
because the glassy carbon injector is much hotter than the quartz injector during operation.
Thus, the laser-produced particles enter the plasma at a hotter temperature, and the effects of

fractionation are reduced.

Conclusions

This research demonstrates the possibility of developing ICP-MS components
specifically tailored for improving laser ablation experiments. Increasing the skimmer cone
diameter to that of the sampler cone improves the LOD for most elements during laser
ablation without an observed increase in UO" abundance. Implementing a glassy carbon

injector of greater length than a standard quartz injector increases the sensitivity of solution
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ICP-MS. The glassy carbon appears to diminish the effects of fractionation during

LA-ICP-MS, possibly by heating the laser-produced aerosol before it reaches the plasma.
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Table 1. Plasma operating parameters and conditions

Instrument Thermo XSeries2
Forward power 1400 W
Cooling gas flow 13 L/min
Auxiliary gas flow 0.7 L/min
Nebulizer or ablation gas flow 0.6 L/min

Makeup gas flow

Variable, 0.00 to 0.50 L/min

Table 2. Limit of detection for sixteen metals during the fs ablation of the NIST 610 silicate

glass series. All concentrations are in ppb.

Skimmer Li Mn | Co Zn As Se Rb Y
cone diameter
1.0 mm 890 28 12 64 250 410 230 1.2
0.8 mm 130 35 20 78 40 150 25 17
Skimmer Ce | Ho Lu W Tl Pb Th U
cone diameter
1.0 mm 15 0.79 0.28 1.3 3.7 25 0.29 0.28
0.8 mm 23 20 19 8 16 30 17 14
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Figure 1. Depiction of the ICP during operation while implementing a) a quartz injector and
b) a glassy carbon injector.
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0.8 mm skimmer cone, quartz injector
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Figure 2. Th*, U", and UO" signals during the introduction of a 10 ppb multielement
solution. These data are taken with the standard quartz injector and 0.8 mm orifice skimmer
cone. The sample gas is a constant 0.6 L/min, and makeup gas is ramped at 0.02 L/min steps.
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0.8 mm skimmer cone, glassy carbon injector
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Figure 3. Th*, U", and UO" signals during the introduction of a 10 ppb multielement
solution. These data are taken with the standard quartz injector and the 1.0 mm orifice
skimmer cone. The sample gas is a constant 0.6 L/min, and makeup gas is ramped at 0.02

L/min steps.
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0.8 mm skimmer cone, glassy carbon injector
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Figure 4. Th*, U", and UO" signals during the introduction of a 10 ppb multielement
solution. These data are taken with the extended glassy carbon injector and the standard 0.8
mm orifice skimmer cone. The sample gas is a constant 0.6 L/min, and a makeup gas is
ramped at 0.02 L/min steps.
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Signal loss over time
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Figure 5. The total signal of the major isotopes of twenty-five different elements during the
introduction of a 10 ppb multielement standard, normalized to the signal at t=0. During the
course of operation, the glassy carbon injector steadily loses signal as it erodes. This loss in
sensitivity can be overcome by increasing the total sample gas flow over time; after 7 hours
of operation the optimum sample gas flow increased 0.08 L/min and sensitivity was restored.
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Figure 6. Change in Th*/U" signal ratio as the makeup gas flow increases, recorded during ns
ablation of NIST 612 glass and during the introduction of a 10 ppb multielement solution.
These data are obtained during operation with the standard quartz injector. The sample gas is
a constant 0.6 L/min, and a makeup gas is ramped at 0.025 L/min steps. Notice the large
difference in slope of the two graphs; this effect is attributed to worse fractionation of the LA

particles.
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Glassy carbon injector
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Figure 7. Change in Th*/U" signal ratio as the makeup gas flow increases, recorded during ns
ablation of NIST 612 glass and during the introduction of a 10 ppb multielement solution.
These data are obtained during operation with the glassy carbon injector. The sample gas is a
constant 0.6 L/min, and a makeup gas is ramped at 0.025 L/min steps. Notice the slopes of
the lines are nearly equal; this is attributed to a reduction in fractionation during operation
with the glassy carbon injector, caused by pre-heating of the laser-produce aerosol.
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Chapter 8. General Conclusions

Fundamental studies in ICP-MS have an impact on elemental analysis in many
scientific fields. A deeper understanding of fractionation can lead to an improvement in LA-
ICP-MS as a technique for quantification of trace elements in solid samples. The eventual
goal of achieving quantification in LA-ICP-MS using non-matrix-matched standards would
make the technique a competitive option for countless applications, such biological imaging,
semiconductor research, and geological sampling. Optimizing the ICP-MS interface
specifically for laser ablation can also further the analytical capabilities of the technique.

The evidence presented that metal-argon ions are lost during ICP-MS analysis due to
collision-induced dissociation at the skimmer cone improves the understanding of the
behavior of polyatomic ions. It may lead to strategies towards the further removal of
polyatomic ions, including metal-oxide ions. This, in turn, will improve the accuracy and
limit-of-detection of ICP-MS analyses. Certain specific analyses, e.g. analyzing the purity of
rare earth metals, are particularly hindered by polyatomic ions; reducing the abundance of
polyatomic ions would make ICP-MS a better technique such applications.

The included methodological development for the elemental analysis of
environmental particulates by LA-ICP-MS expands the role of the technique. LA-ICP-MS is
capable of processing many different samples and matrices, and continuing work in methods

research provides more options for environmental contamination monitoring.
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