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~ " Itis an exciting time to be working in mh

High Energy Density Science
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= We can use large magnetic fields and high currents to push on matter in

different ways, enabling the creation of unique states of HED matter

= The Z facility is being used to explore dynamic material properties at high

energy densities for many applications

* Innovative research is enabling temperature measurements and the study

of material at higher pressures

LDRD plays a key role in fostering the innovation and discovery that has
enabled the rapid advance of this field




=3 Currents create magnetic fields that in turn o
apply forces on other currents

Laboratories

A single wire carrying current
produces a magnetic field that
encircles it according to the
right-hand rule

Two parallel wires carrying
current along the same
direction will attract each
other (Biot-Savart Law,
“JxB force”)

Definition of an Ampere:

If two very long parallel wires
1 m apart carry equal
currents, the current in each
is defined to be 1 A when the
force/length is 2e-7 N/m
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~ Large currents and the corresponding magnetic fields can atons|
create and manipulate high energy density(HED) matter

Laboratories

Magnetic fields and currents can push matter around:
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Magnetic fields have some unique advantages when creating HED plasmas:

*Magnetic fields are very efficient at creating HED matter enabling large
samples and energetic sources

*Magnetic fields have very interesting properties in converging geometry

Magnetic fields have interesting contrasts with other ways of generating HED:
*Magnetic fields can create high pressures without making material hot

*Magnetic fields can be generated over long time scales with significant
control over the time history

Magnetic fields change the way particles and energy are transported in a plasma

A 5 Megagauss (500 T) magnetic field applies a pressure of 1 Megabar (MB) to a conductor.
A current of 25 MA at 1cm radius is 5 1026 G= 1 Mbar of pressure
A current of 25 MA at 1mm radius is 5 1027 G= 100 Mbar of pressure




ge=) We use the Z pulsed power facility to ) B
generate large magnetic fields
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Tank~10,000 ft2

._ ol -
22 MJ stored energy
3MJ delivered to the load
26 MA peak current
5 — 50 Megagauss (1-100 Megabar)
100-600 ns pulse length
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We use magnetic fields to create HED matter in o
different ways for different applications

Materials Properties
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‘Understanding material properties at high pressure is i) Raiona
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important for Stockpile Stewardship, ICF, and understanding planets
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= Nuclear Weapons materials

= In the absence of underground testing we need a
predictive capability

= Material properties are a key input to nuclear
weapons simulations

» |nertial confinement fusion (ICF) materials

= Behavior of hydrogen, plastics, beryllium,
diamond

* Planetary science
= Giant impacts (e.g. Moon Forming Event)
= Earths and super-earths

= Equation of state of Mg, Fe, Si, C, O and
related compounds

= Giant Planets (e.g. Uranus & Neptune and exo
ice-giants)
= High-pressure mixtures of H, He, C, O, N




Z can perform both shockless compression ) dows
and shock wave experiments

Flyer Plate
v up to 40 km/s
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Isentropic Compression Experiments: Shock Hugoniot Experiments:
gradual pressure rise in sample === shock wave in sample on impact




has been used to study material properties in A e,
the multi-Mbar regime for many materials

Laboratories
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w—vggﬁ}’iarge sample sizes and “long” time scales enable ;) s
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sub-percent accuracy at record pressures |
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tomd_Measuring the very low change in temperature in dynamic St
iIsentropic compression experiments is very challenging ) few
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principal isentrope
(isentropic compression

.. dS=0)
principal

- Hugoniot
- (shock impact)

pressure (GPa)

An LDRD led by Dan Dolan of SNL
is exploring a new way of dynamically
measuring low temperatures

See poster by Dolan
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.borb_X-ray Thomson scattering enables a new approach to

probing the behavior of Warm Dense Matter
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An LDRD led by Jim Bailey of SNL
researched and developed X-ray

Thomson Scattering as an

approach to probing Warm Dense

Matter
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oD Planar loads explode during a shot, divergent geometry Sania
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t=2.2000e-06 s
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Simulation by R.W. Lemke, SNL




&~ Higher pressures are produced in convergent liner z-pinch
~ experiments on Z, but controlling and diagnosing the
implosion is a challenge!

Wire-Array Implosion

Liner Z-Pinch Implosion

B T L A T L e

|I=20 MA; R=0.2 cm;
Pg= 16 Mbar.

h

An LDRD studying the stability of liner implosions posed the question:
Can we understand and control a liner implosion?

Sandia
National
Laboratories




=Qur initial experiments served as the first critical test of our ) e
understanding of the Magneto-Rayleigh Taylor instability

*D.B. Sinars et al., Phys. Reuv. Lett. (2010).
*D.B. Sinars et al., Phys. Plasmas (2011).
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m@nb ~Beryllium liner implosion data was collected and is actively o

National

being used to benchmark our modeling tools Laboraores

(a) Experiment (b) GORGON 3D (c) GORGON 3D (d) LASNEX 2D (e) LASNEX 2D
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FIG. 2. (a) Radiographs from Z experiments. The vertical dashed lines indicate the initial positions of the inner and outer
liner surfaces (inner and outer radii of 2.89 and 3.47 mm, respectively). (b—e) Synthetic radiographs from radiation magneto-
hydrodynamic simulations using the 3D GORGON code [16] {b—) and the 2D LASNEX code [2] (d—e).




D ?B},u__i_wBased on our understanding of liner stability we developed S
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platform to measure the isentrope of Beryllium at 5.5 Mbar Laboratoies

Radiographs of Be liner implosions at
different times
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oupling an internal velocity probe to the cylindrical
EOS platform enables shockless compression (T .
measurements to 20 Mbar in Al (4 x planar)
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This innovation could significantly broaden Z’s ability
to obtain data needed for Stockpile Stewardship




onb  We are now studying how we can use liner implosions S
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with a preimposed magnetic field to relax the conditions Laboratores
needed for inertial confinement fusion
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| magnetic
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Same
experiment
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e ] — - applied axial field

See poster by McBride
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= We can use large magnetic fields and high currents to push on matter in
different ways, enabling the creation of unique states of HED matter

= The Z facility is being used to explore dynamic material properties at high
energy densities for many applications

* Innovative research is enabling new measurements of temperature and
the study of material properties at higher pressures

LDRD plays a key role in fostering the innovation and discovery
that has enabled the rapid advance of this field




