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Abstract

The self-magnetic pinch (SMP) diode! is an intense flash x-ray
radiographic source being developed at Sandia National Laboratories.
The diode is capable of less than 3 mm spots and greater than 300 rads
measured at 1 meter depending on the diode voltage. The diode is
most commonly fielded on the Radiographic Integrated Test Stand
(RITS-6), a 7.5 MV, 185 kA inductive voltage adder (IVA) accelerator and
has also been tested on the URSA-Minor accelerator, an IVA based on
the linear transformer driver (LTD) pulsed power generator at 0.9 and 2
MV. Various test objects including step wedges and resolution targets
are used to study the spatial resolution and spectral characteristics of
the radiographic system which of necessity include the x-ray source,
shielding, and the detector system. These properties can be used to
make general predictions of radiographic performance.



Why do radiography?
Example: imploding cylindrical shell

Simulated Radiograph

Shaped current pulse to achieve
shocked or unshocked
(quasi-isentropic) compression.
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Simple General Radiographic Model
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X-Ray Radiographic Source Properties

Bremsstrahlung X-rays
Converter
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Radiographic Source Characteristics Affect on radiograph or analysis

Dose Signal-to-noise ratio (SNR)

Spot size Resolution

Energy Spectrum X-ray penetration and contrast

Flat field (beam uniformity) Areal density reconstruction

Spot position Spatial correlation of objects

Pulse width Degree of motion blur in dynamic
objects

Multi-pulse Time evolution of dynamic objects

Multi-axis Three dimensional features of object(s)




SMP diode research has been conducted on the RITS-62
pulsed-power accelerator

Radiographic Integrated Test Stand (RITS-6)

6-Stage Induction Voltage

Marx Bank Adder Section

Magnetically-Insulated
Transmission Line



“Dust bin” Front End

RITS-6is a 8-12* MV Marx
driven six-stage Inductive
Voltage Adder (IVA) capable
of driving a variety of flash
x-ray radiography diode
configurations (by my count

around half-dozen different
“diodes”)

Diode

*Traditionally the maximum voltage is changed by changing the MITL inner conductor.
Over the last six months we have operated the machine as low as 2 MV by different

operating points on the Marx generator and PFLs.

Test objects
and
detectors



Particle-In-Cell Simulations of Electron Flow in Dustin Region3 4
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Electron “flow” is generally a nuisance which must be shielded out; it can affect diode
operation however.



Bremsstrahlung Converter
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The Self-Magnetic Pinch Diode

Mv ,

LSP Calculated Voltage and Current

ouo

200

150

100

50

10

T T T I | T
— Left Axis n r i
i Voltage i d Vo T
| T dose rate \ 1 \ i ! i";: 11 §
- Right Axis V™ NS . .
|- Diode Cu / LA T 1
" S AR ]
I NP \
B . JI:'[I ‘\_;’ LI \ _'
i 1 '
: /< > |
gl FWHM =54 ns v
' [ .
L .-"] JI I‘ \
i ) | L0 a0 e
20 40 60 80
1SDMP diode, density contours from LSP simulation
a [V=10.3 MV Anode -%
e ;=214 kA %
.} ; /
: »
o — %
Y . %
= 7
: %
e Z
40 -5 o o
=2 {rmmym)

L2



X-ray Spot Size — Rolled Edge Method
Edge-Spread Function A

(ESF)

X-ray Spot
Distribution
(two dimensional)

X-ray Intensity

Spot Sizes Metrics

« ESF, AWE Definition: 2.5 x (0.25 to 0.75 width)

* Line-Spread Function (LSF--spatial derivative of ESF): (1.4 x JFWHM
* PSF (Abel-inversion of LSF assuming circular symmetry or measured
directly with perpendicular rolled edges or apertures): FWHM

Position
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2D Spot Reconstruction RITS Shot 1016

Source Plane Y (mm)
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Reconstruction method: Ref. 5
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FWHM Average = 1.58 mm, o = 0.04 mm
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Object Plane FVWWHM (mm)

Predicted System Blur PSF

(Includes Source and Detector Contribution)
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Stainless Steel Hard Collimator to Achieve Smaller Spot Size
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mm

Hard collimation reduces spot size and increases image contrast

Tungsten Collimation Prediction and Measurements
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* Spot size agrees with theoretical expectation

* Increased edge dynamic range due to elimination of

PSF tails.

* Increased dose / dose rate loss especially at smaller

collimator diameter since it is more difficult to hit
collimator center directly.

Also...

* Gradient introduced to flatfield profile if spot is
misaligned to collimator.
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Areal Density (g/crm2)
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Spectral Variability: Transmission Function Measured with
Repeated Shots on Copper Frustum
(low magnification)
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Transmission
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delta pr

Taking the differences of the “measured” transmission curves from the average and
dividing by the derivative gives an estimate of the “error” of the inferred areal density.

Cu Frustum: Error in Inferred Areal Density
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Transmission
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Transfer Curve of SMP Diode at 7 MV
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An LTD is a compact IVA with energy storage inside adder cavities

* The basic building block is a low inductance RLC
circuit

* Eliminates the requirement for pulse
compression stages typical of IVA accelerators

* Smaller footprint than comparable IVA

Induction Voltage Adder (IVA)
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Inductive
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Ursa Minor®is a 2.5 MeV LTD for electron beam diode research

* Based on the 1 MV system developed by the Institute for High Current Electronics
(Tomsk, Russia)

 Upgraded from 7 to 21-Cavities and commissioned in 2011
» Cavities coupled to load with a magnetically insulated transmission line (MITL)

e 10 parallel bricks in each cavity
e Total of 210 switches and 420 capacitors




LTDR: 0.8 MV

Ursa Minor: 2 MV

RITS: 3-3.5 MV

RITS: 4.7 MV

RITS: 7 MV

Operation of SMP Diode at Various Voltages

Spot size rads @ 1 m FWHM (ns)
0.7 mm 2.4 40
0.95 16 54
1.3 30 43
1.3 100 45
1.6 350 45
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