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Outline 

•Provide a basis for the peridynamic balance laws using the 
principles of non-equilibrium statistical mechanics 

•Integral operators replace the classical divergence 
operators 

•The classical balance laws can be derived by subsequent 
assumptions, e.g., contact force and power expenditures 
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Statistical Mechanics 

•The macroscopic world is comprised of atoms, or particles 
•The motion of atoms subject to forces dictates the 
behavior of bodies 

•Given the enormous number of atoms (1023) comprising the 
macroscopic world, consider instead their averaged 
behavior using the principles of probability 

•Such averaged behavior is exemplified by continuum 
mechanics, a phenomenological description   

•Let's explain a link between the world of particles and 
continuum mechanics using the principles of statistical 
mechanics 
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The balance laws of classical  
continuum mechanics 
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The peridynamic balance of  
linear momentum 
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The peridynamic balance of energy 
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The plot 

•Classical, peridynamic balance laws  
•Particle mechanics 
•Expected values in phases, or ensemble averages in phase space 
•Peridynamic balance of linear momentum 
•Peridynamic balance of energy 
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Hamiltonian and conservative  
particle forces 
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Potential U 
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Resulting force interaction 
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The plot 

•Classical, peridynamic balance laws derived using the principles 
of statistical mechanics 

•Particle mechanics 
•Expected values in phases, or ensemble averages in phase space 
•Peridynamic balance of linear momentum 
•Peridynamic balance of energy 
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Phase space 
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Phase space density 
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Liouville’s equation 

Conservative particle forces imply
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Expectation in phase space 

: ( ,

is the expected value of 

(Liouville's eqn)

 (Divergence

; ( ) , )

:

; ; ·grad

 thm

( )

·grad ( ) );

N

N

N

f t dV

f
t

f

f

f







    



  

 







 

 

















16 

Related work 

•Deriving balance laws using the principles of statistical 
mechanics started with the seminal paper by Irving and 
Kirkwood JCP 1950; many approximations and a pair potential 

•Noll 1955 removed the above approximations  
•Noll introduced two amazing Lemmas that provide closed 

form expressions for the stress, heat fluxes 
•Related approach by Hardy, JCP 1982, worked in real space and 
also removed approximations (unaware of Noll’s work) 

•Another set of closed form expressions for the stress, heat 
fluxes 

•Murdoch & Bedeaux, Proc. Roy. Soc. London A. 1994, (unaware 
of Hardy’s work), similar in scope used Noll’s two Lemmas 
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Related work 

•Much recent work on understanding microscopic stress (see 
Admal & Tadmor, J. Elasticity 2010);  

•Admal & Tadmor JCP 2011 for the balance of energy 
•used a multibody potential 

•See also very recent book by Murdoch Physical Foundations of 
Continuum Mechanics 

 
We avoid determining expressions for the stress, heat flux given a 
multibody potential 

Avoid the divergence operator and use the integral expressions  
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The plot 

•Classical, peridynamic balance laws derived using the principles 
of statistical mechanics 

•Particle mechanics 
•Expected values in phases, or ensemble averages in phase space 
•Peridynamic balance of linear momentum 
•Peridynamic balance of energy 
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Momentum density 
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After the dust settles 
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Statistical basis for the peridynamic  
balance of linear momentum derived 
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Force interaction and the force state 
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The plot 

•Classical, peridynamic balance laws derived using the principles 
of statistical mechanics 

•Particle mechanics 
•Expected values in phases, or ensemble averages in phase space 
•Peridynamic balance of linear momentum 
•Peridynamic balance of energy 
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Energy density 
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Peridynamic balance of energy 
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The peridynamic balance of  
internal energy 
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Comments 

•Integral expressions avoid the effort devoted to 
determining stress tensor and heat flux  
 

•Can determine expressions for heat flux and stress via 
Noll’s Lemmas, assuming these fields sufficiently regular, 
e.g., are differentiable 
 

•Where is the traction force, heat flux in the integral 
expressions? In other words, are the nonlocal equations we 
derived balance laws? 
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Nonlocal flux 

   
1 2 2 1

2 1 2 1force upon force upon by  by  

( , ) ( , ) ( , ) ( , ) 0T x x T x x dx dx T x x T x x dx dx
   

   

           
 

•This is action-reaction; also holds for the internal power and 
heating 

•Equivalent conditions 
•  resulting balance laws are additive over disjoint regions 
•  antisymmetry of the integrand 
•  no self-interaction 

•The above regions need not be in contact and give rise to a 
nonlocal interaction 
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Comments 

•Integral expressions make no assumptions on the 
differentiability of the fields (nor of any kinematic 
quantities) 
 

•Given that we can determine expressions for heat flux and 
stress via Noll’s Lemmas (assuming these fields are 
differentiable),  
 

•Precisely in what sense the fields are “weak” is the subject 
of current research 

• the integral operators can be seen as “weak” divergence operators 
acting on spaces functions containing jump discontinuities 
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Kinematics 

•But we’ve said nothing about kinematics 
•Silling postulated the deformation state representing collective 

motion 
 

•Discontinuous deformation allowed—jump discontinuities 
are allowable and require no special treatment 
 

•See recent J. Elasticity paper where the peridynamic 
Navier equation is demonstrated to be well-posed in the 
space of square integrable functions 
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