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__
y Outline

eProvide a basis for the peridynamic balance laws using the
principles of non-equilibrium statistical mechanics

eIntegral operators replace the classical divergence
operators

The classical balance laws can be derived by subsequent
assumptions, e.g., contact force and power expenditures
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A
* Statistical Mechanics

eThe macroscopic world is comprised of atoms, or particles

eThe motion of atoms subject to forces dictates the
behavior of bodies

eGiven the enormous number of atoms (102%) comprising the
macroscopic world, consider instead their averaged
behavior using the principles of probability

eSuch averaged behavior is exemplified by continuum
mechanics, a phenomenological description

eLet's explain a link between the world of particles and
continuum mechanics using the principles of statistical
mechanics
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— .
O The balance laws of classical
' continuum mechanics
0 .
Mass: —p+div(ipv)=0
P+ div(pv)

Momentum: %(pv) +div(pv @v)=div (o, +0,)

Energy: %5 +div (ev) = div (o, +0,)v —(a, +a,))

o.,q, are the kinetic molecular contributions to the stress

and heat flux
o,,q, are the contributions due to molecular forces to the

stress and heat flux
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e . .
4 ' The peridynamic balance of
; linear momentum

%(pV)—I—diV(pV ®V) = divo, —l—g;(T(X,X/)—T(X/,X))dX/

internal force, analogue of div o,

Classical: %(pv) +div(pv @ V) =div(o, +0)
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' '
} The peridynamic balance of energy

) : :
prahs div (ev)= div(o,v —q, )

+ [ (TOGX)V0) = T, ) () dx’

internal power (analogue of div oV)

+f(h(x,x’,t)—h(x’,x,t))dx’

internal heating (gnalogue of divq,)

Classical: %5 +div (ev) =div(o,v —q, )+ div(o,v —q,)
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The plot

e Classical, peridynamic balance laws

e Particle mechanics

eExpected values in phases, or ensemble averages in phase space
e Peridynamic balance of linear momentum

e Peridynamic balance of energy
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~ Hamiltonian and conservative
' particle forces
e Energy for the particle system is given by

the Hamiltonian
N

1
H= ZZ— PieP; + P(Xl"'°’XN}

=1 i

Potential energy

Kinetic energy

e Force on particle 1 is given by

I h--Zu-—vu

OX. OX.

IS by definition a conservative force
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}- Potential U

e The force exerted on particle 1 by the remaining
particlesis —V U

e Assume U Is Iinvariant under translation, rotation,
and reflection
UQx, +c,...,QxX, +¢) = U(X,,..., X,)
where Q and c are an orthogonal matrix and
constant vector, respectively
ePair potential Is a special case; we consider general
multibody potentials
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Resulting force interaction

'}'

~ 1 2
U — U(§1,2’€1,3"'°’€N—1,Nl)’ ij — E‘XI — XJ‘

N(N-—1) distances

2
ouU
—inU:Zfij, fij :gxi _Xj),g
J eIongYation J
stiffness

1. f; =t (action-reaction)
2. T, x(X; —x;) = 0 (colinearity)
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The plot

e Classical, peridynamic balance laws derived using the principles
of statistical mechanics

e Particle mechanics

eExpected values in phases, or ensemble averages in phase space
e Peridynamic balance of linear momentum

e Peridynamic balance of energy
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Phase space

x---x &, x VY, IS "phase space”
X. € & point space for particle |

p. € ) vector space for the momentum
of particle i
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13

}i Phase space density

II, =& XY x---x &, x Y Is"phase space”
f I, xR — R Is phase space density

f>0, ff:1
Iy

F(X .o X5 Pps-- -5 Py D)AX, -+ -dX  dp, - -dp,
Is the probability that the i-th particle has
position and velocity between

(x.,p;) and (x. +dx.,p, +dp.)

(&)
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Liouville’s equation

},_'

0 f +div(fr) =0, ﬁ:iW,WEHN
ot dt

Conservative particle forces imply
div(n) =0
and results in Liouville's equation:

0
—Tf +mgrad(f) =0
¢ | 1 grad()
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A
} Expectation in phase space

(o; F) = f a(mf(r,tdV_, mell,

Is the expected value of o : II, — R

% (a; ) = —(a;7-grad_(F)) (Liouville's egn)

= (s-grad_(a); f) (Divergence thm)
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V
* Related work

eDeriving balance laws using the principles of statistical
mechanics started with the seminal paper by Irving and
Kirkwood JCP 1950; many approximations and a pair potential

Noll 1955 removed the above approximations

eNoll introduced two amazing Lemmas that provide closed
form expressions for the stress, heat fluxes

eRelated approach by Hardy, JCP 1982, worked in real space and
also removed approximations (unaware of Noll’s work)

e Another set of closed form expressions for the stress, heat
fluxes

eMurdoch & Bedeaux, Proc. Roy. Soc. London A. 1994, (unaware
of Hardy’s work), similar in scope used Noll’s two Lemmas
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} Related work

e Much recent work on understanding microscopic stress (see
Admal & Tadmor, J. Elasticity 2010);

e Admal & Tadmor JCP 2011 for the balance of energy
eused a multibody potential

e See also very recent book by Murdoch Physical Foundations of
Continuum Mechanics

We avoid determining expressions for the stress, heat flux given a
multibody potential

Avoid the divergence operator and use the integral expressions
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' The plot

e Classical, peridynamic balance laws derived using the principles
of statistical mechanics

e Particle mechanics

eExpected values in phases, or ensemble averages in phase space
e Peridynamic balance of linear momentum

e Peridynamic balance of energy
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Momentum density

'},_'

o(m) =D pdx —x), ¢:R* - R,6>0, [¢=1

pv = (a; F)= QN: p.o(x —x.); T) is momentum

density in phase space

¢(X — x.)dx Is the probability of locating x; about
the volume dx
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After the dust settles

}'

ﬁ(pV) +div(pv @ V) =

ot
Internal Internal force density
kinetic force - N 8U A )
diVGK _<Z_(Xi T Xj)¢(x — Xi)>

1] agi'
<i pj¢(x o Xj); f>

v(X,t) = "Nzl IS the mean velocity of the N particles

<Z mj¢(x o Xj); f>

kinetic stress is o, (X,t) == —(ZN: m.(X, — V) @ (X, —V)o(x — X.); T)
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~ ' Statistical basis for the peridynamic
}' balance of linear momentum derived

0 .
a(pv) +div(pv ® V)

— divo, +f(T(x,x’)—T(x’,x))dx’

N

T(x, x)— Z (x =%, )X = Xx)p(x" = x,); )

Z (x —x)qb(x — X)p(x —x,); F)

T (x,x")is a field quantlty representing force

e The difference T (x, x")dxdx" — T (x', x)dx"dx is the force
between dx and dx’
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g '
} Force interaction and the force state

1. f;, =—f; (action-reaction)
2. T, x(X; — X;) = 0 (colinearity)

L.T(x,x") = T(x',x) = —(T(x’,x) — T(x,x))(action-reaction)
2.(T(x,x") = T(x,x)) x (x" — x) = 0 in general; justifies
non-ordinary peridynamic materials

Necessary and sufficient condition for the balance of
angular momentum is

f(x’ — X)x T(x,x")dx’ = 0 for all x
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The plot

e Classical, peridynamic balance laws derived using the principles
of statistical mechanics

eParticle mechanics

eExpected values in phases, or ensemble averages in phase space
e Peridynamic balance of linear momentum

e Peridynamic balance of energy
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Energy density

}"

a(m) = > edx—x), ¢:R° > R,¢>0, [¢=1

m. .
e = 7‘vi-vi +y®

N
e, =) _eo(x—x);f) is energy density
iI=1

In phase space

U® is a partition of the potential energy among
the N particles
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'
}‘ Peridynamic balance of energy

o ] i
prt +div (ev)=div(o,v —qy)

[ (TOXDu(x,8) T X)ov(x )’

internal power (analogue of divoV)

+f<h(x,x’,t) — h(x’,x,t))dx’

internal heating (z;nalogue of divqy)

N (J)
06X = 5 (0 w0 ) —x ) )
N (J)
L T — )X — x,): ) — T X -vi(x, B

2 i,j afl
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'
4 ' The peridynamic balance of
' internal energy

9. +div(e,,v) =0, :gradv —div g,

ot ™ "
+ fT(x’,x)-(v(x’,t) —v(x,1))dx’
= absorbed power (analogue of stress power)
+f(p(x,x’,t) — p(x’,x,t))dx’
R3internal heating (analogue of the div q,)
e=¢ + gv-v; p(x,x’,t) = h(x,x’,t) + T(x, x)ev(X,t)
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}- Comments

eIntegral expressions avoid the effort devoted to
determining stress tensor and heat flux

eCan determine expressions for heat flux and stress via
Noll’s Lemmas, assuming these fields sufficiently regular,
e.g., are differentiable

Where is the traction force, heat flux in the integral
expressions? In other words, are the nonlocal equations we
derived balance laws?
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VA
}- Nonlocal flux

ff(T(X,X')—T(X’,x))dx’dx +ff(T(x,x’)—T(x’,x))dx’dx —0

\Ql 2 J
force upoﬁ Q, by force upoﬁ Q, by
e This is action-reaction; also holds for the internal power and
heating

eEquivalent conditions
e resulting balance laws are additive over disjoint regions
e antisymmetry of the integrand
e no self-interaction

e The above regions need not be in contact and give rise to a
nonlocal interaction
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}- Comments

eIntegral expressions make no assumptions on the
differentiability of the fields (nor of any kinematic
guantities)

Given that we can determine expressions for heat flux and
stress via Noll’s Lemmas (assuming these fields are
differentiable),

ePrecisely in what sense the fields are “weak” is the subject
of current research

e the integral operators can be seen as “weak’ divergence operators
acting on spaces functions containing jump discontinuities
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}- Kinematics

But we’ve said nothing about kinematics

« Silling postulated the deformation state representing collective
motion

eDiscontinuous deformation allowed—jump discontinuities
are allowable and require no special treatment

eSee recent J. Elasticity paper where the peridynamic
Navier equation is demonstrated to be well-posed in the
space of square integrable functions
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