

Exceptional service in the national interest

energy.sandia.gov

2013 Inverter Reliability Workshop

Breakout Session B: Component Level Reliability

Breakout Session D: Module-Scale Conversion

Moderators: Bob Kaplar, Jack Flicker, Chris Deline

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

April 30, 2013

Component-Level Reliability

- Software should be considered a component
 - It is the most complex component
 - Can cause more damage than hardware degradation
 - Does not degrade, but a complex interplay exists between hardware degradation and software
- Components cannot be treated individually
 - Degradation of one can affect another in real-world environment
 - Design rules should be implemented
 - System design should be tolerant of component variation
 - Need physics-of-failure based models of components
- Cost is a major pressure
 - Good reliability can be achieved, but cost is prohibitive
 - PV industry is more cost-sensitive than other industries requiring good reliability for complex systems
 - Emphasis is placed on up-front costs, with a tendency to not worry about long-term costs such as reliability

Module-Scale Conversion

- Protection from moisture intrusion
 - Water can get in but not out (vapor condenses inside)
 - Potting / coating solves some problems but causes others (e.g. due to CTE mismatch, sealing to prevent leaks)
 - Problems with cable entry
- General environment is harsher than for centralized inverters
 - Intimate contact to solar module (this can affect module)
 - Module and MLPE are expected to have same reliability
 - On roof, not easily accessible, harsh thermal environment
- Lack of standards is a big issue
 - Residential, commercial, utility applications should have different requirements
 - Standards should be physics-based and relevant to real world (no “universal” acceleration factor)
 - Qualification can be costly; could be optional or self-certified
 - Difficult to get different manufacturers to agree on standards