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Background: Failure Modeling

• Many micromechanics-based failure models 
were developed to predict the ductile failure of 
materials. 

- typically employ the isotropic void evolution model.

- are inadequate to model the anisotropic damage in 
rolled material.   

• Motivations: 

Perform experiments to gain a fundamental temporal 
and spatial understanding of the failure process.

Include the anisotropy of damage to accurately 
model the behavior of rolled materials.



3

Material of Interest

 Rolled aluminum alloy 7075-T7351

 Uniform tension and notched 
tension with notch width of 0.75 & 
3.0 mm ( 0.03 & 0.12 in)

 Same diameter of 1.5 mm;

 Same specimen length of 25 mm;

Rolling

Short

TR

S



4

Anisotropy of Ductility in 
Rolled Material

uniform tension notch width of 3.0mm (0.12 inch)

 No apparent difference in modulus, 
yield stress and maximum stress. 

 Large difference of ductility in 
different orientation.

 How is the anisotropy of the 
damage/failure related to the 
microstructure of the material?

notch width of 0.75mm (0.03 inch)
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Conventional Techniques for 
Failure Study

Optical or SEM Imaging:
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Optical @ 50x SEM @ 75x SEM @ 500x

• Sectioned surface of interrupted test or failure surface 
after material failure;

• Surface preparation may destroy the features;

• Surface only;  



3D Imaging: X-Ray Computed 
Tomography (XCT)

. . .

N radiographs

Reconstructed 
Sample

Scan Reconstruction

Synchrotron-radiation computed 
tomography (SRCT) 
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• X-ray computed tomography (XCT) can reveal features inside 
the material body.

i

X-Ray

CCD

The ith radiograph

For i = 1:N, i = i-1+

To computer
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X-Ray Attenuation and 
Gray Scale of XCT Images

SampleX-Ray

 X-ray attenuation reflects the proportion of X-rays scattered or absorbed as they  
pass through the material.

 It is a function of X-ray energy and material characteristics: density and atomic 
number.

 The gray levels in a CT slice correspond to X-ray attenuation: denser and 
heavier – lighter.



Aluminum Alloy 7075

500 m• There are other different chemical 
elements in Al alloy 7075.

• Intermetallic particles appear 
lighter than the aluminum matrix, 
and voids are the darker regions 
in the CT image.

Component Al Mg Si Cu Zn Fe Cr Mn

Wt.% 87-91 2.1-2.9 <0.4 1.2-2 5-6 < 0.5 0.18-
0.28

<0.3

A CT slice showing the cross 
section of a failed specimen
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4D Imaging: In-situ XCT Experiments

The jth

reconstructed 
sample

Scan

Synchrotron-radiation computed 
tomography (SRCT) 

Couple in-situ loading with XCT imaging to study the damage 
evolution as the specimen is subject to different loading levels. 

i
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CCD

The ith radiograph

For i = 1:N, i = i-1+
dj, Fj

For j = 1:M (> 4)
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Volume Visualization for In-Situ XCT

Smooth Tension Specimen

Scan1

particles voids
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Void Evolution for the Specimen Loaded in
the Rolling Direction (1)
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Void Evolution for the Specimen Loaded in 
the Rolling Direction (2)
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Voids are mostly aligned with 
intermetallic particles.
No apparent local coalescence 
between adjacent voids.



Void Evolution for the Specimen Loaded in 
the Rolling Direction (3)
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Void Evolution for the Specimen Loaded in 
the Transverse Direction (1)
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Void Evolution for the Specimen 
Loaded in the Transverse Direction (2)
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Voids distribution is also associated with intermetallic particles
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Void Evolution for the Specimen 
Loaded in the Transverse Direction (4)
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Void Evolution for the Specimen Loaded in 
the Short Transverse Direction (1)
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Void Evolution for the Specimen Loaded in 
the Short Transverse Direction (2) 
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3D rendered image of voids at failure state
(a)
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3D rendered image of voids at necking state

(d) (e)

 Voids distribution form planar structures perpendicular to loading 
direction.

 Local void coalescence had planar preference in the R-T plane.
 Very limited local coalescence in short direction.
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Fractographs of Tensile Specimens Loaded 
in Three Directions

In-situ XCT observation of void evolution prior to global coalescence 
are confirmed from fractographs post material failure.



Different Void Evolution Mechanisms 

- For the specimens loaded in the rolling direction, 
local void growth via plastic deformation is 
dominant process prior to global coalescence. 
There is limited local coalescence.

- For the specimens loaded in the transverse 
direction, void local coalescence is dominant prior 
to global coalescence. They had one-dimensional 
preference along “stringers” in the rolling 
direction. 

- For the specimens loaded in the short transverse 
direction, local coalescence is dominant prior to 
global coalescence. They have 2D planar 
preference in R-T plane.
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3D Tomographic Images from In-Situ XCT 

Test can Observe Damage Evolution

Smooth Tension Specimen
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Digital Volume Correlation (DVC)

• Surface vs volume

• Pixels vs voxels

• Subsets vs sub-volumes

• Widely applied vs premature

DIC- Digital Image Correlation 

DVC- Digital Volume Correlation 



First Trial: Simple Translation of 3D Images
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Introduce displacement by shifting the images:
U=4, V= -5, W=0 (voxels)



Reference and Deformed Volumes 

Centered cube of size 208x208x196

Artificially introduce displacement by shifting the images:
U=4, V= -5, W=0 (voxels)



Displacement Results from DVC

U=4
V=-5 
W=0  



Calculate Deformation Field from 
the Real Tomographic Image Set
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 One set of tomographic images from rolling 
direction: Reference-scan 4, Deformed –
scan 5.

 Middle section of the scanned volume    
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DVC Analysis Results for 
Axial Strain zz

DVC can provide reasonable results for the 
low contrast, artifact-rich images.
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