skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Waste minimization in analytical chemistry through innovative sample preparation techniques.

Conference ·
OSTI ID:10820

Because toxic solvents and other hazardous materials are commonly used in analytical methods, characterization procedures result in significant and costly amount of waste. We are developing alternative analytical methods in the radiological and organic areas to reduce the volume or form of the hazardous waste produced during sample analysis. For the radiological area, we have examined high-pressure, closed-vessel microwave digestion as a way to minimize waste from sample preparation operations. Heated solutions of strong mineral acids can be avoided for sample digestion by using the microwave approach. Because reactivity increases with pressure, we examined the use of less hazardous solvents to leach selected contaminants from soil for subsequent analysis. We demonstrated the feasibility of this approach by extracting plutonium from a NET reference material using citric and tartaric acids with microwave digestion. Analytical results were comparable to traditional digestion methods, while hazardous waste was reduced by a factor often. We also evaluated the suitability of other natural acids, determined the extraction performance on a wider variety of soil types, and examined the extraction efficiency of other contaminants. For the organic area, we examined ways to minimize the wastes associated with the determination of polychlorinated biphenyls (PCBs) in environmental samples. Conventional methods for analyzing semivolatile organic compounds are labor intensive and require copious amounts of hazardous solvents. For soil and sediment samples, we have a method to analyze PCBs that is based on microscale extraction using benign solvents (e.g., water or hexane). The extraction is performed at elevated temperatures in stainless steel cells containing the sample and solvent. Gas chromatography-mass spectrometry (GC/MS) was used to quantitate the analytes in the isolated extract. More recently, we developed a method utilizing solid-phase microextraction (SPME) for natural water samples. In this SPME technique, a fused-silica fiber coated with a polymeric film is exposed to the sample, extraction is allowed to take place, and then the analytes are thermally desorbed for GC analysis. Unlike liquid-liquid extraction or solid-phase extraction, SPME consumes all of the extracted sample in the analysis, significantly reducing the required sample volume.

Research Organization:
Argonne National Lab., IL (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
10820
Report Number(s):
ANL/CMT-ACL/CP-96543; TRN: US0103867
Resource Relation:
Conference: 14th Pollution Prevention Conference, Seattle, WA (US), 06/01/1998--06/04/1998; Other Information: PBD: 28 May 1998
Country of Publication:
United States
Language:
English