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ABSTRACT

L]
x We have found that small populations of point vortices confined
. in a box exhibit a variety of new and interesting metastable

collective motions, ranging from rigid body rotation to complete
chaos. These motions are induced by simulated heating and cooling
of the vortices; they do not appear in adiabatic systems. By
judicious choice of vortex circulations, heating and cooling rates,
and box size, we have produced systems that switch intermittently
between several metastable states, that oscillate quasi-periodically,
and that show a variety of interesting collective behaviors that in
some cases are suggestive of biological organisms.
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1. INTRODUCTION

Vortices are encountered in many fields, including fluid dynamics
[McWilliams & Weiss, 1994]; Sutyrin, et al., 1994], plasmas [Glanz, 1994],
superfluidity and super-conductivity [Harada, et al., 1992], and optics [Arecchi,
et al., 1991; Jeffery & D’Angelo, 1994]. Single finite vortices, often with complex
internal structure, occur in planetary atmospheres [Sutyrin, 1994]; Busse, 1994],
and rotating fluids [Sutyrin, & Yushina, 1986; van Heijst, & Kloosterziel, 1989;
- Hopfinger & van Heijst, 1993]. A valuable model is that of point vortices in which
multiple points produce mutually transverse forces, generally resulting in
circulation around their common center [Kunin, et al., 1992]. There is a
considerable literature on the motions of small systems of point vortices [Aref,
1979; Aref & Pomphrey, 1982].

A new and difficult complication is added if the vortices are confined [Pointin
& Lundgren, 1976]; Lundgren & Pointin, 1977]. One early proposal [Onsager,
1949] was that the temperature of such systems is negative, although others
[Berdichevsky, et al., 1991] later showed that this is unnecessary if a different
definition of the temperature is adopted.

In this paper we present the results of numerical experiments in which we
produced interesting nontrivial collective motions of small populations of point
vortices confined in a square box by judiciously selecting the coupling between
vortex pairs. We are able to produce motions that are highly ordered, motions
that are quasiperiodic, motions that are completely stable or exactly periodic,
motions in which the vortices divide into two or more groups, and motions that
are nearly, or completely, chaotic. In addition, we find that some systems exhibit
spontaneous switching between several quasi-stable motions. This intermittent
switching depends on the pairwise couplings, on the box size, and on the step

size in the numerical integration. |
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2. SYSTEMS OF POINT VORTICES

A collection of point vortices is defined by the Hamiltonian

H= 2 Kij log(Dj)
i#j

Dy = (i) + i)

where {x;,y;} are the canonical coordinates and momenta (which may be
considered simply cartesian coordinates of the vortex), and Ky are arbitrarily

selected circulations. From H we find the equations of motion:

= = 2 K

dt _]¢l ! DU

yi N (xi—xj)
21— z K

R = ij

In order to reduce the number of free parameters, we arbitrarily adopt the
following constraint: The N vortices will be identified as either male (M) or
female (F). A population of n M and m F vortices will be written P={nM+mF}.
The NxN matrix Kj; is taken to have only 4 independent values:

Kij = Sl SIMSM + 52 811:.8]'1\/[ + 83 SlMS]F + 54 81}:8]}:

For instance, a population of P={2M+3F} vortices will have K given by

\j |[IM M F F F
M EEEEEEEE
M S . S S S
F |S3 S5 .. S5 S
F |S3 S35 S Sy
F |S3 S5 Si Sy

The vectors P={nM+mF} and S={51,5;,,55,54} are sufficient to define the
system. We emphasize that this is an arbitrary special case; Kj; actually allows
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N2-N different values. K;; is not relevant, since vortices have no self-interaction.

Typical motions of small populations are shown in Figure 1, using
circulations $={1,-1,-1,1}. These steady motions are achieved in free space
independent of initial configuration, often after lengthy transients, in the limit of
zero step size.

In order to visualize motions that appear transiently on the computer screen,
we display the positions of each vortex over some interval (typically the last 100
steps). To the extent that the step size is small, these patterns appear as relatively
smooth trajectories. If the motion is periodic, the patterns appear as simple
geometric figures. If the motion is smooth but chaotic, the trajectories appear as
wandering curves. On the computer screen, these trajectories appear as rotating
solids and worms.

Figure 2 shows typical time-integrated images of sets of vortices for systems
similar to those of Fig. 1. These rosette patterns are a well-known representation
of vortex systems. ‘

The representation of the trajectories as time-integrated images is more than
convenient; it converts the set of rapidly moving points into slowly moving
geometric figures. These figures take on a meaning, or “life” independent of the
point vortices themselves. The patterns appear on the screen as “organisms” that
sometimes move, interact, evolve, appear, and disappear. Sometimes one pattern
will “ingest” another, sometimes “disintegrate” another. Thus, we refer to these
patterns as metastable states. While the underlying reality is the motion of the
point vortices, it is the metastable patterns that we find interesting. In the rest of
this paper, therefore, we will only present these images.

3. VORTEX HEATING

The hamiltonian given above is constant, hence the rosette patterns remain
confined within a finite region determined by the total energy. If, however, we
constantly add energy, the trajectories expand without limit. The addition of
energy can be simulated very simply by taking finite step sizes in the numerical
integration of the equations of motion. This process is roughly equivalent to
“heating” the vortices.

Figure 3 shows a single heated vortex circulating around a fixed center. The
system is P={1M+1F}, S={0,0,-1,0}. The M vortex follows an expanding spiral
pattern that would continue without limit in the absence of a constraint.
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4. WALL STABILIZATION

We can stop the outward spiral motion of a heated vortex by positioning a
hard wall in its path. Computationally, this can be done very simply by
repositioning an impinging vortex slightly away from the wall. Physically this is
equivalent to giving the vortex an inward impulse when it strikes the wall, a
process roughly equivalent to a stochastic “cooling” of the vortices.

Figure 4 shows the wall confinement of a single vortex circulating around a
fixed center. When it hits the wall, it receives an inward kick that puts it nearly
on the same trajectory as the previous circuit. Thus, it approaches the wall again
on nearly the same trajectory, and finds itself nearly trapped, or stabilized, on the
wall.

If the cooling exactly compensates for the heating, a vortex will be stabilized
on the wall. While it was not obvious a priori that the numerical processes we
used to simulate heating and wall cooling can exactly compensate, we found that
wall stabilization is in fact relatively easy to obtain. In some cases, the
trajectories, and therefore the time-integrated patterns, are absolutely stable. In
others, the equilibrium is not perfect, and the pattern “walks” or “slides” along
the wall. We also observe the sudden total chaotic disintegration of a seemingly
stabilized pattern.

Figure 5 shows vortex confinement in a box. The conditions are very similar
to Fig. 4. Here we show the effect of increasing the heating rate by increasing Ss.
For small S3, the trajectories are stabilized on one wall, forming a ring with a
slight flattening. As S5 increases, the pattern expands, and becomes flattened
against the wall, like a rubber tire against a road. At very large S3, the pattern
expands like a balloon to fill the box. |

Figure 6 shows the transient associated with wall stabilization. A set of fixed
F vortices provide guide centers for 10 M vortices that circulate around them.
Initially the vortices were randomly positioned; vortices near a center made local
spiral trajectories around those centers. As the vortices expanded due to the
heating, they began to enclose additional centers, until eventually all vortices
were enclosing all centers. The pattern was permanently stabilized by the short
flat segment at lower right, and circulated forever on the track-like pattern
shown in Fig. 6(c).
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5. SWITCHING

It is apparent from Fig. 6 that a vortex can switch suddenly from one
trajectory to another. Typically this might occur if the vortex is coupled nearly
equally to more than one center: a small amount of heating or cooling will cause
the switch. Figure 7 shows this process clearly. In this case, a set of vortices
circulate CW in the vicinity of 2 fixed centers, each of which is near a wall.
Initially, the vortices are near the left center and away from the wall; they
circulate in nearly circular orbits. As they are heated, the orbits expand, and
begin to get distorted under the influence of the right-hand center. One by one,
the vortices break away to the right and pass near the right-hand center. Their
velocity is so high that they impact on the wall, experiencing cooling and
becoming stabilized on the right-hand center. Eventually, all vortices have
switched to the right-hand center, where they circulate forever. Seen as time-
integrated patterns, the effect is that the circular pattern jumps suddenly from
one location to another. |

- The motion of vortices around the fixed centers is easily visualized as a
particle moving in a potential well. Figure 8 shows this for the two-center system
of Fig. 7. A vortex initially placed in the left-hand well rises due to the heating,
eventually overcoming the central hump and reaching the right-hand well. The
cooling at the wall drops it below the energy necessary to pass over the barrier,
and it is trapped.

Intermittent switching can occur if the stable pattern has some noise. For
instance, the stabilized pattern of Fig. 6(c) has a width that fluctuates but never
vanishes. If it happened that this pattern passed between two attracting centers
of comparable strength, we would expect the trajectories to sometimes follow
one pattern, sometimes another. To the extent that the pattern is truly chaotic,
this switching will be truly intermittent. Figure 9 shows this effect for system of 5
attracting centers, one of which is separated from the other 4. At relatively low
energy, the moving vortices circulate around the 4 centers, stabilized by the wall
(Fig. 9(a)). If we increase the heating rate (Fig. 9(c), it switches to include the
outlying center, just as in Fig. 7. However, this time the trajectories switch
intermittently between the inner pattern and the outer pattern. As the heating
increases further (Fig. 9(d)), only the outer pattern occurs.

Somewhat surprisingly, within a very narrow region of higher heating rate,
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the pattern shifts back to include the inner trajectories: in Fig. 9(e) the
intermittent double pattern is again obtained. Alternatively, we could view this
as a small region (d) of greater stability within the larger region (c)-(e) of
intermittency. The cause of this stability is the quantized nature of the wall
cooling in the present numerical technique. Whenever the vortex hits the wall, it
bounces back a fixed distance, then drifts to the side and approaches the wall
again, bouncing again, etc. By the time it leaves the wall, it has made a certain
number of bounces, and is launched into a certain trajectory. A small increment
of heating may change the launching trajectory only slightly, so the complete
pattern will be only slightly perturbed. However, if a small increment results in
the addition of another bounce, the vortex is launched onto quite a different
trajectory, eventually switching to a different branch in the pattern. In the limit
that the cooling impulses are infinitesimal, the trajectories are simply flattened
against the wall, and the switching from one pattern to another will be sharp and
noise-free.

6. COMPLEX SYSTEMS

Having presented the fundamental dynamical behavior of individual
confined heated vortices, we now examine examples of systems that are more
complex. We will find that they typically establish a metastable state that has a
characteristic pattern and persists for a relatively long time (many vortex orbits),
but then may suddenly switch to another metastable pattern.

Figure 10 shows a variety of quasi-stable motions for a system of 2 male and 2
female vortices. The system was P={2M+2F}, §={1.3,-1.4,53,-1.4}, and S; is varied
from -20 to +20.

The patterns seen in Fig. 10 include four motions that appear repeatedly:

(1) counter-rotating concentric rings or lobed rosettes

(2) localized wall-stabilized chaotic nests that include the entire population

(3) separated wall-stabilized nests that include subsets of the population

(4) wall-confined but unstabilized chaotic swarms.

Each of these patterns was relatively stable; it did not spontaneously switch to
another pattern. Although each pattern constantly changed in detail, the
appearance of the screen was roughly the same forever. For 53<0, the motions
can be described as the females circulating within the box and the males confined
near the center of the box. As soon as S3>0, a new phenomenon occurs: the males
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and females separate into two relatively localized “nests,” with one (the males)
stabilized in one corner and the other stabilized on the wall. At low S, the female
nest repeatedly approaches the male nest, resulting in temporary disruption of
the patterns. With increasing S, the distance between these nests increases, but
as S3 increases above 1.4, the male nest begins to attack the female nest,
eventually driving the system into complete chaos.

Although most of the patterns in Fig. 10 are metastable, some of them are
unstable, and spontaneously go into oscillation. Figure 11 shows one such
example. Initially, with S3=1.3, the 2M and 2F nests were stabilized in opposing
corners. By altering S3, it was possible to induce the female nest to emerge from
the corner and approach the male nest. Then S3 was reset to 1.3. The result was
that the 2F nest hovered “nervously” for a long time near the 2M nest, then
suddenly disintegrated by changing to a jet of vortices directed at the 2M nest.
The jet caused considerable agitation of the 2M nest, which ejected the F vortices
one by one. Stabilizing on the wall, the F vortices slowly reformed into a new
nest, and the process repeated. This oscillation appeared to persist forever. The
period was relatively well-defined.

A more complex system that oscillates between a highly ordered metastable
state and an almost completely chaotic state is shown in Figure 12. The system
was P={4M+4F}, S={1,-1,1,-1}. The series of frames show the pattern at roughly
equal intervals. About half the frames show two counter-rotating rings, the 4F
vortices circulating around the 4M vortices, while the other frames show almost
completely chaotic wandering (perhaps with slight suggestions of internal
circulation).

Figure 13 shows a system that switched intermittently between four
metastable states. This system was P={3M+2F} with S=:{1,-1,1,1}. Each of the four
frames shows a typical pattern that persisted for an unpredictable time,
whereupon it would switch suddenly to one of the others. This was not an
oscillator; there was no obvious pattern to the sequence of motions.
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7 WALL-INDUCED STABILIZATION

The stabilization shown in the previous examples is dynamic—if the wall is
removed, the patterns resume their expansion. However, we have also found
cases of wall-induced stabilization: patterns remain stable after the wall is removed.
Figure 14 shows an example. The system consisted of 9 M vortices P={9M]}, with
circulations S={r,...,...,...}, where r indicates a pseudorandom number (0,1). The
sequence of figures shows how the initially chaotic motion was stabilized by a
smaller box, and remains completely stable after that box is removed. This
pattern does not expand, although it is being numerically heated. The detailed
mechanism by which this system becomes self-cooling is unknown.

8. CONCLUSIONS

The central result from this study is that wall stabilization of small
populations of heated point vortices can produce to a variety of metastable states
and collective motions, ranging from simple rigid body rotation to complete
chaos. These patterns are not seen in adiabatic vortex systems.

There is some possible application of these observations to biological
phenomena. Figure 15 shows two sequences of 5 frames in which two “nests”
interact. In each case, 3 F vortices form a “nest” that slowly approaches a 2 M
nest stabilized in the corner. The sequence in Fig. 15(a) is reminiscent of the
ingestion of a protozoan by another larger protozoan. The sequence in Fig. 14(b)
is more interesting. It is known that certain cnidarians (sea anemones) such as
Corynactis californica have very aggressive defense mechanisms [Morris, et al.,
1980]. When approached by another anemone, Anthopleura elegantissima,
Corynactis will extend a mesentary filament that stings the victim, causing its
death and complete disintegration of the organism [Chao, 1975]. The process in
Fig. 15(b), while not accurate in all these details, is broadly suggestive of such
behavior.

The general character of these systems is worth generalizing. We expect any
collection of objects to expand when heated. Confining the collection while
maintaining heating is equivalent to cooling the objects at the walls. Thus, we -
obtain a dynamic equilibrium that will almost certainly be very different from
the adiabatic equilibrium obtained without heating and cooling. A very general
response of systems under these conditions is ordering: the system undergoes
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phase transitions that increase internal order. Examples are domain formation,
crystallization, and coherent motion.

Based on the results of this paper, we therefore expect to find a wide range of
new and interesting epi-phenomena associated with small populations of
confined objects subject to heating. Because of their attractive individual
dynamics, small populations of point vortices provide a very interesting system
with which to study these phenomena.
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Figure 1 - Typical motions of several small populations of
interacting point vortices. The populations include
“male” (M) and “female” (F) vortices, as follows:
(a) P={1IM+6F}, S={1,-1,-1,1}
(b) P={4M+5F}, S={1,-1,-1,1}
(c) P={6M+6F}, S={1,-1,-1,1}
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Figure 2 - Typical motions of several small populations of
interacting point vortices. All have P={2M+6F}
(@ S={0.6,-0.8-0.8,1.1}
(b) $={0.2,-0.4,-0.1,0.3}
(©) $={0.2,-0.7,-0.2,0.3}
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Figure 3 - Vortex heating. A single vortex spirals forever outward
from a single fixed vortex. P={1M+1F}, §={0,0,-0.2,0}.
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(a)

13

(b)

Figure 4 - Wall stabilization. (a) A heated vortex spirals toward a
wall. (b) When it hits the wall, it is given an inward kick
that compensates for the heating. P={1M+1F}, S={0,0,-
0.2,0}.
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Figure 5 - Stabilization in a box. A single vortex circulates CW
around a stationary M vortex. Within a small range of
jitter, this pattern is stable forever. P={1M+1F}.

(@) S={...,.../1,...} (b) S={...,...-10,...}
(c) 8={...,...-30,...} (d) S={...,...,-50,...}
The ... parts of S do not enter.
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]

Figure 6 - Approach to stablization. A set of M vortices start at

(b)

(©)

random positions in an arbitrary field of fixed F vortices.

At large time they relax to a reasonably narrow
circulating track. P={10M+5F}, $§={0,0,-0.1,0}.




(a)

(b)

() (f)

Figure 7 - Transient switching. A population of 10 M heated
vortices spends some time circulating around the left
center, then spontaneously switches to the right one.
Cooled by the wall, it never returns.

P={10M+5F}, $={0,0,-0.1,0}.
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Figure 8 - Energy diagram for the system of Fig. 7. A vortex that
starts in the lefthand well rises due to heating, eventually

surmounting the central barrier. Cooling at the righthand
wall traps the vortex in that well.
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Figure 9 - Spontaneous switching. A wall-stabilized population of 5
vortices circulate in a field of 5 centers. At low leating (a)-
(b), the wall cooling keeps the circulation confined to a

subset of 4 F vortices. With additional heating , the

trajectories expand and switch intermittently between the

two domains (a)-(e). Embedded within the switching
range is an additional nonswitching range (d).

S$={0,0,53,0}; For (a)-(f), respectively, S3 = -0.3, -0.6, -0.7,

-0.8,-0.9, and -1.2.
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Figure 11 - Oscillation of 4 vortices confined in a box (sequence top
to bottom). The population is P={2M+ZF}, with
circulations S={1.3,-1.4,1.3,-1.4}. The 2M vortices are in
the right “nest” stabilized in the corner, and the 2F
vortices are in the left one. The 2F slowly approach the
2M vortices, self-destruct, and reform for repeated cycles.
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Figure 12 - Spontaneous intermittent switching between 2 meta-stable
states. P={4M+4F}, S={1,-1,1,1}. The frames are sequenced
across, then down, i.e., normal book layout. The white frames
show instantaneous positions of the vortices.
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Figure 13 - Intermittent switching between 4 metastable states.
P={3M+2F}, S={1,-1,1,1}. This system produced a series of
frames similar to Fig. 10, with random sequencing among
these four metastable motions.
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() (c)

(b) (d)

Figure 14 - Wall-induced stabilization. The population is 9 vortices
P={9M}, with S={r,...,...,...}, r=pseudorandom (0,1).
(a) CW rotation, following slightly chaotic trajectories,
slowly expanding.
(b) Interaction with the wall of the inner box reduces the
chaos, producing more uniform trajectories.
(c) When the inner wall is removed, the system is
completely stable.
(d) An instantaneous image of the individual vortices,
rotating uniformly around their center as a rigid body.
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