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ABSTRACT

Our system fuses information contained in
registered images from multiple sensors to reduce
the effects of clutter and improve the ability to de-
tect surface and buried land mines. The sensor
suite currently consists of a camera that acquires
images in six bands (400nm, 500nm, 600nm,
700nm, 800nm and 900nm). Past research has
shown that it is extremely difficult to distinguish
land mines from background clutter in images
obtained from a single sensor. It is hypothesized,
however, that information fused from a suite of
various sensors is likely to provide better detec-
tion reliability, because the suite of sensors detects
a variety of physical properties that are more sepa-
rable in feature space. The materials surrounding
the mines can include natural materials (soil,
rocks, foliage, water, etc.) and some artifacts.

We use a supervised learning pattern recogni-
tion approach to detecting the metal and plastic
land mines. The overall process consists of four
main parts: Preprocessing, feature extraction, fea-
ture selection, and classification. These parts are
used in a two step process to classify a subimage.
The first step, referred to as feature analysis, de-
termines the features of sub-images which result
in the greatest separability between the two
classes, “mine” and “background.” The second
step, image labeling, uses the selected features
and the decisions from a pattern classifier to label
the regions in the image which are likely to corre-
spond to mines.

We extract features from the images, and use

feature selection algorithms to select only the

most important features according to their contri-
bution to correct detections. This allows us to
save computational complexity and determine
which of the spectral bands add value to the de-
tection system. The most important features from
the various sensors are fused using a supervised

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED 3%

learning pattern classifier (the probabilistic neural
network). We present results of experiments to
detect land mines from real data collected from an
airborne platform, and evaluate the usefulness of
fusing feature information from multiple spectral
bands. We show that even with preliminary data
and limited testing, the performance (specified in
terms of probability of detection and probability
of false alarm) is very promising. The novelty of
the work lies mostly in the combination of the al-

" gorithms and their application to the very impor-

tant and currently unsolved operational problem
of detecting minefields from an airborne standoff
platform.

1. INTRODUCTION

The goal of this work is to detect and locate
buried and surface land mines, given multiple
registered images of regions of the earth obtained
from a suite of visible wavelength sensors. Past
research has shown that it is extremely difficult to
distinguish objects of interest from background
clutter in images obtained from a single sensor. It
has been hypothesized, however, that information
fused from a suite of various sensors is likely to
provide better detection reliability, because the
suite of sensors measures a variety of physical
properties that are more separable in feature
space. Materials surrounding the objects of inter-
est can include natural materials (soil, rocks, fo-
liage, water, etc.) and artifacts (objects made of
metal, plastic and other materials).

The sensor suite for this work consists of a filter
wheel camera that acquires images in six bands
(400nm, 500nm, 600nm, 700nm, 800nm and
900nm). The detection system uses advanced al-
gorithms from the areas of automatic target
recognition (ATR), computer vision, signal and
image processing, and information fusion. The
system uses both physical principles and image
processing for image interpretation.




This work is application research in progress. The
individual- algorithms used are advanced, but
mostly known, and the novelty of the work lies in
the combination of the algorithms and their appli-
cation to the very difficult and important problem
of detecting buried land mines. To date, no suc-
cessful operational system exists for airborne
standoff detection of buried land mines. At the
current time, our data set is limited, in that we
have a small sample size.

2. EXPERIMENTS AND MEASUREMENTS

The images were acquired using an airborne plat-
form and a six-band visible wavelength camera.

The raw data images have size 720 pixels x 480

pixels in six bands (400nm, 500nm, 600nm,
700nm, 800nm and 900nm). The images from
the six bands are coregistered. The targets
(mines) are mostly of the surface type, but the ex-
periment included some buried mines. There is a
mixture of metal mines, plastic mines, and mine
surrogates (concrete stepping stones). The sizes
and shapes of the mine targets vary. Shapes in-
clude circular, near circular, rectangular, tubular
(long and narrow), and square. The size of the
largest dimension of the targets varies from about
three inches to about two feet. Artifacts in the
images include intentionally-placed resolution
panels. Other natural objects in the images in-
clude foliage, soil, rocks, water, etc.

3. DATA FUSION AND AUTOMATIC
TARGET RECOGNITION (ATR)

This section provides an overview of the general
ATR algorithms and philosophies behind them.
Section 4 describes the details of how the algo-
rithms are applied.

3.1 Supervised learning.

The ATR system is a supervised learning classi-
fier for which we define two classes; “mine” and
“background” (not mine). Therefore, the ATR
system is designed to classify image regions as
either mine regions or background regions. The
supervised learning approach is applied in two
steps; training and testing.

3.1.1 Training.

In the training step, we present the classifier with
a “training set” of examples (sub-images, or
“tiles”) of mine and background pixels, along with
their associated “ground truth,” or prior
knowledge of the true class to which each exam-
ple belongs (mine or background). Once the clas-
sifier is trained to successfully classify the train-
ing data with acceptable performance measured
by probability of detection and probability of false
alarm [4, 8-16], we move to the testing step.

3.1.2 Testing.

The testing step consists of using the trained clas-
sifier to process an image that was not included in
the training set and making the appropriate classi-
fications. For this application, the testing occurs
in two very different ways: testing with “tiles”
(image samples or subimages), and testing an en-
tire image.

3.1.2.1 Testing with tiles.

This means that we save aside image tiles that
were not used for training and apply them to the
trained classifier. A confusion matrix, including
calculations of probability of detection and prob-
ability of false alarm is generated to evaluate per-
formance.

3.1.2.2 Testing with an entire image (image label-
ing).

An analysis window of the same size as the

~ training tiles is raster-scanned over the image. A

new labeled image is constructed as follows. At
each pixel in the testing image, features are calcu-
lated for the pixels in the analysis window, and
the classifier classifies the center pixel in the win-
dow as belonging to either the class “mine” (this
pixel in the labeled image is assigned a value of 1)
or the class “background” (this pixel in the la-
beled image is assigned a value of 0). The result-
ing binary labeled image contains only ones rep-
resenting mine pixels and zeros representing
background pixels. Mine regions appear in the
labeled image. A post-processing step (described
later in this paper) is then used to apply size and
shape constraints to the detected mine regions.




3.1.3 The Hold-One-Out Method of Supervised
Learning [4, 8-15, 29].

The ideal supervised learning paradigm involves
having a large set of N data samples available
which are divided using an empirical rule of
thumb into a training subset (about 2N/3 samples)
and a testing subset (about N/3 samples). How-
ever, when the number of available samples, N, is
small, we can only approximate this ideal case. A
well-known and accepted approximation is called
the “hold-one-out” method. Here, we start by us-
ing all of the N available data samples, except for
one which is “held out,” to train the classifier, and
test the one held out sample. Next, we insert the
held out sample back into the training set and hold
out another sample for testing. We repeat the pro-
cedure, holding out one sample and training with
the remaining samples at each iteration until all N
of the samples have been held out once.

For our problem, we can interpret and use the
hold-one-out method in either or both of two
ways; (1) hold one mine or background sample
out, and/or (2) hold one image out. We use both
techniques. We designate most of the images for
training and designate the remaining images for

labeling. We use the hold-one mine or background

sample out method for training using samples de-
rived from the training images. Then, we test us-
ing the images held out for testing only.

3.1.4 ATR processing.

The overall target recognition process is depicted
in Fig. 1 and consists of four main parts: prepro-
cessing, feature extraction, feature selection, and
classification. These parts are used in a two step
- process to classify a subimage. The first step, re-
ferred to as feature analysis, determines the fea-
tures of sub-images which result in the greatest
separability among the classes. The second step,
image labeling, uses the selected features and the
decisions from a pattern classifier to label the re-
gions in the image which are likely to correspond
to buried mines.

3.2 Image Preprocessing.

3.2.1 Image Cropping.

The effective area of the images available for au-
tomatic detection is limited due to camera time
stamps on the images. These time stamps obscure
some of the mines and make it necessary for us to
crop the images. The cropped image uses
columns 21 to 695 and rows 110 to 398 to assure
that we do not have any of the text in our field of
view for detection. This limits the number of tar-
gets we can use in our training set for the classifer
to 133 out of a total of 209 possible objects listed
in the ground truth table. The time stamps elimi-
nated 36% of the possible targets.

3.2.2 Normalization.

The images are normalized with respect to the
background by subtracting the mean of the back-
ground from the images and dividing this result by
the standard deviation of the background. This
normalization aids in computing some of the im-
age features and it makes the classifier less sensi-
tive to absolute units, which can vary greatly with
physical properties of the site from image to im-
age.

3.2.3 Trend Removal.

The data also contain a spatial trend in the back-
ground. Background values across the image dif-
fer by up to a factor of two from one side to the
other (Fig 2). As a result of this the signal-to-
noise ratio (SNR). varies across the image and, in
some cases, it was very poor. Varying SNR’s
cause the training sets to become less reliable and,
of course, where the SNR is low, we observe a de-
crease in contrast between mines and back-
grounds. This is a problem with the camera, and
steps are being taken to correct it. Until the cor-
rections are made, however, we must cope with
the data as it is.

We high-pass filtered the cropped data sets to re-
duce this trend. For each pixel, the raw value was
replaced by the difference of the raw value and
the average of a 30 by 30 area surrounding the
pixel. This operation greatly reduced the back-
ground trend in the raw image (see Fig 3).
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Figure 1. Fusion/Automatic Target Recognition Depend Heavijly Upon Proper Image Representation.

3.2.4Tile Cutting.

We use ground truth information about the scene
to cut out N x N pixel tiles (sub-images) centered
around mine regions and background regions.
These tiles become the training samples used for
pattern classification. The specifics are provided
in section 4.

3.3 Feature Extraction.

As part of the supervised learning paradigm, we
create a set of training samples and a set of test
samples. Each image is divided into N x N pixel
subregions centered at mine pixels and back-

ground pixels. For this data set, N =5. We create
a “tile stack” of six subimages or “tiles,” one for
each frequency band, so the 3D stack is of size 5
pixels X 5 pixels X 6 pixels. We chose the tile
size so as to be contained entirely inside the
boundary of the mine image, and not contain a
significant amount of background information.

During the training phase, the spatial locations of
the mine tiles are given by the ground truth pro-

- vided by the Coastal System Station (CSS). The

background training set is obtained by cutting tiles
of the same size as the mine tiles. The locations
chosen for cutting background tiles, however, are
randomly chosen from among the possible back-
ground areas in the scene.
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Flgure 2. These row lineouts show and example of the trend in the raw data and the removal of the trend
in the filtered data.

Given preprocessed sub-images, we compute a
vector of statistical features from the pixel values
in the sub-images. Typical features include
amplitude histogram features and texture features
[2, 3]. Our philosophy is to use the simplest
features that are effective, so we currently use
only the amplitude histogram features (mean,
standard deviation, skewness, kurtosis, energy and
entropy). . Amplitude features are statistical
moments of the probability density function (pdf)
for the pixel intensity values within the tiles.
Sample moments are used to estimate the features.
Future plans involve testing the effectiveness of
features such as texture features that exploit
spatial information.

For these data, the size of the training set for
mines varies from about 100 tile stacks (samples)
for the case in which we included all types of tar-
gets, to about 50 samples (tile stacks) for the case
in which we included only metal mines as targets.
The training set for the background class contains
about twice as many samples as the mine class in
all cases.

3.4 Feature Selection.

Human experts generally classify objects based on
a very few of the most important attributes in the

image. The fundamental function of the feature
selection process is to select the most useful
information from the representation vector and
present it in the form of a relatively low-di-
mensional pattern vector removing any redundant
and irrelevant information which may have a
detrimental effect on the performance of the
classifier. A useful by-product in the process is
knowledge about the discriminatory potential of
the features and the associated highest achievable
performance for a given set of features. Statistical
decision theory tells us that the probability of
misclassification is a decreasing function of the
number of features provided, if the sample size is
very large. In practice however, only a small
number of training sets is available and estimation
errors are no longer negligible. Since the number
of parameters and the associated estimation errors
increase rapidly with dimension, it may be ad-
vantageous to sacrifice some useful information in
order to keep the number of these parameters to a
minimum.

An important goal in our work is to use feature se-
lection techniques to choose the subset of features
that contribute most to correct classification. We
gain two main benefits from this approach. First,
we wish to minimize the computational complexity
of our processing algorithms, so they can eventu-
ally be implemented in “real time.” Second, we




wish to determine which sensors are the most im-
portant for classification. By rank ordering the
features according to their importance for classifi-
cation, we are able to eliminate from considera-
tion sensors which do not contribute significantly.
Feature selection is typically accomplished by
computing a distance measure which is the sum of
probabilistic distances between all pair-wise
combinations of classes [3,4]. Commonly used
algorithms include branch and bound, sequential
forward selection, and sequential backward se-

800nm

lection [3,4]. For this study, we used the sequen-
tial forward selection algorithm because it is very
effective and computationally efficient.

We must pay careful attention to an important re-
lationship between the number of features used
and the sample size (in this case, the number of
independent tiles) in the training set. A
combination of theoretical and empirical studies
has led to the following rule of thumb [4, 21]:

Figure 3: These figures show the data set TICFLO8 after highpass filtering for trend removal.



No. of independent training samples needed per class 2 5 (No. of Features)

For example, if we have a feature vector of di-
mension 10, then we need at least 50 training
samples in each class to support the classifier. In
fact, many researchers recommend using many
more than five times the dimension of the feature
vector.

This rule of thumb has been validated and has
proved to be of great value in mine detection and
a variety of other applications the authors have
studied [8-16]. The theoretical reasoning for the
rule of thumb is based upon the fact that covari-
ance matrices are used in feature space class sepa-
rability measures and in many classification algo-
rithms. The rule of thumb reflects the number of
training samples required to ensure in practice that
the covariance matrix is estimated with sufficient
precision..

An important implication of this rule of thumb is
an upper bound on the number of features to use,

given the number of independent training sam-

ples. Note that if the sample size is small, as it is
in this mine detection study, it severely limits the
number of features we can use. In our work, for
example, we were limited to about 3 features, be-
cause our small sample size would not support
more samples. This is discussed in greater detail
in the section on processing and resuits.

3.5 Classiﬁcation.

We choose to use the probabilistic neural network
(PNN) as the classifier, for reasons described in
[6]. The PNN is a Bayesian classifier based upon
the Parzen estimator of conditional probability
density functions (pdf) [6]. The PNN has the de-
sirable property that it provides the Bayes optimal
pdf estimate in the limit as the number of training
samples approaches infinity. For our problem,
given a feature-vector X as input data, the PNN
calculates the values f(XImine) and

f(XIbackground). These pdf values can be used to
calculate the posterior probability of the source
given X, P(minelX), and the posterior probability
of the background given X, P(backgroundiX).
Classification of the vector X is obtained by
selecting the class with the largest value of the
posterior probabilities given above.

Because we have a small sample size, we use the
“hold one out” method for training and testing, as
described in section 3.1.

3.6 Image Labeling.

Once the classifier is trained, it is used to ana-
lyze an image not included in the training sets.
An analysis window of the same size as the train-
ing tiles is raster-scanned over the image. At each
pixel in the image, features are calculated for the
pixels in the analysis window, and the PNN clas-
sifies the center pixel in the window as belonging
to either the class “mine” or the class
“background.” The resulting binary image
(containing only ones representing mine pixels
and zeros representing background pixels) is
called the “labeled image.” This labeled image
provides us with an indication of the locations of
probable mine pixels. The labeled image often
contains “false alarm” pixels where the PNN
classified the pixel as a mine pixel, when it was in
fact a background pixel. When a large number of
false alarms occur, their number can be greatly
reduced by postprocessing the labeled image as
described next.

3.7 Image Post-processing.

After the labeling step, we use region-based op-
erations to the labeled image to automatically

‘identify regions, and apply size and shape con-

straints which can help eliminate false alarm re-
gions. We first apply a morphological operator to
the labeled image. We use a 3x3 pixel structuring -
element to successively erode the labeled image,
then dilate the eroded image. This operation
serves to eliminate many of the small false alarms
from the labeled image. The operation of erosion
followed by dilation is called an ‘opening.” The
opening sieves out objects that are smaller than
the structuring element, but avoids a general
shrinking of the image [30, 34].

Since we know the physical size of our targets, we
can apply size constraints to eliminate from the
opened image objects that are too large or too
small to represent targets. First we perform a
connected components analysis on the opened im-
age [30, 34]. This operation assigns all adjacent
pixels that form a region a unique number (index).



We then eliminate detected object regions that are
too large or too small according to prior knowl-
edge we have about the mine size from ground
truth. Given the true mine size, we discard de-
tected regions that are smaller than 66% of the
size the region is supposed to be, according to
ground truth for a mine. The number “66%” was
chosen based upon knowledge that the labeling
_process tends to erode the size of the region de-
tected, and by some experimentation with the data
set. In future work, this number can be better
tuned to the data with more effort, or more sophis-
ticated algorithms can be employed. The impor-
tant concept to note is that the use of size con-
straints is a very useful tool for eliminating small
false alarms and for using prior knowledge in the
analysis.

4. PROCESSING RESULTS AND
DISCUSSION

4.1 Training Data Set.

Several training sets were generated to accommo-
date the intended targets to be detected. These sets
contained various types of targets : All targets, all
targets without resolution panels, plastic and
metal mines only, metal mines only, and plastic
mines only. We searched a space of 54 features
(nine features for each band) for three features se-
lected by the Sequential Forward Selection algo-
rithm [4]. Selected features differed for each type
of training table. The Probabilistic Neural Net
(PNN) was tuned for optimal probability of cor-
rect classification by adjusting the smoothing pa-
rameter, sigma [6]. The smoothing parameter de-
fines the width of the Parzen window used in the
PNN. The table below summarizes the type of
training table, the selected features, and the opti-
mal sigma that was obtained in each case.

4.2 Results and discussion.

Figs. 4a - d show the resulting labeled and post-
processed images of data set t1cfl08. This data set

was chosen for an example because it contains a
good sampling of metal and plastic mines.

We calculate the Probability of Detection (number
of mine regions correctly identified / Total
number of mine regions in the scene) and the
Probability of False Alarm (number of back-
ground pixels identified as targets / Total number
of background pixels in the scene) to assess the
performance of our analysis. We consider a target
correctly identified if the location of the centroid
of the region is within a circular neighborhood the
size of the radius of the target according to ground
truth.

For the case in which all objects in the ground
truth were used to train the PNN (Fig. 4a) we suc-
cessfully detected all of the mines so that out of
the objects labeled we have a probability of de-
tection, PD = 1. The probability of a false alarm
(PEA), however, was quite high at .0586.

Training on all objects except the resolution
panels (Fig. 4b) gave similar results with Pp = 1
and PFA = .036. Training on just metal and
plastic mines (Fig 4c) gave PD = 1 and PRA =
.017. Finally training on plastic mines only gave
poor results (a low PpD), with PD = .11 and PEA =
.0034 (Fig. 4d).

The best results occurred when we used only
metal mines in the training tables (Fig 4e). While
PpD in this example dropped to .77, PFA showed a
dramatic improvement at .0034. Examples of
other data sets (Fig 5) show that this trend in per-
formance is consistent throughout the data sets.
Data set TICFLO11 has Pp =1 and PFA = .0013.
T1CFL14 shows excellent results in the labeled
image only (Fig 5b) with PD = 1 and PFA =
.0028. However, size constraints applied to this
image produced a degradation in the results (Fig
5c), with Pp = .41 and PFA = .00089. Clearly,
more investigation needs to be done to find the
optimal size constraint that will allow the
procedure to be robust with respect to all the data
sets.

training table: band/features: sigma:
1. All targets 400nm Max, 400nm Energy, 400nm Entropy 0.09
2. All targets, no Res panels 400nm Max, 400nm Mean, 400nm Kurtosis 0.15
3. Plastic and Metal mines 400nm Max, 900nm Mean, 500nm Max 0.80
4. Metal mines only 400nm Max,500nm Kurtosis, 700nm Energy 0.40
5. Plastic mines only 500nm Mean, 400nm Dev, 500nm Kurtosis 0.03
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Figure 4d. T1CFLO8 post processed: Trained with Plastic; PD =0.1 1, PFA=0.007
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Figure 5a. TICFL11 post processed . PD=1.0, PFA=0.0030
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The apparent success of the mines-only training
set is most likely due to the higher contrast
between metal mines and background. When
training sets are used containing plastic mines the
performance is diminished by the fact that in
many of the bands in the data sets the plastic
mines have characteristics much like the back-
ground. This is evident in Fig. 4d.

5. FUTURE WORK

The results of the processing are very encour-
aging. The probabilities of detection and false
alarm achieved during training and testing were
sufficient for locating minefields from a qualita-
tive visual inspection of the labeled and postpro-
cessed images. They are very good, given the
constraints on the analysis. The current limita-
tions, or barriers to progress, are due primarily to
the following factors: (1) The data contain a rela-
tively small number of mine training samples for
the individual mine types. Of course, the princi-
ples of supervised learning rely on the assumption
that the training set is sufficiently large and suffi-
ciently representative of the test set to allow for
good detection. This data set is smaller than it
should be for good training. (2) The images con-
tain a spatial trend in intensity values that is
caused by problems with the camera. We re-
moved the trend with image processing methods,
but it should, ideally, be removed from the hard-
ware. CSS is aware of this problem and correc-
tive action is being taken. (3) One more limitation
we encountered with the data was that the resolu-
tion of the camera system was often insufficient to
distinguish between circles and squares the size of
a typical mine. This limits the ability to use fea-
tures based on shape for object detection. More
sophisticated methods that make use of shape in-
formation could be used if the camera resolution
were greater. If the resolution is fixed for all pos-
sible scenarios, this issue may be moot. (4) Only
a very simple analysis was attempted, due to fund-
ing and time constraints. Further work involving
use of more powerful algorithms promises to pro-
vide improved results.

Performance improvements are expected if we
address these current limitations as follows: (1)
Increasing the number of training samples by
conducting new experiments. (2) Solving the

problems associated with the camera, (spatial
trend and resolution limitations), (3) Using shape-
based features on higher-resolution images,

(4) Conducting a more thorough study of the
features and of which ones add the most value to
the analysis. To date, we have used only
amplitude features and a suboptimal but fast and
efficient feature selection algorithm. A better
study can be done using our optimal algorithm.
We can also apply more physical knowledge and
human judgment to the feature selection process
to provide a more thorough analysis, (5)Tuning
the tile size for optimum performance.

6. CONCLUSIONS

The algorithms developed at LLNL for buried
land mine detection have been applied to the CSS
flight test data containing mostly surface land
mines, and a few buried mines. The algorithm
performance is good and quite encouraging.
Probability of detection is very high (often close
or equal to one). The probability of false alarm is
low enough to allow qualitative detection of a
minefield from visual inspection of the labeled
and postprocessed images. The main issue of
concern is that some labeled images are corrupted
by small false alarm regions. Many of these are
eliminated by applying size constraints, and we
expect that many more could be eliminated by
shape constraints. The current barriers to progress
are small sample size, relatively low camera reso-
lution, spatial trends in camera intensity, and fis-
cal constraints. We expect that the performance
can be improved significantly by addressing these
current limitations in future work.
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