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• Mission: Provide the combustion and emission science base needed by 

industry to develop high-efficiency, clean engines for future fuels.  

• Integral part of DOE/industry advanced engine and fuels programs.  

• Sponsor is DOE Office of Vehicle Technologies  

• Strong collaborations with industry, universities,  

and other national labs.   

• 25 staff, technologists and post docs; plus visitors  

U.S. Department of Energy (DOE) 
Energy Efficiency and Renewable Energy Program (EERE):   

Engine Combustion Research Connects to Needs of Industry 



• Advanced combustion strategies for enabling high-efficiency engines 
– SI, Diesel, and Low-Temperature Combustion (HCCI, PCCI, …)  

Working with industry to develop the science-  
base for next-generation engines for future fuels. 

• Next generation computational tools 
– massively parallel machines   

Time varying,  

3 million cell grids 

• Future fuels 
– adv. Petroleum  
– bio-fuel  
– gas-to-liquid  
– oil sand and shale 
– natural gas & H2 



Gasoline Engines 
Alternative Fuels 

Heavy-Duty 

Diesel Engines 

Engines Research Focuses on Improving 
Efficiency, Reducing Emissions 

• Partnerships with industry characterize the program 

• Laser-based optical diagnostics. 

• Optically accessible, realistic engine conditions 

• Simulation/modeling   



Newly developed conceptual model for diesel LTC combustion 
describes in-cylinder processes (SNL-Musculus) 

Motivation: 

– 1997: Conventional diesel conceptual model (left) is foundation of understanding for industry 

– 2013: Need new conceptual model to aid development low-temperature combustion (LTC) 

Impact of new LTC conceptual model: 

– Describes LTC operating condition effects on spray, mixing, combustion, efficiency, emissions 

– Supported by years of optical data and simulations in heavy-duty (left) and light-duty (right) 



Diesel LTC fuel-air distribution measurements clarify the 
mixing processes critical to operation (SNL-Miles) 

Motivation: 
– Dominant sources of UHC and CO at light-load from LTC 

combustion include crevices and over-lean mixture formation 

– First-of-kind, quantitative fuel-air distribution measurements in 
light-duty engines required to understand and verify UHC and CO 
sources, and provide model validation data for challenging swirl 
and wall interaction conditions 

Results on sources of UHV and CO: 
– Substantial over-lean mixture exists in the upper-central regions 

of the bowl and clearance volume -  

– Despite MBT timing, fuel penetrates to near the cylinder walls and 
will be forced into the ring-land crevice during high temperature 
heat release 

– Fuel-rich mixtures persist within the squish volume with<f> < 2  



Planar-imaging thermometry shows the source of thermal 
stratification critical to HCCI operation (SNL-Dec) 
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Almost all cold “pockets” are turbulent 
structures attached to firedeck or piston top. 
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Probability of cold structures 
increases with decreased speed. 

Motivation: 

● Natural thermal stratification (TS) in an HCCI engine 
enables much higher loads  

● Increasing TS has a high potential to extend the high-
load limit and/or increase efficiency. 

● An understanding of TS is required  to realize potential  

Method: 

● Establish side-view technique to obtain thermal 
images of bulk gas & boundary layer simultaneously. 

Accomplishments: 

● TS occurs as cold regions dispersed intermittently 
throughout the otherwise-hot bulk-gas. 

– Develops progressively during latter part of compression 
stroke. 

● TS is turbulent in nature  no evidence of flows 
transporting cold wall-gas into central region. 

● TS results from turbulent structures of cold gas 
extending from the walls into the bulk gas. 

● Amount of TS varies with operating conditions. 



 Previously: Improved understanding of 
boosted HCCI  enabled higher loads on 
conventional 87-octane gasoline (E0).   

– Load limit = 16 bar IMEPg, premixed  (PM)  

 E10:  Blend 10% ethanol with gasoline. 

– Reduces EGR requirement with boost. 

– More air in cylinder allows higher fueling. 

– Load limit = 18 bar IMEPg, premixed 

 Partial Fuel Stratification (PFS) 
– Gasoline  (E10) becomes f-sensitive with 

boost allowing PFS to reduce heat release 
rate.  

– Provides higher loads without knock at lower 
boost pressure. 

 Thermal efficiency of 47 – 48% over 8 to 
16 bar IMEPg range. 

Boosting and fuel stratification using E10 substantially increase 
HCCI load range and efficiency (SNL-Dec) 
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The role of spray combustion research for 
high-efficiency engines. 

• Future high-efficiency engines use direct injection. 

– Diesel, gasoline direct injection, partially-premixed 
compression ignition 

• Complex interactions between sprays, mixing, and 
chemistry. 

– Two-phase system, including multiple injections 

– Spray-induced mixture preparation 

– Complicated internal flows within injectors 

• Optimum engine designs discovered only when spray 
modeling becomes predictive. 

– Predictive modeling shortens development time and 
lowers development cost. 

– Makes efficient engines more affordable. 

• Relevant to EERE Advanced Combustion Engine 
research and development goals. 

 

BLUE: liquid boundary 

Schlieren: vapor boundary 
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Experimental approach utilizes well-controlled 
conditions in constant-volume chamber. 

• Well-defined ambient conditions: 

– 300 to 1300 K 

– up to 350 bar 

– 0-21% O2 (EGR) 

• Injector 

– single- or multi-hole injectors 

– diesel or gasoline (cross-cut) 

• Full optical access 

– 100 mm on a side 

• Boundary condition control needed 
for CFD model development and 
validation. 

– Better control than an engine. 

– Easier to grid. 
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Objectives/Milestones 

• Aid the development of computational models for engine design and 
optimization (ongoing). 

– Lead an experimental and modeling collaboration through the Engine 
Combustion Network with >100 participants (http://www.sandia.gov/ECN) 

– Target conditions specific to low-temperature diesel and DI gasoline.  

• ECN activities focus on quantification, standardization, leveraging, detailed analysis. 

• Provides a pathway from experimental results to more predictive CFD modeling.  

• Activities, progress, and future directions listed under ECN2 Workshop 
proceedings. 

• Represents major advances in terms of diagnostics, modeling tools, and so forth. 

• (1) Expand datasets to a larger range of conditions for more extensive 
model evaluation, including  

• (2) Apply quantitative soot diagnostics in optically thick diesel sprays, 
providing opportunity for needed improvement in PM predictions. 

• (3) Evaluate liquid/vapor penetration and plume-plume interactions in DI 
gasoline sprays, forming unique model-target dataset. 
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ECN collaborative research at specific target conditions 

• Opportunity for the greatest exchange and deepest collaboration. 

– Understanding facilities/boundary conditions. 

– Understanding diagnostics and quantification. 

– Standardize methodologies for post-processing. 

• Leverages the development of quantitative, complete datasets. 

– Unique diagnostics to build upon past understanding. 

– Moves from “qualitative” to “quantitative”. 

– Sharing results/meshes/code/methods saves time and effort. 

• Methodology now applied to parametric variants about Spray A. 

 

900 K, 60 bar 90° C, 1500 bar 
Spray A Injector Ambient 

Internal nozzle 

geometry 

• Spray H (baseline n-

heptane) 

• Spray B (3-hole 

version of Spray A).  

• Gasoline DI and 

engine flows. 

Other defined targets: 



Measurements to date at Spray A conditions 

26 types of 

experiments 

10 different 

international 

institutions 

Quantity Experiment Contributors (Inst. and/or person) 

Gas T distribution fine-wire TC, variable diameter TC CAT, CMT, Sandia, IFPEN, TU/e, KAIST, Chalmers 

Nozzle internal temperature thermocouple Sandia, CAT, IFPEN, CMT, TU/e, Aachen, Chalmers 

Nozzle surface temperature laser-induced phosphorescence IFPEN (Louis-Marie Malbec, Gilles Bruneaux) 

Nozzle geometry x-ray tomography CAT (Tim Bazyn), Infineum (Peter Hutchins) 

Needle movement/noz. geom. phase-contrast imaging Argonne (Alan Kastengren, Chris Powell) 

Nozzle geometry silicone molds CMT (Raul Payri, Julien Manin) 

Nozzle exit shape optical microscopy, SEM Sandia (Julien Manin, Lyle Pickett), TU/e 

Mass rate of injection bosch tube method CMT, KAIST 

Rate of momentum force piezo CMT, Sandia, CAT 

Total mass injected gravimetric scale CMT, Sandia, IFPEN  

Nozzle Cd, Ca momentum + mass CMT, Sandia 

Liquid penetration Mie scatter IFPEN, Sandia, CMT, CAT, TU/e 

Liquid penetration Diffused back illumination (DBI) Sandia, CMT, IFPEN, TU/e 

Liquid optical thickness laser extinction Sandia (Julien Manin, Lyle Pickett) 

Liquid structure long-distance microscopy Sandia, CMT (Julien Manin, Lyle Pickett) 

Liquid vol. fraction (300 K) x-ray radiography extinction Argonne (Alan Kastengren, Chris Powell) 

Vapor boundary/penetration schlieren / shadowgraphy Sandia, IFPEN, CAT, CMT, TU/e 

Fuel mixture/mass fraction Rayleigh scattering Sandia 

Velocity (gas-phase) PIV IFPEN (L.-M. Malbec, G. Bruneaux, M. Meijer) 

Ignition delay high-speed chemiluminescence Sandia, CAT, CMT, IFPEN, TU/e 

Lift-off length OH or broadband chemilum. Sandia, IFPEN, CAT, CMT, TU/e 

Transient lift-off/ignition intensified OH chemiluminescence Sandia, IFPEN, CAT, CMT, TU/e 

Pressure rise/AHRR high-speed pressure Sandia, IFPEN, TU/e  

Soot luminosity/Radiation high-speed luminosity imaging Sandia, IFPEN, CAT, CMT, TU/e, DTU 

Soot volume fraction 

laser-induced incandescence, laser 

extinction, DBI IFPEN/Duisberg-Essen, Sandia (Scott Skeen)  Past 

FY13 



Website visits/month ECN1 

53 participants 

Workshops organized with voluntary participation  
(for ECN2: 8 experimental, 16 modeling teams)  

• Ignition and Lift-off Length  

– Michele Bardi (CMT), Evatt Hawkes (UNSW), 
Christian Angelberger (IFPEN) 

• Soot  

– Emre Cenker (Duisburg/IFPEN),      
Dan Haworth (Penn St.) 

• Gasoline Sprays 

– Scott Parrish (GM)  

• Engine Flows 

– Sebastian Kaiser (Duisburg-Essen)  

• ECN2 overall organization:  

– Gilles Bruneaux (IFPEN), Lyle Pickett (Sandia) 

• Internal Nozzle Flow  

– Chris Powell (Argonne), David Schmidt 
(UMassAmherst), Marco Arienti (Sandia) 

• Spray Development and Vaporization  

– Julien Manin (Sandia) , Sibendu Som (Argonne), Chawki 
Habchi (IFPEN) 

• Mixing and Velocity   

– Louis-Marie Malbec (IFPEN), Gianluca D’Errico (Pol. 
Milano)  

ECN2 

104 participants 

Organizers facilitate side-by-side comparison and analysis to provide an expert review of the 

current state of the art for diagnostics and engine modeling: 



Ignition and lift-off length measurements are consistent for 
different types of HP-HT facilities. 

The facilities 

IFPEn TU/e CMT SNL 



  Error for Ta variations ECN2 parametric variations show modeling 
improvement, but no superior combustion model. 

• Difficult to achieve predictive ignition delay and lift-off length. 

– Lift-off length predictions better than ignition delay. 

– Predictions better for n-heptane than n-dodecane. 

• Serious questions remain about the chemical mechanisms and combustion models. 

– More advanced combustion models (pdf) show improvements for one set of data, but not others. 

– Errors of 20-40% could easily translate to sooting vs non-sooting sprays. 

 

Well-mixed 

pdf 

Well-mixed 

pdf 

No ignition at 900 K 

at ECN1 ! 



   OH radial profiles 

Spray A 
X=20mm 

Spray A 
X=45mm 

Side by side analysis reveals differences in models, and 
points to the need for further experiments.   

• Lift-off length: 

– Expt: 17.5 mm 

– ANL: 22.8 mm 

– Purdue: 20.3 mm 

– Tue: 18.1 mm 

– UNSW m0: 27.0 mm 

– UNSW m1: 16.8 mm 

 

• Similar lift-off length but very different 
OH profiles. 

• ECN experimental participants plan to 
perform planar OH measurements. 

 



A proposed  
Spray Combustion Consortium (SCC) 

 

“Delivering Experimentally-Validated, Predictive 
Nozzle Flow Models and Understanding” 

 

 
Industry 

Partners 

Software 

Vendors 
 

Injector 

nozzle flow 

Spray formation, 

Vaporization, 

Fuel-air mixing 

Fuel-air mixing  

Combustion: Spark or 

compression ignited 



Overview of the proposed consortium 

• An industry funded consortium enabling highly leveraged outcomes. 

• Primary outcomes:  
– Validated nozzle flow models that couple to spray/combustion models 
– New understanding of nozzle flows 

• Partners: Industry, software vendors, and key national labs in the field.  
– Team provides direct path from understanding to validated models.  

• Major benefits to partners:   
– Multi-year lead-time in a critical technology area for future engines & injectors. 
– Firsthand understanding of the design implications 
– Comprehensive understanding of new modeling tools that are developed and a 

multi-year lead time with respect to their development and use.  
– A highly leveraged investment, through partner funding and use of DOE resources. 
– Access to state-of-the-art expertise, research tools, software, and  

a high-performance computing cluster. 
– A showcase for software vendors. 

• Funding /duration: $3.6M over 3 years ~ 8 partners at $150K/year/partner. 



Why now is right time to pursue internal 
nozzle flow research. 

• Nozzle exit flow conditions critical to predictive spray modeling. 

• Offers new combustion control possibilities through injector design. 

• New enabling research capabilities are emerging: 
– Real-size, real-condition transparent nozzle research (1500 bar). 

– High-speed long-distance microscopy imaging using unique, pulsed 
lighting (<50 ns, >200 kHz).  

– Quantitative diagnostics for vapor fraction using x-ray beams with 
high spatial resolution (5 mm) - Argonne. 

– Internal nozzle geometry and needle movement characterization with 
unprecedented accuracy. 

– High-fidelity LES employing accurate numerical methods and unique 
capabilities for treating:  

• compressible flows 
• real-fluid properties 
• large-density gradients (cavitation, flash vaporization) 
• dense-fluid phenomenon, including supercritical conditions at orifice exit 
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needle 

Focus on critical nozzle flow processes.  

Minimal cavitation expected Cavitation expected 
Valve interaction 

Flash boiling 
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• Three real-scale transparent injector nozzle types with metal counterparts. 
– Metal counterparts will be Engine Combustion Network (ECN) targets, providing 

leveraging of all ECN work focused on downstream spray research. 

• Fabricate nozzles and prepare optical (Sandia) and x-ray (Argonne) experiments. 

• Develop first-of-kind database for model development/validation: 
– Characterize nozzle geometries, needle movement, flow performance, … 

– Quantification of vapor and fuel distribution inside and at the exit of nozzles 

Experimental Scope 
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KS  

(minimal cavitation) 

K0  

(cavitation expected)  

 

GDI     

(valve interaction, flash boiling) 

 

Diesel GDI 



Sandia’s high-fidelity LES modeling provides 
powerful complement to the experiments. 

• Theoretical framework …  
(Comprehensive physics) 

– Fully-coupled, compressible 
conservation equations 

– Real-fluid equation of state (high-
pressure phenomena) 

– Detailed thermodynamics, transport and 
chemistry 

– Multiphase flow, spray 

– Dynamic SGS modeling (no tuned 
constants) 

• Numerical framework …   (High-quality 
numeric’s) 

– Dual-time stepping with generalized 
preconditioning (all-Mach-number 
formulation) 

– Staggered finite-volume differencing 
(non-dissipative, discretely conservative) 

– Massively-parallel 

• Extensively validated, ported to all major 
platforms 



• Commission computer cluster (>1000 cores) and initiate high-fidelity LES  
– Near first principles simulation (compressible flow, real fluid properties, cavitation, 

wall effects, flash boiling, moving geometries, geometric details). 

– Model smooth (KS) to complex (K0, GDI) nozzles 

– Extends experimental database and understanding 

• Detailed LES and engineering model comparisons establish best practices  

• Software vendors develop improved engineering models for commercial codes 

– Release periodic updates to partners 

Modeling Scope 
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(valve interaction, flash boiling) 

 

Diesel GDI 


