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NMR and NQR study of the thermodynamically stable quasicrystals
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7 Al and ***Cu NMR measurements are reported for powder samples of stable AICuFe
and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AIPdMn
single grain quasicrystal. Furthermore, >’ Al NQR spectra at 4.2 K ha§e been observed in
the AlCuFe and AICuRu samples. From the quadrupole perturbed NMR spectra at different
magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field
gradient (EFG) tensor components and principal axis system orientations was found at the Al
site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in
explaining the observed NQR spectra. It is concluded that the average local gradient is
largely determined by the p - electron wave function at the Al site, while the width of the
distribution is due to the lattice contribution to the EFG. Comparison of ©Cu NMR with
2’A_l NMR shows that the EFG distribution at the two sites is similar , but that the electronic
contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s -
type wave function of the conduction electrons. The overall spread of EFG values is well
reproduced by the calculation based on the approximant. However, the experimental spectra
indicate a much larger number of non - equivalent sites when compared with the simulated
NQR spectra based on the 1/1 approximant. It is argued that the short range, local chemical

order is well represented by the approximant, but differences in coordination must be




included at intermediate range in the quasicrystal. Measurements of *’ Al Knight shift,
magnetic susceptibility, and nuclear spin - lattice relaxation time as a function of temperature
yield results which indicate a reduction of the density of states at the Fermi level by a factor
of 7 or 8 from the value in Al metal, consistent with the notion of a pseudogap for these
quasicrystals. No differences in the measured parameters were detected as a function of

composition of the quasicrystalline allbys, arguing against a fine structure in the density of

states at the Fermi level.
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CHAPTER 1. INTRODUCTION

A. Historical Background

Before the discovery of quasicrystals it had génerally been thought that five-fold
symmetry was forbidden in solids, that Bragg reflection of x-rays implied a periodic
arrangement of atoms in a material, and that all solids could generally be classified as either
crystalline or amorphous. In 1984 when rapidly solidified aluminum-manganese alloys
produced diffraction patterns consisting of sharp diffraction peaks that showed icosahedral
symmetry, these generally held beliefs of solid state physics began to receive intense scrutiny
by many physicists, metallurgists, and crystallographers [1].

A quasicrystal is neither periodic nor disordered. Mathematically, quasicrystallinity is a
distinct type of long-range translational order that follows as a consequence of its
noncrystallographic orientational symmetry (e.g. icosahedral symmetry), with the result that
the structure is self-similar--i.e. the structure will be mapped into itself if the structural length
scale is multiplied by an appropriate constant.

Though the evidence of an AlMn structure exhibiting quasicrystalline properties was
reported in 1984, the mathematical theory of quasiperiodic structures was developed much
earlier [2]. As early as 1902 the notion of quasiperiodic functions had been introduced by
mathematicians, by 1936 incommensurate modulated structures--i.e. stable structures with
atomic positions displaced from the crystal lattice with a periodicity incommensurate with the
spatial periodicity of the lattice they decorate-- had been discovered , and by the mid- to late-
1930's theoretical descriptions of quasiperiodic functions in terms of periodic functions in
higher dimensional spaces had been developed by H. Bohr (brother of Niels Bohr) and H.
Cohn [3]. The quasicrystalline space groups were formulated before 1980, and in 1984 D.

-Levine and P. J. Steinhardt published a study of an idealized atomic structure that was




qﬁasiperiodic rather than periodic, and which had crystallographically forbidden symmetries.
The year 1984 therefore marked the intersection of theoretical descriptions of noncrystalline
solids with the experimental evidence for the existence of quasicrystals [2].

As the materials exhibiting quasicrystalline properties have improved, various models
have been developed to describe their structure. The first quasicrystals in AIMn were not
thermodynamically stable -- they transformed to crystalline structures upon annealing --and
their diffraction peaks showed broadening that indicated disorder. For this reason, P. W.
Stephens and A. 1. Goldman proposed a structural model of AlMn as icosahedral glasses, in
which icosahedral cluste;rs were randomly stacked according to certain rules. In the same
year, 1986, that Stephens and Goldman published their paper, the first thermodynamically
stable quasicrystal was obtained in the AlICuLi alloy system. Though the icosahedral glass
model worked well in the case of AIMn, the diffraction peak widths of AICuLi did not scale
as the icosahedral glass model predicted, making room for the another model which explained
the linewidths by assuming that strains were quenched during the rapid solidification from the
melt. Then in 1988 the ﬁfst "perfect" quasicrystals were reported in the AICuFe system,
followed shortly by the AICuRu quasicrystals, and then in 1990 by AIPdMn. These
quasicrystals were perfect from the experimental standpoint in that they were both
thermodynamically stable and did not exhibit any evidence of disorder through broadening of
the diffraction peaks, therefore making their diffraction peak widths limited only by the
resolution of the instrument. The structure of these highly ordered "perfect" quasicrystals
can be described most simply in 6 dimensional space hyperspace, as is discussed in Chaper 2,
which provides much of the terminology and physical concepts for the study of quasicrystals.

Though the six dimensional hyperspace model may explain many features of the
quasilattice, the three dimensional decoration of the lattice with atoms is an elusive problem

that has not been solved. This is one of the most intriguing aspects of the stable




quasicrystals: despite their high degree of long-range order, the chemical ordering of atoms

on the quasilattice is uncertain, as is the distribution of local atomic environments.

B. NMR/NQR: FElectronic and Structural Properties

It is important to note that the structural and electronic properties of quasicrystals are
linked, and that understanding one is key to understanding the other. The high degree of
symmetry of icosahedral quasiclystalé makes the "pseudo-Brillouin zone"--the Wigner-Seitz
cell in reciprocal space based upon the most intense diffraction peaks--nearly sphernical. This
fact, combined with the evidence that quasicrystalline structures tend to be most stable when
the Fermi surface makes contact with the pseudo-Brillouin (Hume-Rothery condition), leads
one to expect a drastic reduction in the density of states at the Fermi level from the free
electron value, called a pseudogap. In addition, there has been a great deal of speculation
concerning the existence of fine structure in the density of states, vis. oscillations that occur
on a scale less than 0.02 eV.

Nuclear magnetic resonance techniques are well suited for investigating both the local
environments of the resonant nuclei, and the electronic structure near the Fermi surface.
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) have been
used since their discovery in the 1940's to study the physics of gases, liquids, and solids, and
have yielded not only fundamental quantitative information about the nuclei of atoms but also
new insights into the structure and dynamics of many substances. These nuclear resonance
techniques have been applied with great success to the study of many solids, because by
studying nuclear resonance spectra one may obtain information about the distribution of
electric field gradients and magnetic fields at the nuclear sites. For this reason, nuclear
resonance techniques allow one to probe the effect of the local environments around the
resonant nucleus on the nuclear energy levels, out to the first few nearest neighbors. This

information is contained in the characteristics of the nuclear resonance spectra, such as line




position, width, shape, ;md relative intensity. In metallic systems, the shift of the nuclear
resonance from that of a free nucleus in solution is called the Knight shift, and its magnitude
gives information about the density of states at the Fermi energy. Similar information may
also be obtained from the nuclear spin-lattice relaxation time T,, which is the time it takes for
the excited nucleus to give its energy to the lattice. In many cases, T, is more sensitive to
changes in electronic structure than the Knight shift.

Though NMR has not been as extensively applied to the study of quasicrystals as have
scattering techniques, NMR studies have been reported by several groups [4 - 15], including
studies by Hippert et al. [12], Drews et al [9], and Hill et al. [15] in the stable icosahedral
quasicrystals of AlICuFe and AICuRu. These studies may be classified under two broad
categories: those that investigate the local environments of the resonant nuclei [4 - 10], and
those that probe the electronic states near the Fermi surface [5 - 7, 9 - 13]. However,
considerable variations exist in the interpretation of the distributions of local environments
through the NMR spectra, as well as the Knight shift and nuclear relaxation data, leading to
widely different measurements in these quantities. Therefore, a careful NMR/NQR
investigation is warranted to attempt to obtain accurate Knight shift and relaxation time

values, and to determine the nature of the distribution of local environments.

C. Overview of Contents
In the chapters that follow, we present the methods and results of an investigation into
both aspects, structural and electronic, of the stable quasicrystals AlICuFe, AICuRu, and
AlPdMn.
Chapter 2 presents the definition of quasicrystallinity, as well as a description of the
perfect quasicrystals in hyperspace. Then the pseudo-Brillouin zone will be defined, and the

effect of its symmetry on the electronic properties will be explained. The electronic and




transport properties of linear coefficient of the specific heat, y, thermopower S, Hall
coefficient R,;, and conductivity o, will be discussed in AICuFe and AlCuRu alloys.

Chapter 3 discusses the theoretical aspects of NMR and NQR experiments, and lays the
ground work for the data analysis of the NMR spectra (see also Appendix 1), and the nuclear
spin-lattice relaxation times.

Chapter 4 discusses sample prepafation methods, and the apparatus involved in each
experiment, particularly the field scanning experiments, the medium-range pressure
experiment, and the NQR experiment.

Chapter 5 includes NMR and NQR investigations into the distributions of local
environments in AlCuFe icosahedral and approxirhant phases, AICuRu samples, and a single
grain AIPdMn icosahedral quasicrystal. The focus is to determine the distribution of local
electric field gradient tensors through both ¥ Al NMR and NQR, and to analyze data through
simulations of the NMR and NQR resonance lines. We found a broad, continuous
distribution of electric field gradient (EFG) tensor components at the aluminum sites in
AlCuRu and AlCuFe quasicrystals, which may be explained based on a simple EFG model
calculation. The distribution of EFG gradients was corroborated by aluminum NMR in a
single grain AIPdMn quasicrystal. In addition, a large fraction of the copper nuclei may sit,
on the average, at sites of higher symmetry than the aluminum nuclei..

Chapter 6 discusses NMR experiments that probe the pseudogap in quasicrystals and
their approximants. The values of Knight shift and spin-lattice relaxation time were obtained,
corrections being included for distributions of quadrupole interactions that exist in these
materials. It will be shown that a simple s-band model accounts for the values of Knight shift
and relaxation time, and therefore that these quantities are directly related to the density of
states at the Fermi energy. In AlCuRu, a study of NMR parameters with composition, a

medium range pressure study of >’ Al Knight shift and Cu spin-lattice relaxation time, and




preliminary high temperature ¥ Al NMR data, will be discussed in the light of pseudogap fine
structure. Neither the compositional study, nor medium-range pressure study, yield evidence
in support of proposed pseudogap fine structure on a scale less than 0.02 eV. In addition,
AlCuFe NMR parameters will be compared for the quaéicrystal and its approximant, and the
effects of long range order in determining electronic properties discussed.

Chapter 7 includes the summary and conclusions.




CHAPTER 2. QUASICRYSTALS: GENERAL PROPERTIES

In this chapter we present the hyperspace model of quasicrystals, and discuss the importance
of the pseudo-Brillouin zone in determining the electronic properties and transport properties
of quasicrystals. We also discuss structural properties of AlICuFe, AICuRu, and AIPdMn, and
review experiments designed to detect the fine structure in the pseudogaps of various
quasicrystals. |

A. Quasilattices and Hyperspace

Lattice periodicity is not necessary for a solid to have long range positional order. This
fact was highlighted in the early 1930's when incommensurate crystals were discovered.
These systems can be described as the result of two interpenetrating crystalline lattices whose
lattice constants are incommensurate with each other. Therefore, the spatial periods of the
two sublattices are related by an irrational number, and the overall lattice is not periodic.
Since the two sublattices are periodic, however, one finds that these systems exhibit sharp
diffraction peaks, though the diffraction peaks are not equally spaced in reciprocal space as
they are for a crystalline system [2].

What distinguishes quasicrystals from crystals, inéommensurate crystals in particular, is
that quasicrystals have non-crystallographic point symmetries. There are exactly 14 types of
three dimensional crystalline lattices, the Bravais lattices, whose symmetries therefore
comprise all the symmetries seen in ordinary crystals [16]. In theses crystalline lattices, there
are no 5-, 8-, or 12-fold axes, and for this reason such symmetries are termed "non-
crystallographic symmetries." Quasicrystals, by definition, have long-range order but non-
crystallographic orientational symmetries, the most famous of which is icosahedral symmetry,
as is found in the perfect quasicrystals of AlICuFe, AICuRu, and AIPdMn.

Because quasicrystals are not periodic--they do not have a unit cell--the mass density

function in space is not a periodic function. However, mathematically it is possible to




describe any aperiodic iimction as a periodic function in a higher dimensional space. For a
quasicrystal, six dimensions are required, meaning that the primitive reciprocal space vectors
are six in number, with the result that there are six indices for the labeling of diffraction
peaks. One choice for these primitive vectors is shown in Fig. 2.1, and is called the "umbrella
convention" described by Elser [17]. In this convention, the magnitude of the reciprocal
lattice vector that corresponds to the (100000) diffraction peak is given by n/a, where a is the
quasilattice constant equal to the edge length of the tiles used to generate the quasilattice
[18].

The idea that a quasilattice may be described periodically in six-dimensional space means that
atomic three-dimensional quasilattices may be obtained by slicing through the six-dimensional
hyperspace. Fig. 2.2 illustrates this for a one dimensional model of a quasicrystal. . The
atomic position are determined by the intersection of the line segment through each lattice
point, called the atomic surface, with the diagonal solid line used to represent physical space.
In order for the atomic arrangement to be aperiodic, the slope of the physical space line must
be incommensurate with the "planes" of the two-dimensional lattice. The result is a sequence
of two kinds of segments, one short and one long, occurring without any repeating pattern or
"unit cell," as has been shown by Katz and Duneau [19]. Periodic arrangements will occur,
however, when the slopes between physical space and the hyperspace planes are
commensurate. These periodic structures are called approximants, because in physical space
their local atomic environments become more and more like those of the quasicrystal as their
lattice parameters inflate indefinitely. For three-dimensional icosahedral quasicrystals, there
exist a series of approximants with cubic symmetry, and the degree to which their local
environments approximate that of the icosahedral quasicrystals is called the order of the

approximant. The order is designated by the ratios 1/0, 1/1, 2/1, 3/2,




Fig. 2.1. The six reciprocal lattice vectors that form the basis in reciprocal space for
icosahedral quasicrystals. Taken from Goldman and Widom, ref. [20].
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Fig. 2.2 Hyperspace model of a one dimensional quasicrystal. Figure illustrates how a
periodic lattice in a higher dimensional space may be used to generate a quasicrystal in a
lower dimensional space. See text for details. (Taken from Goldman and Widom, ref. [20]).
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5/3, ..., which converge to the golden ratio T = (1 + ¥5)/2 = 1.618... Each successive term
corresponds to a structure

having a lattice parameter inflated by 7 relative to the one before it. The volumes, and
therefore the number of atoms in the unit cell, consequently scale as ©° ~ 4.

It is interesting to note from Fig. 2.2 that if the chain were periodic, an infinite number of
sites would have the same global environment of surrounding atoms. In the quasiperiodic
case, no two atoms have the same global environment, though there are an infinite number of
sites with the same local environment out to any finite distance d [19]. This is called self-
similarity, and shows up in both the real space and the reciprocal space structure of
quasicrystals. |

The quasilattice may also be described in terms of tilings, i.e. subunits that fit together to
fill all space and which result in global icosahedral symmetry. One of the most famous such
tilings is the Penrose tiling, consisting in three-dimensions of two rhombohedra, one fat and
one thin. The tiling picture has been very useful in the study of the structural stability of
quasicrystals [3]. |
It should be emphasized that though the quasilattices may be described by the above models,
the chemical ordering and the atomic positions are still very much in question, since
periodicity in a higher dimensional space does not translate to a tiling in three dimensions [2],
and consequent knowledge of atomic positions. Therefore the study of local environments in
quasicrystals is very important to understanding how, on the atomic level, quasicrystals are

built.
B. Structural Properties: AlCuFe, AICuRu, AIPdMn

The structures of AlICuFe, AlICuRu, and AIPdMn have been characterized by studies of
their long-range order, through high resolution electron microscopy, x-ray diffraction, and

electron diffraction [2]. AlCuFe many be formed in two phases: a perfect icosahedral
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quasicrystal, and a 3/2 r‘hombohedral approximant [21]. The icosahedral phase has x-ray
diffraction peaks that are limited only by the resolution of the spectrometer, and additional
studies using a synchrotron high resolution powder diffractometer have shown no significant
broadening of the lines [2]. The quasilattice constant of Al Cu,,Fe,, isa=4.45 A[2]. The
approximant has a rhombohedral unit cell with lattice parameter a = 18.86 A and o. = 63.43 °
[2]. AlICuRu is known to form icosahedral phases over a broader range of compositions than
AlCuFe, as demonstrated by Shield et al. [22]. The stoichiometries Al;;_,Cu,Ru,s x=15, 17,
20 are of particular interest, since the relatively small difference in composition between
samples, combined with the constancy of the Ru concentration, make these alloys attractive
in the study of electronic properties of perfect icosahedral quasicrystals. The quasilattice
constant of Al Cu, Ru,, is 4.53 A [2], and the extent of long-range order in both AlCuFe
and AlCuRu alloys, inferred from the diffraction peak widths, exceeds 1 um [23]. AIPdMn
shows even more dramatic long-range order, and Kycia et al. have shown that large, single
grain samples =~ 1 cm length scales show positional order over length scales of 10 um [24].
Such large, nearly perfect quasicrystalline single grains make possible for the first time NMR
studies of single grain quasicrystals, unfeasible in AlCuFe alloys due to the small single grains
(= 100 um scale) that form.

Techniques that probe short-range order such as x-ray absorption fine structure
(EXAFS), Mossbauer effect, and NMR have been applied to the perfect icosahedral phases,
but to a lesser extent than coherent scattering techniques. NQR, which is 10 - 100 times less
sensitive than NMR, has not been reported in any quasicrystalline system prior to this
investigation. The results of such local environment studies are quantitative characterizations
of average local environments surrounding a particular species of atom. Sadoc and Dubois

reported average nearest-neighbor distances in Al,,Pd,;Mn,, obtained through EXAFS that

give average nearest-neighbor bond lengths of 2.50 A, 2.60 A, and 2.80 A respectively for
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Al-Mn, Al-Pd, and Al-Al bond lengths [25]. Hu et al. used EXAFS data obtained from
Al Cu, Ru,, to refine a structural model, but reported difficulty in obtaining information on
the Al pair density functions due to the low energy of the Al K edge [26]. Al NMR has
been reported in several metastable [4, 5, 8] and stable quasicrystals [12], [9], [10], [15].
Warren [4] and Drews [9] argue that NMR shows a distribution of local electric field
gradients (EFG), and hence local environments, but characterization of the distribution is
uncertain

C. Electronic and Transport Properties of AlICuFe and AICuRu

Once the concept of quasicrystalline structure has been accepted, it is logical to turnto a
study of the electronic properties to determine what, if any, differences exist between
properties of quasicrystals and those of crystalline and amorphous phases. Such studies have
been extensively reviewed by Poon [18], a prime focus being to determine whether the high
degree of global symmetry in icosahedral phases will result in unusual electronic properties.

That something interesting might occur is suggested on an intuitive level when one
considers scattering in a crystal.

Two regions of reciprocal space are fundamental to understanding electronic properties in
crystals. The Brillouin zone is defined in a crystal as the Wigner-Seitz cell in reciprocal
space. By definition, it is constructed by bisecting with planes the segments joining nearest-
neighbor reciprocal space lattice points, the zone then being formed by the boundaries of the
intersecting planes. The Fermi surface, by definition, divides the occupied electronic orbit;us
from the unoccupied ones at absolute zero, and is nearly spherical in most metals and alloys
[18].The importance of the Brillouin zone is its relationship to Bragg's law of scattering,
which may be stated that any particle with a wave vector that begins at the origin of the zone

and ends at the surface of the zone will be Bragg reflected, and therefore will not freely
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propagate through the crystal [18]. Therefore, if the Fermi surface, with radius k;, touches
the Brillouin zone, one has
\€i

k, =11
F o2

where G is a reciprocal space lattice vector, and electrons at the intersection will be reflected
and therefore no longer free. Since electrons within k,T of the Fermi surface are the ones
that determine the electronic behavior of the material, the Fermi surface-Brillouin zone
interaction is important in determining electronic characteristics.

Quasicrystals require an extension of the Brillouin zone concept, since they are not
periodic, and their reciprocal spaces are densely filled with points of varying intensities. One
defines the "pseudo-Brillouin" zone in quasicrystals as the zone constructed from the
perpendicular bisecting planes for the reciprocal lattice vectors associated with the most
intense scattering peaks [18]. For icosahedral quasicrystals, these zones are highly
symmetric, as shown in Fig. 2.3.

In icosahedral quasicrystals, therefore, if the nearly spherical Fermi surface were to make
contact with the .highly symmetric pseudo-Brillouin zone, the high degree of overlap of the
two, relative to what is usually found in crystalline syétems, should result in drastic reduction
of the electronic states near the Fermi surface called a "pseudogap.” In fact, Bancel and
Heiney [27], based on a survey of aluminum-based, icosahedral alloys, suggested that
icosahedral phases are structurally stabilized when k. =|G|/2, which is a rule that applies to
many simple metals, and is known as the Hume-Rothery rule. If the Fermi energy lies near
the minimum of the pseudogap, Vaks et al. have shown that the energy of icosahedral phase
formation is competitive with that of crystalline phases [28].

Another possible effect, arising from the multitude of weaker reflections in reciprocal
space, is a rapid oscillation in the electronic density within the pseudogap, called pseudogap

fine structure. Calculations by Fujiwara [29] in the approximant phase of AICuLi have lent
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(a)
() '
(0

Fig. 2.3 Pseudo-Brillouin zones constructed as described in the text: (a) The zone for
face-centred icosahedral alloys such as AICuFe and AlCuRu alloys, constructed from the
[422222] and the [4422002] planes; (b), (c) Zones for simple icosahedral alloys AICuMg
and GaZnMg. Taken from [18].
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support to this idea, as Fig. 2.4 shows. Attempts to find experimental evidence of this effect
have been extensively discussed by Poon [18], and have been attempted in both metastable
and stable icosahedral phase alloys. The metastable phases of GaZnMg and AlCuMg form
icosahedral phases over a wide compositional range, and consist of simple metals, allowing
analysis of the data in terms of a free electron model. As the composition of the alloy is
changed, the radius of the Fermi sphere changes according to k, oc n*, where n is the
number of electrons per unit volume. Wagner et al. [30] argue that compositional studies of
properties sensitive to the density of states at the Fermi energy can probe structure in the
DOS on an energy scale of 107 eV, as opposed to a resolution of 0.25 eV for soft x-ray
photoemission [30]. Wagner et al. reported anomalies in thermopowef, specific heat, and
Hall coefficient measurements at approximately the critical electron per atom ratios, Z,
calculated by Vaks et al. for a nearly free electron model, as well as non-monotonic behavior
in the specific heat data (Fig. 2.5). The interpretation of these effects as due to pseudogap
fine structure is clouded by the fact that in metastable systems, the presence of strains and
defects, which widen the x-ray diffraction peaks, also washes out the pseudo-Brillouin zone
boundary, thereby reducing the effects of the zone on electronic properties. Based on the
wide x-ray diffraction peaks of AICuMg, therefore, Poon points out that one would expect
the pseudogap fine structure to be spread out over nearly one half the compositional range
studied, much wider than the oscillations detected (see Fig. 2.5).

The need for a study in the perfect icosahedral phases therefore becomes apparent, and
the best candidate at this time is the AICuRu system.

Transport properties in the Al,;  Cu,Ru, system have been extensively measured, but
the NMR parameters have not. Biggs et al. [31] report the y values 0.11, 0.23, and 0.2 mJ/g-
at K? for x=20, 17, 15 respectively (Fig. 2.6 (a)), which they compare with the free electron
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Fig. 2.4 Pseudogap fine structure. Calculations by Fujiwara et al. in the AICuLi
approximant show fine structure in the pseudogap. Taken from [29].
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Yy (mJ/g-at. K®)

0.5

Fig. 2.5 - The linear coefficient y of the specific heat for metastable icosahedral quasicrystals
GaZnMg (left graph) and AICuMg (right graph). Each point corresponds to a different
sample stoichiometry, and the electron per atom concentration Z is calculated based on a
nearly free electron model. Solid lines are guides for the eye. Taken from Wagner et al. 1990
ref. [30].
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Fig. 2.6 .: Specific heat and thermopower data for the perfect icosahedral quasicrystals of
AlCuRu. (a) y values are obtained from the y-axis intercepts, and show considerable
variation; (b) thermopower shows change sign in AICuRu alloys; metastable icosahedral
phases of TiNiZr and AlICuMg exhibit metallic glass behavior and are included for
comparison. Taken from Biggs et al. ref. [31].
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value of 1.1. In additio;1, they report marginally metallic room temperature conductivities of
(295 K) z.200 Q“cm”\. Based on magnetoresistivity measurements, Biggs et al. report a
short electron mean free path 1 given by k.1~ 0.3, and through Hall effect measurements
have found that n=2.4 x 10%°, 5 x 10 cm™ for the x = 20, and x =15, 17 samples
respectively. They also report an unusual temperature dependence for the Hall coefficients
and thermopowers (Fig. 2.6(b)), noting that no theories for the regime k.1 < 1 are currently
available for comparison.

Biggs et al. suggest that the rapid changes in v, and the sign change of S, may be
indications of pseudogap fine structure. The factor of 2 change in y, which in the free
electron picture is related to the DOS by y < D(EF), Biggs suggests, may be a manifestation
of the rapid oscillations predicted. In addition, the change in sign of the thermopower,
defined as the coefficient of proportionality between the temperature gradient in a material
and the electric field that results from it (Seeback effect), may be qualitatively explained by

taking a result from the theory of non-crystalline solids [32]
1 J-(E—EF)_{Zf_GEdE

e\ T JoE

where o(T) is the conductivity at temperature T, o is related to D(E;), and fis the Fermi
function. Poon [18] argues that the qualitative behavior of S in Fig. 2.6 (b) may be
understood through the above equation, the integrand of which is an odd function about the
Fermi energy E; of width k;T. If D(E;) varies slowly with respect to k(300 K)~ 0.02 eV
no sign change will occur as T decreases, but if D(E;) changes rapidly compared with 0.02
eV, a sign change might be expected, as seen in Fig. 2.6 (b). Poon therefore argues the
thermopower may be understood in the light of pseudogap fine structure on a scale less than
0.02 eV.

The AlCuFe system presents the opportunity for studying the effects of long-range order

versus intermediate-range order in determining electronic properties, since it can be prepared
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in the icosahedral phase-, crystalline approximant phase, and amorphous phase [18]. The
electronic transport properties of these materials have been investigated extensively by
Wagner et al [30]. They report room temperature conductivity values for the icosahedral,
crystalline, and amorphous phases which are respectively 380, 400, and 1,400 Q'em™.
Specific heat measurements yield y = 0.31 and 0.29 mJ/g-at K for the icosahedral and
crystalline phases respectively, with corresponding Debye temperatures being 539 and 583 K.
Temperature dependence of thermopower and Hall coefficient are similar to those of the
AlCuRu system. In addition, carrier concentrations determined from the Hall coefficient are
lower in the icosahedral and crystalline phases than in the amorphous phase. There is great
similarity in the transport properties of the icosahedral and crystalline phases. The crystalline
phase is a 3/2 approximant with =~ 1,400 atoms in its unit cell, and the similarity of transport
properties is consistent with theoretical work [33], [29] indicating a deepening of the

pseudogap as the order of the approximate increases.
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: CHAPTER 3
NUCLEAR MAGNETIC RESONANCE: GENERAL DISCUSSION

In this chapter we discuss static and dynamic aspects of the theory of nuclear magnetic
resonance (NMR) as will be applied to the study of AlCuFe, AICuRu, and AIPdMn
quasicrystals. The term "static" refers to the time independent interactions between the nuclei
and the lattice that yield the nuclear energy levels, and therefore the NMR spectra;

"dynamic" refers to the time dependeht interactions that stimulate nuclear transitions and lead

to relaxation of the nuclear levels from an excited state.

A. Physical Pictures of NMR Processes
There are two ways of viewing nuclear magnetic resonance: in terms of transitions
between discrete energy levels, which stems from the work of E. M. Purcell; and as a
rotation of the net nuclear magnetic moment, which comes from the research of F. Bloch
[34]. In Purcell's picture, nuclear magnetic resonance is viewed as stimulated transitions by

oscillating radio frequency (RF) fields between nuclear energy levels created by a static

magnetic field H,. In Boch's picture, the nuclear moments are viewed as classical moments
precessing around H,, and nuclear magnetic resonance is seen as the rotation of the nuclear
moments from the z'-axis down into the x'-y' plane wilen a perpendicular field--oscillating
with frequency near the Larmor frequency of nuclear precession--is applied perpendicular to
H,. The two pictures are equivalent, though each one has its conceptual strengths and
weakness. From Bloch's semi-classical picture of NMR phenomena as rotating magnetic
moments, one may readily understand what physical parameters enhance the sensitivity of the
measurement, and so we focus first on this conceptualization.

Atomic nuclei carry a nuclear magnetic moment, usually on the order of 10 —107
(Bohr magnetons), by virtue of possessing nuclear spin I. This nuclear moment is given by

u = yHI, where 7 is the gyromagnetic ratio of the nucleus. When there is no external

magnetic field the net magnetization of the sample is zero, since the nuclear spins have no
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preferred direction. When a static field H, is applied to N nuclei in a solid at constant

uniform temperature T, the net magnetization is given by Curie's Law:
Mo Ny?R I+ 1)H,
3k,T

(3.0)

This magnetization is oriented along the direction of the static magnetic field--defined here as
the z-axis. Since the system is assumed to be in thermal equilibrium, only the net
magnetization along the z'-axis is non-zero. Because the detection coil can only detect the
component of the net magnetization rotating in the x-y' plane, no signal can be detected from
the equilibrium state of the system. To measure the moment therefore, one must destroy the
equilibrium.

This may be done with--among many other methods--a sequence of two RF pulses called
a Hahn echo sequence. In Bloch's picture, the first pulse provides a magnetic field H,
perpendicular to the z'-axis. The torque on the net moment from H, then rotates the net
magnetization down toward the x-y' plane. When the magnetization reaches the x™-y' plane
the pulse is turned off, with the result that the magnetization is--in the laboratory frame--
precessing and can therefore be detected by the pickqp coil where it generates a voltage
proportional to the net magnetization. Once in the x'-y' plane, the net magnetization decays
as the individual nuclear moments--which see slighly different local magnetic fields--dephase
with respect to one another. This signal is called the free induction decay (FID). The second
pulse in the Hahn echo sequence becomes necessary if electrical ringdown after the pulse
distorts the FID, or if the dephasing time is too short, making it difficult for the NMR
receiver to acquire the complete FID. |

The resulting signal is proportional to the net magnetization, and therefore proportional
to the number of nuclei in resonance, the gyromagnetic ratio squared, and inversely

proportional to the temperature. If the echo height is plotted versus the carrier frequency,

the result is an NMR spectrum.
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* B. Magnetic Dipole Transition Spectra
In NMR and NQR experiments the axis of the detection coil is perpendicular to the axis
of quantization of the nuclear levels. Therefore the oscillating field H, = H,e** may be
chosen without loss of generality to be along the x'-axis of the lab frame. By Fermi's Golden

Rule the transition rate is given by

W, = ) et )’ )

Thuse allowed transitions occur for Am = 1 with intensity proportional to
KmiL,|m-1) =1q+1)-m(m-1) (3.2)
In general, NMR and NQR spectra, denoted as I(v), may be described in bulk samples as
a collection of lines due to all the nuclear dipole transitions for every nucleus at resonance in
the solid. This may be expressed as [35]

I(v)oc( hv

k,T

)Z (m|L,|m-1)f (3.3)

where the summation is over all magnetic dipole transitions that occur at frequency v. The
prefactor includes the temperature T of the thermal reservoir, and comes from the Boltzmann
distribution of tﬁe level populations at thermal equilibrium.

The area under the total spectrum may be obtained from the Kramers-Kronig relations
since I(v) is the imaginary part of a complex susceptibility (o) =x'(0) +ix"(®). The
Kramers-Kronig relationship, which relates the real and imaginary components, gives for the

case of narrow resonance lines [34 Slichter]

o (4
jo I(v)dv="1:0, (3.4)
where
Ny2HI(I+1)
e e st 3.5
Xo 3k, T (3.5)

o, =7vH,
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C. Nuclear Properties

Of the stable isotopes in the quasicrystals we studied--2’ Al, ®**Cu, Mn--the abundances
of each isotope and the gyromagnetic ratio are given in Table 3.1. On the basis of abundance
and gyromagnetic ratio, Al and Cu are the best candidates, along with Mn. In this study,
which focusses primarily on AlCuFe and AlCuRu alloy systems, we perform NMR on Al and
Cu nuclei, leaving the Mn in AIPdMn for later investigations.

At this point we note that ”’ Al and ®*Cu all have a quadrupole moments which are,
respectively, 0.140, -0.209, -0.195 in units of e:10™* cm?® (e=4.80x107"° (erg-cm)"?) [36].
In general a nucleus with spin I has a quadrupole moment when I>1/2. A nucleus in most
chemical substances is surrounded by inner-shell electrons, valence-shell electrons, and
various other atoms or ions. The electric charges on these particles pr;)duce an electric
potential V at the position of the quadrupolar nucleus, and when this distribution has a
symmetry less than cubic, the electric field gradients (EFG), V; = az%xi &%, are non-zero.
The effect that quadrupole interactions have on the spectra of AICuFe and AlCuRu alloys is
important, and therefore to understand powder and single grain NMR and NQR spectra of

quadrupolar nuclei, we turn to a discussion of the Hamiltonians and energy levels.

D. Static Properties: Magnetic and Quadrupole Effects

The field of electric quadrupole interactions in magnetic resonance can be divided roughly
into two areas according to the relative magnitude of the nuclear quadrupole interactions. In
the first case, usually called the "low field" case, the nuclear quadrupole interaction dominates
all other effects, and resonance experiments performed under these conditions will be referred
to as "NQR" experiments. In NQR experiments the static external field has a magnitude
anywhere from zero to at most a few hundred gauss. In the second case, usually called the
"high field" case, the nuclear electric quadrupole interaction energy is assumed small

compared to the interaction energy of the nuclear magnetic moment with the
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Table 3.1 Nuclear abundance, gyromagnetic ratio, and nuclear spin for isotopes in the
icosahedral quasicrystals of this study [36]

Nucleus Abundance y/2n Nuclear spin
7 AL 100% 11.094 - 52
Mn 100% | 10.501 512
S Cu 69% 11.285 3/2
S Cu 31% 12.090 3/2
195pq | 22% | 1.74 5/2
Plpu 17% | 2.10 5/2
*Ru 13% 1.10 5/2
7Fe 2% 1.376 172
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external magnetic field -H,,. A resonance experiment performed under these conditions is
what will be continually referred to here as simply an "NMR" expériment. The quadrupole
effect manifests itself as a perturbation of the purely magnetic interactions, and the
perturbations can split the resonance lines into several components. In addition to creating a
fine structure in the resonance line, the quadrupole interactions may lead to a broadening or
apparent loss of intensity of the resonance line.

In order to quantitatively discuss quadrupole effects in the spectra of powder and single
grain quasicrystalline samples, one must turn to a discussion of the\Hamiltonians and energy
levels in the cases of NQR and NMR.

A discussion of the quantum mechanical quadrupole interaction Hamiltonian usually
begins with a calculation in classical electrostatics applied to the nucleus [34]. From
electrostatics one knows that to find the interaction energy of an arbitrary charge distribution
p(r) in a potential V(r) due to external sources one must calculate |

E=[d’rp(r)V(r) (3.6)
As is well known, one may approximate this integral by performing a series expansion of
V(r) about the origin. What emerges as a result is an expansion of the energy E in terms of
the derivatives of the external potentiél V(r), and integrals over the charge distribution called
the multipole moments. Choosing the origin as the center of mass of the nucleus, these terms
represent energy contributions from different aspects of the geometry of the charge
distribution. The first term is the electric monopole term, and represents the energy of the
entire nuclear charge distribution taken as a point charge, an is therefore independent of the
nuclear orientation. The second term is the electric dipole term, which goes to zero since
center of mass and the cénter of charge coincide. The third term is the electric quadrupole
term, and is dependent upon the orientation of the nucleus. One may write the quadrupole

term as
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1
E, = 6 ;VijeQij 3.7
where the components of the EFG tensor are given by
v =2V 3.9)
6x ;|

and where x; =X, y, z, and the components of the quadrupole moment are
eQ, = [ a*r (3x,x, -5, ) p(r) (.9
Finally, one may note that because the potential V(r) is due to external charges,
Laplace's equation V>V = 0 must hold, giving the relation
VoV, +V,=0 (3.10)
Therefore the EFG tensor is traceless, i.e. the diagonal terms of the tensor sum to zero in

every coordinate system.
1. Definition of Non-equivalent Sites
For a quadrupolar nucleus at a site of less than cubic symmetry there will be contributions
to the electric field gradient from electronic and lattice charge distributions. The EFG tensor
due to lattice contributions in the point charge approximation is {34 Slichter]
Z"'Zk 3“ (.11)

j
k

where X;_, ,; are the x-, y-, and z-components of the displacement vector, of magnitude r, ,

between the nucleus at which the EFG is to be calculated and the ions of the lattice with
charge Z,. When this tensor is diagonalized to yield the components in the principal axis

system, the components are labeled V,,, V, , V_, according to the relation

Va2V, |2V, (3.12)
From Laplace's equation (eqn. (3.10)) only two of the components are independent, and the
magnitudes of the components in the principal axis system are completely determined by V,,

and n, where




ne—=_ % (3.13)

with 0 <1 < 1 by definition.

The term "non-equivalent site" refers to sites with different values of the tensor
components V,_, and 1. Since the contribution to the EFG from successive coordination
shells varies slowly as 1/r, the values of V,, and n depend on several coordination shells.
Therefore the "local environment" includes significant contributions out to the sixth

coordination shell.

2. Nuclear Quadrupole Resonance

i. NQR Hamiltonian
In the case of NQR, one may write the Hamiltonian most simply in the principal axis
system of the electric field gradient tensor, denoted by unprimed letters. In this system, the
Hamiltonian simplifies to [34 Slichter] |

H, = 3‘6'& (312 - 1) + (12 —1;)] (3.14)

where I, 1, and I, are the components of the spin operator L, and where

- 3eQV,
Yo = 21@I-Dh ©@.13)

For the case of Al (1= 5/2) this becomes v, =3eQV,_, /20h. The quantity eQ is the
nuclear quadrupole moment. The quantity eQV_ /h s called the nuclear quadrupole coupling
frequency, and both eQV,_ /h and n are characteristics of the nucleus in a specified
environment, i.e. in a solid--such as a quasicrystal--they are directly related to the electric
charge distribution in that particular material. If eQV,_ /h is large enough, i.e. larger than 1
MHz, one may apply pulse NQR techniques to determine eQV,,/h and its distribution of
values with high accuracy. When eQV,_,/h is small, i.e. smaller than 1 MHz, eQVZZ/h may be

measured by means of the quadrupole effect on the NMR line in a high magnetic field.
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ii. Energy Levels and Transitions: .I1=15/2
The problem of analytically determining the energy levels of the Hamiltonian for a general

value of the asymmetry parameter 7 is difficult, and no exact solution exists for nuclear spins

other than I=1 and 3/2. For other integer and half-integer spins, one must either solve the

secular equation for the eigenvalue problem H,|¢)=hv|e) numerically, or use perturbation
theory to obtain the eigenvalues in the form of a series expansion in | when 7 is sufficiently

small. For nuclear spin I = 5/2 one finds two allowed transition frequencies, one for the

+3/2 ¢> £1/2 and one for the +5/2 <> £3/2 transition:
+3/2 ¢ +1/2 v, = vof(n) (3.16)
+5/2 4> 43/2 v, = 2veg(n) |
where the functions f{n) and g(n) have been determined numerically [36] over the full range
of m. These functions are plotted for reference in Fig. 3.1. There it can be seen that g(n)
varies by only 0.1 over the entire range 0 < n < 1, but that f{n) varies by 0.7. Therefore the
15/2 «> £3/2 is the less sensitive of the two transitions to changes in 1.

For the case of axial symmetry, one may easily obtain the exact eigenvalues. Forn=0

the Hamiltonian becomes
h
H, =%(31§—12) (.17)
which results in the energy eigenvalues
h
E_= %(31:12 ~I(I+1)) (3.18)
and the level spacings AE_=E_-E__,
AE_ =hv,(m-1/2) (3.19)

giving transition frequencies v,, and 2v,, for the 3/2 <> *1/2 and +5/2 & *3/2

transitions respectively. The quantum number m belongs to the operator I, in the EFG

principal axis system. Therefore the case of axial symmetry highlights the fact that in NQR
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Fig. 3.1 The function f{n) and g(n) for the I = 5/2 NQR transitions £3/2 <> £1/2, and +5/2
<> 13/2 respectively. Graphs based on numerical data taken from [36]
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experiments the z-comi;onent of the nuclear magnetization occurs along the z-axis of the
EFG principal axis system. Since the EFG principal axis system depends on the symmetry of
the local environment, the distribution of local environments results in a distribution of
principal axis systems, and there is no one unique z-axis direction as there is in NMR.
However, the application of a Hahn echo pulse sequence to nuclear quadrupole levels has the
same effect as in NMR, which is to rotate the net magnetization vector that is perpendicular
to the pulsed magnetic field H, down into the x-y plane, and then to rephase it with the

second pulse.

iii. NQR Spectra and EFG Tensors
It will now be argued that the NQR lines give the distribution of electric field gradient

tensor components. From eqn. (3.3) we have

h

I(v) kB\erI(n]LI n- 1)[2 - (33)

By taking an NQR spectrum over the £5/2 <> +3/2 transition for I = 5/2, for example, the

sum in Eqn. (3.3) becomes

I(v) o v (320

Ix

h _h
3 i e

B+ AE=hv

Therefore, by dividing the experimental NQR spectrum by v one gets a curve proportional to

the distribution of transition frequencies p(v). The transition frequencies satisfy v = 2vg(n)

where, as seen in Fig. 3.1 and therefore

I(v)/veep(n,V,) (3.21)
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3. Nuclear Magnetic Resonance
i. NMR Hamiltonian

The NMR Hamiltonian in the case of quadrupole interactions is more complicated than
the NQR Hamiltonian, because the static field H, polarizes unpaired electrons in the
conduction band, enhancing the dipole-dipole interaction between the nuclear and electronic
moments [34 Slichter]. This introduces an additional term into the Hamiltonian that depends
on a quantity called the Knight shift tensor K. The static field also induces electronic current
densities resulting in magnetic fields that couple to the nucleus through a quantity called the
chemical shift tensor &, but a literature review of ¥ Al chemical shifts in Cu environments
indicates that the chemical shifts are 3-8 times smaller than the Knight shifts in AlCuFe and
AlICuRu quasicrystals [37]. Therefore we drop the chemical shift from the formulas.

The NMR Hamiltonian therefore consists of interactions described by the Knight shift
tensor and the EFG tensor. We assume that the local symmetry of the nucleus forces the
principal axis systems of both tensors to be the same. This is reasonable since the principal
axis system for an interaction tensor is determined by the symmetry of the local environment
of the nuclear site. The common principal axis system of the Knight shift tensor and the
EFG tensor will be referred to from now on }as the principal axis system.

For quadrupolar nuclei in diamagnetic substances--such as ¥’ Al and ®*Cu in AlCuFe
and AlCuRu quasicrystals--one may write the following NMR Hamiltonian [38]:

H=H, +H, +H, (3.22)
The Zeeman term H,--coming from the coupling of the nuclear moment to the static
magnetic field-- is
H, = —viI,H, (3.23)

The magnetic term H,, is

3cos’0-1
H, = -ym,Ho{Kisn +K,n(—°—°-s———)

K
+e—=sin’ 600524)] (3.24)

2 2
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where the Euler angles 0 and ¢ determine the orientation of the magnetic field H, in the
principal axis system. The Knight shift tensor quantities may be defined in terms of the

components of the tensor in the principal axis axis frame [39]:
1

Kiso = E(Kxx +Kyy +Kzz)
K, = -K,, (3.25)
K_-K
. bAA
=Tk

an

. The quadrupole term, as seen before, is
H, = -13‘-(;3[(313 ~1)+ (- 13)] (3.26)

where I_,I_,I. correspond to the components of the spin operator in the principal axis

X>7y?>
system. The transformation of the spin components from the principal axis frame to the lab
frame is given by

I, = I.cos¢+I,cosOsiny+1,sinBOsin¢

X

I, =-I,sin¢+I, cosBcosd +1, sinB cosd 3.27)
I,=-1,sin0+1, cosO

Making this change of coordinate system will give thé energy eigenvalues.

ii. Energy Levels and Transitions: I=15/2
The eigenvalue problem may now be solved to first and second order assuming the
magnetic and quadrupole interactions are perturbations on the Zeeman levels. Instead of
writing the energy eigenvalues, however, we write the difference in energy between adjacent
levels E=E_ —E__,.This gives [38]:
E=E,+Ey,+E, (3.28)

where

E, =hv,=-yiH, (3.29)
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E, = h\;o(Ki,o + %‘—"-(3 cos’9—-1)— _e%_ sin’@ cosz(b) (3.30)
and where the first and second order quadrupole contributions
E,=E?+E® (3.31)
may be written as
EY) = —h—;—o—(m—%)@ cos® 0 —1-mncos2¢sin? 9) (3.32)
EQ = %Q:o—{g sin? O[(A +B)cos’ 8 — B] +ncos2¢ sin® 8[(A + B) cos’ 6 + B]
2

+%[A—(A+4B) cos’ 0 -(A +B)cos’ 2¢(cos’9—1)2] } (3.33)

where A=24m(m-1)-4I(I+1)+9 and B=[6m(m-1)-2I(I+1)+3}/4.
These formulas are needed to write the NMR line shape simulation program discussed in

Appendix 1. There the outline of the simulation program is discussed.

iii. NMR Spectra in Single Grains and Powders
An idealized single grain NMR spectrum is shown in Fig. 3.2. Since the NMR resonance
condition for quédrupolar nuclei therefore becomes dependent upon the Euler angles of the
static field H, in the principal axis system, single crysfal and powder samples will result in
NMR spectra that are fundamentally different. The single crystal NMR spectrum will have 21
sharp resonance lines that change position as the crystalline axes are rotated with respect to
H,.

For the case of a single crystal, one can simplify the Hamiltonian in order to understand
the eﬁ'eét of the various interactions upon the energy levels. We will simplify the problem by
assuming axial symmetry from which it follows that =€ = 0. In addition, we will keep only
first order terms. Instead of thinking in terms of the energy separation E=E_ ~E,_ ,
between two adjacent levels we will carry on the discussion in terms of the resonance

frequency v=E/h, given by
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512 372 12 -1/72 -3/2
6 =0° , | l I
(VQ-ZVQ) (Vo- VQ) Vo (V0+ VQ) (V0+2VQ)
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(vo- VQ) Vo (vo + VQ)

(Vo-vo/2) (o* vg/2)

Fig. 3.2 Idealized single crystal NMR spectra and their angular dependence. Single grain
spectra when 6 = 0° and 90° for a quadrupolar nucleus of nuclear spin I = 5/2. The numbers,
m, above the individual resonance lines indicate that the line arises from the m <> m-1
transition.
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. -
v=v°(1+Ki,°+Km(—3°—o—s%—e;l-)—)—vQ(m—%)(3—c%-e——l—)- (3.34)

The first term is independent of m. If the Hamiltonian did not include quadrupole effects, all
the resonance frequencies for m¢>m-1 transitions would be the same. The m dependence
occurs only in the quadrupole interaction, resulting in the m = 1/2 levels being shifted. Only
the -1/2¢>1/2 resonance frequency, called the central line, remains unshifted, all other levels
being shifted in frequency either below (m > 1/2) or above (m < 1/2) the central line due to
the quadrupole interaction. For this reason they are called quadrupole satellites. Eqn. (3.34)
shows that the Knight shift interaction tensor shifts all transitions by the same amount. Asis

shown in Fig. 3.2 for a spin 5/2 nucleus in a single crystal oriented at & = 0°, one will have

four satellite transitions located at £v,, and 2v, from the central line. As the orientation of

2 —
the crystal is changed the satellite positions shift according to the angular term 3cos 01 cos26 ],

and therefore the angular dependence of the NMR spectrum may be used to determine the
principal axis system for a single crystal.

For a powder, all orientations of the principal axis system are present. However, as
mentioned before, more grains are perpendicular to the static field than are parallel to it. The
preference for © = 90° results in singularities in the resulting spectrum, called a powder
pattern. One such pattern is shown in Fig. 3.3 for I=5/2. There is no angular dependence of
the spectrum, and therefore one cannot obtain the orientation of the principal axis system.

However, one may obtain the parameters v, and 1 from the NMR powder pattern. If the
quadrupole interaction is strong, it will determine the width of the central line as well as the

breadth of the satellite background. For the satellites, the width of the line is given by [39]
AV mv (21 - 1) (3.35)

and for the central line the width is
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Fig. 3.3 NMR powder spectrum. For a single non-equivalent site in a powdered crystal
sample, the distribution of grain directions results in a spectrum with distinct peaks. Pictured

- above is a powder pattern for an I = 5/2 quadrupolar nucleus, neglecting Knight shift effects,
and taking 1 = 0.
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25v,’

2) o <
Av 144v,

(a-3/4) (3.36)
where a=I(I+1).

The powder spectrum of Fig. 3.3 applies only when the structure of the solid for the
resonant I = 5/2 nucleus has one nuclear site. In such cases, each nuclear site will be

characterized by an EFG tensor having the same diagonal elements in its principal axis

system. Thus all sites share the same values of v, and 1. If more than one non-equivalent
site exists in the structure, v, and n will not be the same for all sites. To determine the
resulting composite powder pattern, one may sum the normalized powder patterns arising
from unique values of v, and n, if they are weighted by the number of such sites per unit
cell. Fig. 3.4 illustrates how two non-equivalent sites for a nucleus with spin I = 5/2 gives
rise to different powder patterns that are summed to get a composite pattern. For
complicated structures with many non-equivalent sites, one must know the distributions of
Vq and n.
E. Dynamic Properties: Nuclear Spin-Lattice Relaxation

We now wish to discuss how a spin system relaxes after being disturbed from thermal
equilibrium by a sequence of RF pulses. This discussion will lead to expressions that will
allow determination of the nuclear spin-lattice relaxation (NSLR) rate, important for studying
the electronic density of states (DOS) in AlCuFe and AICuRu quasicrystals. Since Al and Cu
nuclei are of particular interest, we consider the case of a quadrupolar nucleus, in which the

nuclear energy levels are not equally spaced.

1. Selective Irradiation: Initial Conditions
77 Al NMR spectra of AlCuFe and AICuRu quasicrystals have quadrupole satellites

extending continuously over ~ 2 MHz. This makes it impossible to irradiate the entire s
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(a) site #2
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®) J\L site 1
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(©)
@ ‘/\[\F K j composite

Fig. 3.4 Powder pattern for multiple non-equivalent sites. The two non-equivalent sites of
(a) give rise to different individual powder patterns (b) and (c). The composite is formed by

adding the two distributions of (b) and (c) weighted by the number of such sites in the unit
cell.
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spectrum uniformly and— therefore saturate all energy levels simultaneously. For this reason,
one must understand the effects of selectively irradiating a broad NMR line. Since the central
line transitions has the largest intensity and therefore is easiest to detect experimentally, the
focus here will be on the effects of the NSLR due to irradiation of the central line by "short"
and "long" pulse sequences. In thermal equilibrium the nuclear spins distribute themselves
over the various energy levels E_, according to the Boltzmann distribution N/N,, = e™"="**T,
where T is the temperature of the thermal reservoir. Even at a relatively high magnetic field
of H, ~ 8 T and relatively low temperature of 4 K, the ratio E_ / kT is on the order of 107,
making the "high temperature" expansion N/N, ~ 1- E_/k,T valid. Assuming the high
temperature approximation, the populations of the quadrupole levels are depicted
schematically in Fig. 3.5 for I = 5/2, on a highly expanded N/N, scale. Fig. 3.5 shows E |
versus N/N, in thermal equilibrium, and therefore the slope of the line through all the points
is equal to -k, T. One defines "spin temperature" T, in terms of the slope -k T, between
adjacent energy levels. Spin temperature give another way of thinking about the energy level
populations when the system in not in equilibrium. Inducing transitions between adjacent
levels decreases the population difference between them, making the slope -k, T, larger. As
the levels absorb energy, therefore, the spin temperature increases; saturating a pair of levels
corresponds to T, = oo.

We now consider two ways to selectively irradiate the central line, and obtain the spin
populations after irradiation in both cases. In the first case , a sequence of saturating pulses is
applied for a duration T << T|, where T, = 1/2W)is the spin-lattice relaxation time. In this
case, the populations of the m = =+ 1/2 are saturated and therefore correspond to a spin
temperéture'[‘s = oo, but the pulses are not applied long enough to allow the satellite
populations to come to equilibrium with the pbpulations inthe m = =+ 1/2 levels. In the

second case, the saturating pulses are applied for a time Tt >> T,, thus allowing lattice
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(b)

E=kgT(1-N/Ny)

(vo+ VQ)

. 3
Vo

(vo- VQ)

N/Np

Fig. 3.5 Energy levels and relative nuclear spin populations for I = 5/2. (a) Energy levels for
a quadrupolar nucleus with coupling frequency v,, and orientation 8 = 0% (b) Nuclear
energy E versus relative population N/N,, where N is the total number of spins in the
system. This is linear to a good approximation.
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relaxation to bring the satellites intoequilibrium with the m = + 1/2 levels. The populations
of the levels for each case are shown in Fig. 3.6, and the changes in the populations of each
level are straightforward to determine. The relative change in population for level m may be

defined

_N°
n_(t)=Ne) =Ny (.37)
A N, .
and the normalized magnetization due to the me>m-1 transition is
a,=n_,-n,, (3.38)

The initial values n_ (0) may be readily determined for each saturation condition by
examining Fig.s 3.6 (a) and (b). The lightly shaded lines indicate the equilibrium population
levels, and therefore n_(0) is the displacement from the dotted line in Fig. 3.6 which
indicates the equilibrium levels. The values of n_(0) are given for I = 5/2 in Fig. 3.6, and

determining the a_, (0) is straightforward.

2. Solution of the Master Equation
After the spin system has been excited from equilibrium, NSLR processes return the
populations to equilibrium by coupoing the nuclei to time varying electric and magnetic fields

that induce transitions to lower energy levels. These time dependent fields induce ransitions

from levels j to 1 with a rate W,., and the normalized level populations are given by the

ij»

"master equation”

ni(t) = > (0, (0W; -, OW,) (3.39)

To go further, one must assume a form for W by postulating a relaxation mechanism or

combination of relaxation mechanism. In metal alloys one of the primary sources of
relaxation is through the hyperfine interaction of the nuclear moment with the electronic

moment of the conduction electrons. This gives transition rates of the form [40]
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Energy

N/Ng

(b)

Fig. 3.6 Spin populations after selective irradiation for I = 5/2. Long and short pulse
sequences result in different populations immediately after irradiation: (a) short pulse
sequence (T << T,); (b) long pulse sequence (1t >>T,). The quantity beside each point is

n,(0)=2=)"Ta

0

=, where € =™ 2kgT -
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W, =W, Ixm)(IFm+1)3, (3.40)

mnil

where [34]

Wy, <k Trv2(wOf')_D3(E,) (3.41)

gives the the dependence of W,, on the temperature T, the electronic and nuclear
gyromagnetic ratios v, the average over the Fermi surface of the s - electron proability
function, and the s - band density of states squared. This allows one to write the master

equation as

ni(t) = n, (W,

ii—

1 0, (OW,, — 0, (Wi + W) (3.42)

i i-Li

or in terms of the normalized magnetization

a, =n,-n,, =W, {aA,_, +a.A, +a,,A,, (3.43)
where [40 Naréth]
A, =[IA+D-iG+1)]
| A =21+ -iG-1)] (3.49)

A, =[IA+D-G-1)({-2)]

tThis is the equivalent of the matrix equation

a=Aa
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where a is a vector with 2I+1 components a,, and A is a (2I+1)x(2I+1) matrix with

components A;. may be solved in the standard way by picking solutions of the form ce .

The master equation then becomes an eigenvalue problem, and the eigenvectors ¢, and
eigenvalues A, may be found. The most general solution for a(t) is a linear combination of

the different modes ¢,e™"* and may be written

a(t)=o,ce™ +a,ce M+,
ae™
=lc, ¢ - [ae™ - (3.46)
Defining
(:
C=l|¢, ¢
&
(e Mt 0
D= e (3.47)
\ 0
(al
a=|a,
\:
one may write
a(t)= CDa, (3.48)

Since D(0) = 1 this implies

a(0)=Ca (3.49)
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and therefore

a=C"a(0) (3.50)

The general solution is therefore

a(t)= CDC 'a(0) (3.51)
3. Solutions: Case of Magnetic Relaxation and I = 3/2, 5/2

Therefore, for I = 3/2 and 5/2, once the initial conditions of saturation a(0) are known,

the eigenvectors ¢; and eigenvalues A, are known, a(t) may be found assuming magnetic

relaxation. Since we are only interested in the relaxation of the central line, we only need

calculate a,;, (t). These relations are given below for the conditions Tt << T, (1) and T>> T,

Q).

I1=3/2
¢} _ a,, =0.1e7™" 4 0.9¢7?%! (3.52)
() a,, =0.4e72"" +0.6¢77™u!

I1=5/2
¢)) a,,, =0.029e2™" 10,1787 2! 40,7947 (3.53)

a,, =0.257e7™" +0.267¢™>" +0.476e 7"
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CHAPTER 4. EXPERIMENTAL DETAILS

In this chapter we discuss the details of the NMR/NQR experiments performed in the
study of the AlCuFe, AlCuRu, and AIPdMn alloys. In discussing sample preparation,
different batches of the same sample stoichiometry are given different numbers to allow
distinguishing between them.

A. Sample Preparation
1. Batch #1, #3 Samples
Al Cu Ru,, , x=15,17,20 and AL ,Cu,,Fe, alloys were prepared by arc melting
appropriate proportions of high purity (better than 99.9%) metals in an argon atmosphere.
To insure complete mixing, each button was turned over and remelted twice. The buttons
were then broken and examined by eye for homogeneous mixing of thé metals. They were -
then remelted into ingots. The ingots were then sealed inside quartz tubes at 10 torr in
preparation for heating. The quasicrystalline phases were prepared by heating both the
AlCuRu and the AICuFe ingots at 800 °C for 23 days. In order to obtain the C phase of the
AlCuFe system [41], [42], [43], [44] one of the quasicrystalline ingots was further heated at
650 °C for 50 hours. For annealing, samples were placed into preheated furnaces, and cooled
by removing from the furnace and allowing the ingot to come to room temperature. The final
ingots were ground into powders for susceptibility and NMR measurements. Prior to the
NMR measurements the quasicrystalline powder samples were checked with x-ray scans.
The AlCuFe sample in the C phase shows peak broadening asymmetry consistent with the
twinned rhbmbohedral phase [41], [42].
2. Batch #2 Sample
This Al,Cu,,Ru,; was prepared as described above. Annealing was performed in the

following way: from a room temperature furnace the ingot was heated up to 500 C, where it

was held for one day. Temperature was then increased to 600 C and held 6 hours, and then
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heated to 800 C and held for 18 days. It was furnace cooled by simply shutting off the
furnace power [45]. The approximately 7 gram ingot was cut for specific heat

measurements, and Swenson [46] reports y = 0.21640.003 mJ/g-atK? and 0, = 542 K, in

very good agreement with the values of Biggs et al. [31] (y = 0.23 mJ/g-atK? and 6, = 527
K). This agreement made this sample a good candidate for a high temperature NMR study
similar to that of Hill et al., who used an Al Cu. Ru,, sample provided by Biggs et al.
3. AIPdMn Single Grain and Powder

Single grain and powder samples of Al, Pd,, ;Mn, quasicrystals were also prepared.
The single grain sample was the same sample used in a previous x-ray study [24]. It was
prepared by first growing single grain regions in an ingot using the Bridgman technique. A
single grain was selected and then cut from the ingot afier neutron diffraction was used to
determine the single grain regions. This region was cut to the dimensions 0.1 x 0.28 x 0.5
inches with 2-fold axes perpendicular to the two largest faces. X-ray topography was then
used to study the two largest surfaces, and the sample was flipped 180° to insure that both
sides were perpendicular to 2-fold axes. The powder sample was prepared by arc melt drop
casting and was better than 90% face-centered icosahedral (FCI) phase.

B. Experiments and Apparatus

NMR an NQR experiments were performed with a phase-coherent pulse spectrometer
employing a programmable pulse sequencer [47], a double sideband RF switch‘[48], and an
NMR receiver following the design of Adducci et al. [49], as shown schematically in Fig. 4.1.
1. Field and Frequency Sweeping

Both the ¥ Al and ®*%Cu nuclei investigated have I>-;— and sizable quadrupole moments.

As a result, the NMR spectrum displays a narrower field dependent central line (+%(—)-%)

transition and a field independent broader line arising from the distribution of satellite
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Fig. 4.1 Block diagram of an NQR-NMR pulse spectrometer.
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(i—i— © :t—;—, :I:i > :t%) transitions. At 8.2 T the full width at half maximum (FWHM) of

2
the central line is 50 kHz for ¥ Aland 200 kHz for ®Cu. The RF field H, was about 50 G at

these frequencies allowing one to uniformly irradiate the ¥’ Alcentral line and about a quarter
of the ®Cu central line. Thus the line shape of the central line can be obtained directly by FT
of half of the echo signal only for 2‘7A1.

In order to obtain the central line épectrum at low field, where the line is broader, and the
spectrum of the satellite distribution, we had to use either frequency swept or field swept
scans. In both cases the echo signal was generated by a two pulse Hahn echo sequence. For
field scans the echo signal was integrated by means of a boxcar integrator and the integrated
signal was digitized and stored in a Nicolet 1170 signal averager while the external magnetic
field was scanned slowly and continuously. Usually 100-200 scans were sufficient to obtaina -
good signal to noise ratio. For frequency scans the spectrum was obtained point by point by
changing the irradiating frequency in steps that varied from 10 kHz in the central lines to 200
kHz in the satellite distribution. The NMR probe was retuned at each frequency. A silver RF
coil was used to avoid spurious ®*Cu signals, and all calibrations were made by using the
7 Al resonance in a saturated aqueous AICI, solution.

The schematic of Fig. 4.2 indicates the layout for the automatic field sweep apparatus for
the low field magnets. A Nicolet 1170 signal averager, and Ames Laboratory DC linear
amplifier [48] and a Varian external sweep adapter were used to slowly sweep the magnetic
field. The receiver's boxcar integrator was used to integrate symmetrically through the echo
signal, and the Nicolet 1170 was used to digitize the integrated signal and store the data as
the field was advanced. All measurements were performed at 77 K using an Oxford system

transfer tube, Oxford CF 1200 variable temperature cryostat, and a liquid nitrogen storage

dewar. A small calibration probe containing a small sample of saturated aqueousAICl,
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Fig. 4.2 Schematic diagram of automatic field sweep apparatus for iron core magnets.
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solution was located at the level of the sample position outside the cryostat. The calibration
probe was used to mark reference frequencies on the data over a range of 4 MHz.

2. NQR Measurements

The ¥ Al NQR signal was detected at 4.2 K as an echo signal following a z L

a2l
pulse sequence with t,,, =10 us and pulse separation 100 ps. Approximately 4 g of

AlCuRu and A1,Cu,,Fe, were used. The spectra were obtained by plotting the echo
intenéity vs. the frequency of irradiation with proper renormalization for variations of Q
factor, and transmitter power. Several data points were taken near 4 MHz, and the data
were averaged to obtain error bars. In addition , the intensities were divided by v to correct

for the Boltzmann factor. For 7 Al (I = 5/2) one expects two resonance lines [34]. The £3/2

<> £1/2 transition occurs at v, = v,g(n), where v, = 3eQIV‘u°‘|/ 20h, €Q is the nuclear
quadrupole moment, and the asymmetry parameter n = (V,, ~V,;)/V,,. The function g(n)
was tabulated in [36], and varies from 1 forn=0to 1.8 forn=1. The +5/2 &> £3/2
transition occurs at v, =2v,f(n), and f(n) varies from 1 at n =010 0.88 at n=1 [36].
The echo intensity at the lowest end of the frequency spectrum may have been slightly
underestimated as a consequence of the decrease of the power output of the RF power
amplifier. The NQR spectrum we report is ascribed to the +5/2 «> +3/2 transition of 7Al,
and the average v; from NQR agreed well with previous quadrupole perturbed NMR
spectra in AlCuFe and AICuRu [10]. Due to the extreme width of the NQR spectrum and to
the very short T, = 80 ps, the signal-to-noise ratio was poor even at 4.2 K. In order to
enhance the echo intensity, a weak D. C. magnetic field (H, ~ 30 G) was applied
perpe;ndicu]ar to the axis of the NQR sample coil, by means of Helmholtz coils. The applied

field was small enough that it did not affect the shape or width of the NQR spectrum, but was

large enough to decouple the nuclear spins, making T, ]dnger (T, =500 ps) [50].
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3. Medium Pressure NMR Experiment

Approximately 200 mg of Al ,Cu,,Ru,; were sealed in compressible tubing (heat shrink
tubing worked well), and a small silver solenoidal coil of diameter 0.5 cm was wound to fit
the sample tube. The experiment was performed at the Washington University Physics
Department, St. Louis, MO, where a titanium metal pressure cell was built for pressures on
the order of 10° atmospheres. Fig. 4.3 shows a schematic layout of the pressure rig used to |
pressurize the sample chamber. Helium gas was used, along with a gas compressor, to
increase the pressure to 2,000 atm., while the entire sample probe was immersed in a liquid
nitrogen bath in an Oxford 8 T superconducting magnet. >’ Al NMR central line spectra were
obtained by qurier transforming the half-echo obtained from a Hahn echo sequence, where
phase alternation was used to eliminate ringdown from the second pulse. *Cu spin-lattice
relaxation time measurements were made by irradiation of the central line by 40 /2 pulses
preceeding a Hahn echo detection sequence. The relaxation data was fit using the relaxation
law for long irradiation times to obtain the spin-lattice relaxation rate.
4, High Temperature NMR Measurements

1-2 gof Al Cu,,Ru,, were sealed in a quartz tube under 1/2 atm. of argon gas at
room temperature. The NMR detection coil was formed from uninsulated platinum wire, and
temperatures were measured with an Oxford type E thermocouple placed near the sample
coil. ‘
The high temperature probe followed a design by Torgeson [51], and was able to

approach temperatures of 700 K. A single pulse saturation technique and Hahn echo
detection was used to obtain spin-lattice relaxation data, which was analyzed using the

recovery law for short irradiation.
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Fig. 4.3 Schematic diagram of the helium pressure rig used. The sample and detection coil
were contained in the pressure cell, which was submerged in a liquid nitrogen bath, in a
magnetic field of 8 T.
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C. Data Analysis
1. Nuclear Spin-Lattice Relaxation ‘

For quadrupolar nuclei, the recovery of the magnetization following a saturating RF
pulse is not génerally exponential. In order to extract the correct value for the relaxation
transition probability, W, one has to know the dominant relaxation mechanism and the
theoretical expression for the recovery law for a given initial saturation condition. Fora
magnetic relaxation mechanism, the recovery laws were derived in Chapter 3. Here W_, is the
Am = £1 magnetic relaxation transition probability. For a quadrupolar relaxation mechanism
two constants, W, and W,, corresponding to the Am = *1 and Am = 12 allowed transitions
respectively, have to be considered. In this case the analytical solution for the master
equation is possible only for I=3/2 while for I=5/2 this can be done only in special cases (e.g.
w,=W,) [52].

Recovery laws for both purely quadrupolar and purely magnetic relaxation were tested to
determine which resulted in better fits to the data. It was found that recovery laws for purely
quadrupolar relaxation did not result in adequate fits, while the purely magnetic recovery
curves did, as will be shown in Chapter 6.

The case of “Cu NSLR requires further discussion. As seen in Chapter 5, the “Cu
resonance overlaps the *’ Al satellite transitions even at the highest field H=8.2 T. In order to
derive the correct W, pertaining to ®Cu NSLR the following procedure was used:
relaxation data were obtained both at the resonance frequency of ®Cu and at the frequency
symmetrically located with respect to the ¥ Al central line frequency. Taking the difference
of the two signals the recovery of the ®Cu magnetization was obtained. The corrected and |
uncorrected W values were found to differ by only 10%, within the uncertainty of the

measurements, indicating that the effect of overlap of ®Cu is negligible and can be

disregarded.
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2. Computer Simulation of the Al NMR Line

An NMR line shape simulation program was used to generate simulated powder
patterns, and the details of the code are presented in Appendix 1. NMR line shape
simulations have been discussed by many authors [38], and applications to quasiérystalline
materials have been reported [4], [9]. The need for such a program arises when many non-
equivalent sites exist within the solid, thus washing out the distinct peaks seen in Chapter 3
for the case of a single non-equivalent site. By comparing a simulated NMR line, based on
assumptions about the distributions of the EFG tensor components, with the data, and
adjusting the assumed distributions until adequate fits are obtained, one may obtain
reasonably accurate information about the underlying distribution of EFG components. A full

discussion of the distributions found to result in good agreement will be given in Chapter 5.
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CHAPTER 5. NMR AND NQR LINESHAPES AND STRUCTURAL PROPERTIES

We discuss the structural properties of quasicrystals that may be inferred from a study of
the electric field gradient tensor at fhe sites of the resonant nuclei, through NMR and NQR.

A. Results

X-ray scans were performed on the batch #1 samples of AlCuFe and AlCuRu, as shown
in Fig.s 5.1 and 5.2, and show high phase purity. The resolution limited diffraction peaks
indicate that all batch #1 samples show a high degree of long-range order, consistent with
previous studies [23].

1. ¥ Al and ®*Cu NMR in Powder Samples

A typical high field NMR scan is shown in Flg 5.3 (a). For all the batch #1 samples, the
resonance peaks occur at nominally the same frequencies. In addition, the resonance
frequencies v of each line correspond to the transition frequencies v = yH, for the central line
of unshifted Al and ** Cu. Therefore, one may identify the resonances with their
corresponding isotopes, as done in Fig. 5.3 (a). It should also be noted from the figure that,
at this field of 8.2 T, the width of the ¥ Al NMR central line is approximately 50 kHz, and
that of the copper lines is 200 kHz. As mentioned in the previous chapter, the wide copper
lines make studying them less attractive than the relatively intense and narrow aluminum line.
For this reason, we will focus almost exclusively on the‘ %7 Al resonance.

A study of the *’ Al line in all batch #1 samples over the temperature range from 10K to
295 K show no change in line width nor any shift in the resonance frequency (Fig. 5.3b). The
lack of temperature dependence is consistent with the diamagnetic character of the AlCuFe
and AlICuRu samples (to be discussed in the next chapter), since the presence of localized
moments typically makes the resonance frequency temperature dependent [39]. The NMR

spectrum of the AICuRu quasicrystal in Fig. 5.3a was obtained by using a sample in the form

of a powder, and may therefore be compared with the NMR powder patterns
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Fig. 5.1 X-ray scans for batch #1 AlCuRu quasic i
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Fig. 5.3 (a) Typical NMR frequency scan for batch #1 samples. Above scan is for
Al Cu,Ru,,, and was taken at 8.2 T and 77 K. The scan shows a narrow >’ Al central line, a
wide > Al satellite background, and ®$*Cu central line resonances. Spectrum was obtained.

by plotting spin-echo height as a function of carrier frequency. (b) >’ Al central lines at 8.2 T
, shown for 10 K and 295 K, by taking the Fourier transform of a half echo, using a Hahn
echo sequence.
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expected for a quadrupc;lar nucleus in a single non-cubic site (Fig. 3.3). The pattern for a
single non-cubic site displays a distinct structure, which is not evident in the quasicrystal
powder pattern, and which suggests that there exist distributions in the Hamiltonian
parameters that determine the shape of the NMR line. These parameters are the Knight shift

and electric field gradient tensor components v, 1, K,

50> Ko» and €. To determine,
therefore, if the spectra are qualitatively consistent with powder spectra of quadrupolar
nuclei, the >’ Al spectra were studied under three different resonance conditions in all the
batch #1 samples. From Chapter 3, when the width of the central line is dominated by the
second order quadrupole interaction, one expects the central line to scale with field as 1/H,
and the distribution of the first order satellites to be field independent. Fig.s 5.4 through 5.8
are the result of NMR measurements made at 77 K for 12 MHz, 24 MHz, and 8.2 T, and one
may readily verify that the broad background intensity is the same at each resonance
condition. In addition, the > Al central line behaves qualitatively as expected for a line with
strong quadrupole effects, its width increasing as the resonance frequency decreases. What
remains in question is the distribution of NMR parameters that leads to such an effective
washing out of the NMR line structure otherwise expected. ,,

As discussed in Chapter 3, the "strength" of the quadrupole interaction for a given
nucleus may be indicated by the quadrupole coupling frequency v, and may be measured
approximately by the frequency spread of the quadrupole satellites. For nuclear spin I =5/2,

Fig. 3.3 indicates that the satellites cover 4v, in frequency, and taking this as roughly 6 MHz
from the data of Fig. 5.4-5.8c, one gets an estimate for v, of ~ 6/4 MHz ~ 2 MHz for the

aluminum nuclei.
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Fig. 5.4 Data and simulation for ¥ Al NMR line in Al ,Cu, Ru, at 77 K and three different
resonance conditions. The heavy line is the data, the light line is the simulation. The
parameters used in the simulation are: Z=2.2 MHz; o= _v_;/ 3; n=0,0.1,0.2,...,0.5. (a)
field scan at 12 MHz; (b) field scan at 24 MHz; (c) frequency scan at 8.2 T; (d)
comparison of central line Fourier transform spectrum at 8.2 T with simulation.
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Fig. 5.5 Data and simulation for Al NMR line in Al ,Cu,,Ru,, at 77 K and three different
resonance conditions. The heavy line is the data, the light line is the simulation. The
parameters used in the simulation are: v, Vo=2.1MHz, o = Vo Vo /3;1=0,0.1,0.2,...,0.5. (a)

field scan at 12 MHz; (b) field scan at 24 MHz; (c) frequency scan at 8.2 T; (d)
comparison of central line Fourier transform spectrum at 8.2 T with simulation.
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Fig. 5.6 Data and simulation for ¥ Al NMR line in Al,.Cu,,Ru,, at 77 K and three different
resonance conditions. The heavy line is the data, the light line is the simulation. The
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comparison of central line Fourier transform spectrum at 8.2 T with simulation.
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Fig. 5.8 Data and simulation for ” Al NMR line in Al Cu,,Fe,, quasicrystal at 77 K and
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at 8.2 T; (d) comparison of central line Fourier transform spectrum at 8.2 T with simulation.
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2. YAl NQR

%7 Al NQR data for batch #1 samples are shown in Fig. 5.9. As discussed previously, an
I =5/2 nucleus such as aluminum should have a +5/2 <> £3/2 transition at a frequency given
approximately by 2v,,, which in this case of the batch #1 samples should be ~ 4 MHz. The
detection of an NQR signal at this frequency is confirmation that the quadrupole interaction is
dominant in determining the energy levels of the nuclei. That the spectra in 5.9(a) and (b) are
very similar is an indication that the distributions of electric field gradient tensor components
within the two alloys are much alike. That the NQR spectrum is several megahertz wide
indicates a distribution of electric field gradient tensors, due either to defects and/or
impurities, or to a distribution of non-equivalent sites.
3. ¥ Al NMR in AIPdMn single grain

The measurements discussed have all been on powder samples, primarily out of
convenience: powders increase the filling factor of the sample coil, and the surface area to
volume ratio, leading to improved signal to noise ratio. The drawback, however, is a loss of
information concerning the EFG principal axis system axis orientations at the nuclear site,
important in understanding the nature of the local environment. A single grain sample would
provide this information, but must be large enough to make NMR measurements feasible.
For quasicrystals, AICuFe forms single grains on a length scale of = 100 pm, to small for
NMR measurements. However, recent work by Kycia et al. has led to AIPdMn single grains
with dimensions on the order of centimeters [24].

% Al NMR spectra in a single grain AIPdMn sample were studied as a function of the
angle a between the between the 2-fold symmetry axis orientation and the static magnetic
field. The purpose was to determine the directions of the EFG principal axes, and Fig.s
5.10(a) and (b) show the spectra at three different a values for a single grain Al, Pd,, ;Mn,,.

Unlike what one sees in a single crystal, where the satellites shift as the orientation of the
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crystal changes with respect to the static field (see Fig. 3.2), no shift in the satellites of the
single grain quasicrystal occurs. No change occurs in the resonance frequency of the central
line either, as seen in the 8.2 T, Fourier transform spectra of the central lines of Fig. 5.10(b),
which might be expected since, for nuclei with a strong quadruple interaction, the energy
levels of the central line are also orientation dependent.

Finally, Fig. 5.11 shows a comparison between the single grain sample and a powder
sample of AIPdMn of nominally the same composition. There is only a slight difference
between the spectra, which we attribute to differences in purity and preparation. The
comparison is in striking contrast with that of ordinary crystals (see Fig. 3.2 and 3.3). The
spectra suggest a distribution in the directions of the EFG principal axés in the single grain
sample which rivals that of a powder.

B. Analysis and Interpretation of Experimental Results

We proceed to discuss the above data in terms of the distributions of v,, n, K, K,
ande.

1. Quadrupole Interactions and Knight shift from >’ Al NMR line Simulation

Several previous NMR investigations indicated a distribution of local environments [4 -
10], and those of Warren [4] and Drews [9] have reported studies of the underlying
distribution of quadrupole interactions using NMR lineshape' simulation programs. The
specifics of such routines are discussed in Appendix 1 and Chapter 4; concepthally, their
purpose is to calculate a composite NMR powder pattern due to a distribution of non-
equivalent sites (see Fig. 3.4, for example). The usefulness of a model distribution may then
be judged based on how well the simulation and data agree. However, Warren comments

that fit parameters determined in this way should only be taken as indicative, due to the large



71

_1 1 1 i I L] 1 i l 1 T T { I 1 I i 1 ] i i i l_
2r g
= F o ]
> [ line : powder 7

- dash: single grain .
> :
L]

& J
- _
=F -
o -
Ly -
< ]
:l i I 1 l 1 I 1 i J ] i 1 1 l i 1 i ] ] 1 1 1 l-
1.9 2 2.1 2.2 2.3 2.4
Tesla

Fig. 5.11 *’Al NMR spectra of Al,Pd,, ;Mn,; single grain and powder sample of the same

nominal composition. Data were taken at 24 MHz, 77 K, and the single grain was oriented at
a=0°




72

number of fit parameters involved. Drews et al. extend the method of Warren, placing a
more stringent criterion on the acceptability of a proposed model distribution by requiring
that the distributions yield acceptable agreement with data at three resonance conditions. The
resonance conditions chosen by Drews et al. were imposed by fixed carrier frequencies of
11.10 MHz, 17.80 MHz, and 46.69 MHz.

Measurements at high field or frequency are important for accurate NMR line simulations
when quadrupolar are being studied, because the second order quadrupole interaction results
in a narrowing of the central line. The line position is therefore better determined under such
conditions, making apparent the need for a field study of the NMR line to span a wide range
of fields, with the highest upper limit possible. |

For this reason, our investigation includes spectra obtained at fixed carrier frequencies of
12 MHz, 24 MHz, and a fixed field of 8.2 T, which corresponds to a unshifted ?” Al
resonance frequency of 90.96 MHz. This increase in the upper-limiting field allowed us to
reduce to aluminum linewidth to 50 kHz, making Fourier transform spectroscopy possible,
resulting in much greater precision in determining the line position, and a more stringent
criterion than used by Drews to determine the acceptability of a model distribution.

What is now to be determined is the nature of the distribution of the local environments, via

the distribution of the EFG tensor parameters vy V, and 1. Of primary importance is: (1)
whether the distribution of v,, and 1 is continuous or discrete, i.e. whether the structure of

the quasilattice is such that nuclei find a few non-equivalent sites with v, values that may be

resolved; and (2) whether the non-equivalent sites occur in the structure with the same
probability, i.e. with a uniform distribution. Drews et al. based their simulations on the
assumption that each non-equivalent site occurs with the same probability, and they tested

both discrete and quasicontinuous distributions in their study of quasicrystalline

Al Cu,,Fe,,;. They reported better fits to the data with the discrete distribution, and Fig.




73

5.12 shows their NMR simulations at three resonance frequencies. That Drews et al.
reported difficulty obtaining fits to all three data sets, as is evident in Fig. 5.12(a), is
qualitatively consistent with the NQR data of Fig. 5.9. There one sees that the £5/2 <> £3/2

transition, which may be thought of as the distribution of 2v,, values to a fair approximation

(see Chapter 3), appears neither to be uniform, as Drews assumed, nor to exhibit any fine
structure that might be interpreted as a discrete v, component. On the contrary, from the
NQR data a non-uniform distribution of quadrupole resonance frequencies is umnistakable,
implying that not all such frequencies are equally probable.

We used the NMR lineshape simulation program to test model distribution of the
parameters v,, n, K., K, and € in the light of the above discussion, and found that one
could obtain reasonably good fits at all resonance conditions. First we discuss the
distributions of n and v,,, and then the distributions of K, K, and .

We chose a distribution of v, values qualitatively consistent with the NQR distribution,

specifically a quasicontinuous gaussian distribution given by
("Q‘;’;)2

h(vy) = G,/lg,;e— s | G.1)

where E is the mean value of the distribution. The distribution was modeled by 60 equally

spaced values of v, over the range from ;;-So to ;;+50'. The distribution of 1 values was

taken to be uniform, and, to reduce the number of loops required in the simulation program,

only the 1} values 0, 0.1, 0.2, ..., 1.0 were allowed.

Regarding the distribution of Knight shift tensor components, we assumed only K, had

appreciable magnitude. The justification for this is as follows. The anisotropic part of the

Knight shift K_ has the effect of broadening the NMR line proportionally with the resonance

frequency v, and arises from non-s band electrons near the Fermi energy [35]. When both
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quadrupole and Knight shift effects exist simultaneously, the two mechanisms compete, and

the total line width of the > Al central line may be described by [53]

A= v%ﬂwR | (5.2)
R

where the exact values of the constants a and b will depend upon the distributions of the
quadrupole coupling constants v, and the Knight shift tensor components K, respectively,
assuming the intrinsic dipolar width to be negligible. The above equation does not assume
any particular symmetry for the nuclear sites. The experimental results are shown in Fig.
5.13, for all the batch #1 samples, in a plot of A/v, vs. 1/vy. Although only three points are
available for comparison, one can see that the above equation is in agreement with the
experimental points. The main point is that the intercept b is very nearly at the origin, leading
to the conclusion that the mean value of the anisotropic Knight shift is negligibly small. For
this reason, in the simulation we may neglect € and K _, reducing the Knight shift parameters
to K.

Based on the above model, the lineshape simulations were obtained by first determining
the mean value aﬁd second moment of the v,, distribution by trial and error. It was found

- that when the second moment satisfied G/E 2 1/3, the NMR line simulation became

featureless like the data. In addition, the 1y values 0, 0.1, 0.2, ..., 0.5 seemed to work slightly
better than simulations for n=20.5,0.6, ..., 1.0, though the difference was not dramatic.

Having found good agreement when the above distributions were used, we used the NMR

line simulations to extract z and K, . Alibrary of simulations at 12, 24 MHz and 8.2 T for
different values of ;; were compiled. These simulations were then compared to spectra to
determine a V_Q that worked at all fields. To obtain the isotropic Knight shift K. using the
NMR line simulations, we made two successive approximations where, as a first
approximation, K, was set equal to zero. The simulation for the Al central line was then

generated for a static field of 8.2 T, and the simulation was compared to Al FT spectra at 8.2
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Table 5.1 Al K, and z values for batch #1 samples, determined by an NMR lineshape
simulation routine applied to data in Fig. 5.4 - 5.8

Sample VQ (MHz) - Ky, (%)
Al ,Cu,Ru,, 2.1£0.1 0.026+0.004
Al,Cu,,Ru;q 2.11+0.1 0.024+0.004
Al CuyRu, 2.2+0.1 0.024+0.004

AlCuFe C 1.9+0.1 0.016+0.004
AlCuFe QC 1.8+0.1 0.016+0.004

Tesla. By shifting the simulation Av until it lay upon the data peak, we obtained for the
second approximation the value K, =Av/v, where v is the center of the data peak. The

values of ;; and K, for AlCuFe and AlCuRu are given in Table 5.1 The
uncertainty of ._vz was determined by noting the minimum amount by which V—Q in the NMR
lineshape simulation need be changed to get a percepﬁble difference in the simulated line
width, and the uncertainty of K, was determined by the uncertainty of the spectrum
maximum of the Fourier transform spectrum of Fig. 5.4 - 5.8(d).

| The results of the fits are presented in Fig. 5.4 - 5.8, where the simulated line is
represented by a solid line, and the data given by filled circles. The reasonably good fits at all
resonance conditions are therefore indication that a gaussian distribution of v, is a
reasonable approximation to the actual distribution, given approximately by the NQR
spectrum. However, the fits do show occasional divergences from the data, particularly in

the satellites. We attribute these differences to the fact that the real distribution of Vo is not

actually a gaussian: the intensity of the NQR spectrum appears to decrease with frequency
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less rapidly than one wc-mld expect for a gaussian, and the NQR spectrum appears somewhat
asymmetric. It is believed that these minor differences between the simulated and actual
distributions induce no significant error in the average parameters K, and z of Table 5.1
2. Quadrupole Interactions from the Al NQR Lineshape

Having discussed the nature of the underlying electric field gradient distribution, we now
discuss the structural éspects of quasicrystals that might result in the NQR spectrum of Fig.
5.9.

The most striking aspect of the AlICuFe and AlICuRu NQR spectra are that their widths
are much larger than what one expects from strains, defects, or substitutional impurities.
This may be seen by comparing the underlying distributions of the total electric field gradient
V2! in quasicrystals with those of other crystalline systems. We assume that to a good
approximation the NQR resonance frequency v, is proportional to the total electric field
gradient V' (Chapter 3), and therefore that the distribution of V' underlying the measured
distribution of v, may be characterized by the ratio c/q, where o is the NQR spectrum
half-width at half-maximum, and v, is the mean resonance frequency.

For the *” Al NQR spectra of Fig. 5.9, one finds that o/v, ~ 1/5. We choose for
comparison various nuclei in metallic systems where defects and impurities are known to
contribute significantly to the NQR line width. For the metals indium and rhenium, one finds
o/vy =~ 1/26 for ' Re NQR [50], and o/v, =~ 1/63 for "*In NQR [54]. Examples in alloys
systems are numerous, and we choose for comparison the NQR spectra in two high
temperature supercondubtors, which are well known to be poor metals and highly disordered
structurally. For ®Cu NQR in YBa,(Cu,_M,),0,, for the case of slight doping with Zn or
Ni, one finds that the ratio is only o/v, ~ 1/79 [55], and that, for *La NQR measurements

in Sr doped La,CuO,, the ratio is o/v, ~ 1/40 [56]. "
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Efforts to obtain a direct comparison through ? Al NQR were complicated by the lack of
such reports in the literature. Though reports of ” Al NQR are rare, MacLaughlin [57]
reports that the j_t5/2 <> +3/2 ¥ Al NQR spectrum in Gd doped LaAl, Laves phases, due to
the non-cubic aluminum sites in the structure, occurs at 1.48 MHz and has a full width at half
maximum that depends upon the Gd concentration x, the small static magnetic field H, (<
150 G) as

20=2(A +Bx+CH,) (5.3)
where A= 13 £ 3 kHz, B=1 £ 0.4 kHz/at.%, and C = 1.4 + 0.6 kHz/G [57]. If one takes 2
o as indicative of the >’ Al NQR intrinsic line width due to defects and strains, one may then
make direct comparison of this line with the NQR line of the quasicrystals. Calculating 2c
under the conditions of the NQR experiment of Fig. 5.9, where one has x=0and H, =30 G,
one finds 20 =~ 100 kHz, which is much less than the FWHM of 1.5 MHz of the Fig. 5.9 NQR
data.

Therefore, the above comparisons suggest that the width of the broad NQR spectrum in
the stable icosahedral quasicrystals cannot be explained by the presence of lattice defects,
strains, or impurities. This raises the question of whether the structure of the quasilattice
itself might result in the wide distribution of electric field gradients, through a multiplicity of
non-equivalent sites.

3. Electric Field Gradient Model Calculation and the Problem of the Atomic Positions

We approached this problem through a simulation of the NQR data based on a structural
model for the quasicrystal. NQR investigations, in systems where ionic positions and charges
are well known, typically present analysis of the NQR spectrum through a calculation of the
electric field gradients at the nuclear sites. For quasicrystals, this procedure is complicated by
the fact that the atomic positions are not known. However, one may gain further insight into

the quasicrystalline NQR data by calculating the distributions of V' and n for the %’ Al sites
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in a crystalline approximant, and then calculating the distribution of quadrupole resonance
frequencies vy, .

As discussed previously, the crystalline approximants are crystals whose local order, and
therefore atomic positions, closely approximate those of the quasicrystal. Such structures are
themselves quite complicated. The atomic positions of an AICuFe 1/1 approximant have
recently been discussed by Cockayne et al. [58], and contains 128 atoms in its unit cell. We
chose this structure as a reasonable approximation to the actual local structure within AICuFe
and AlCuRu quasicrystals.

The characteristics of the approximant we used are as follows: the structure is a 1/1
approximant with stoichiometry Al Cu,,Fe,, cubic symmetry, 128 atoms/cell, and lattice
constant a = 12.30 A. The atomic positions may be determined for all 128 atoms in the unit
cell from the atomic positions of the non-equivalent sites given in Table 5.2, and Appendix 2

describes in detail how the coordinates were calculated. The main structural feature is a

Table 5.2 Atomic positions for a structural
model of an AlICuFe(Ru) approximant.
Coordinates are in units of the lattice
parameter a = 12.30 A. Taken from
Cockayne et al. ref. [58]

Site x ¥y .z
Fe a) 0.843 0.843 0.843
Fe 12(b) 0540 0.348 0.672
Al 4(a) 0.049 0.549 0.951

Al 13(b) 0.030 0.541 0.346
Al 12b) 0226 0857 0475
. Al 12b)° 0247 0850  0.833
" Al 12(6) 0732 0029 0159
CCu 4a) 0336  0.336  0.336
Cu 120b) 0036 0836 0150
Al 4a) 0543 0043 0457
Cu 120b) 0554 0022 0858
Al 12b) 0732 0343 0.336
Al 120) 0230 0533 0.635
4(a) 0.348
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network of Bergmann clusters (see Fig. 5.14), consisting of a qentral copper atom
surrounded by an approximately icosahedral shell of 9 aluminum and 3 iron atoms, and a
larger, approximately dodecahedral shell of 13 copper and 7 aluminum atoms. Each cluster is
joined to six other clusters through a sharing of a pair of copper atoms in the dodecahedral
shell.

In order to calculate the quadrupoie resonance frequencies of the NQR spectra based on
a given structural model, one must determine the electric field gradient at the sites of the
resonant nucleus. In metallic systems, the electric field gradient has contributions that arise
from the ions within the structure of the lattice, denoted V2", as well as from the valence or

conduction band electrons, denoted V2. As aresult, one may write the total electric field

gradient at the nuclear site as [59], [60]

Fig. 5.14 The structure of the approximant is based on clusters with inner icosahedral, and
outer dodecahedral shells. The atomic decoration is described in the text.
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VI =V (1-y,)+ V2 (5.4)
The factor (1-y_), the Sternheimer anti-shielding factor, is an enhancement factor that arises
from the distortion of the spherical, inner-electronic shells of the atom by the electric field
gradients of the lattice ions. Since the inner shell electrons are the charges closest to the
nucleus, this effect results in significant enhancement of the lattice gradient at the nuclear site.
The lattice term may be determined in a point charge model for the ionic charges.
Calculating the total gradient V' from first principles, therefore, requires knowledge not
only of the atomic positioné, but also of the valence band wave functions. For quasicrystals,
the lack of a unit cell makes band structure calculations difficult [3 DiVincenzo], and
therefore complicates a first principles theoretical approach to modeling the NQR spectrum.
To circumvent the difficulties inherent in a first principles approach, we proceeded to obtain
the electronic contribution V.i semi-empirically, based on knowledge of the calculated V*
in the point charge approximation, and on the V' determined from the NQR data of Fig.
5.9. Based on the value of the electronic contribution, quadrupole resonance frequencies
were then calculated. The details are as follows: | |
(1) In many metals and alloy systems, the electronic contribution to the gradient is

normally 2;3 times larger than the lattice contribution, and of opposite sign [60]. For this
reason, we chose to write the total electric field gradient

ve|=[vel-[vila-v.) | (5.6)
The NQR resonance frequency v, for £5/2 <> +3/2 transitions could then be written

(Chapter 3)

Ve = 2vo8(1) (5.7
where, v, = 3teV;°"/ 20h, and where for *’ Al nuclei Q = 0.14x10™* cm?, and (1-y_) =
3.3. An expression for the average v, , vy , obtained from the NQR spectrum could then be

written as a sum of lattice and electronic contributions
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Ve =Va -V (1-7.) (5.8)

where V2 = 3eQ|V*2|/20h. Therefore, once V2" is known from calculations based on a

structural model, and Z is determined directly from the intensity distribution I(v; ) of the

NQR spectrum of Fig 5.9 by
—  IwvgI(vg)dvy

T Tiwdve

(5.9)

the term v_;' may be directly determined.

(2) To calculate the lattice contribution vi* we calculated the distribution of vi* based
Cockayne's structural model and an ion point charge approximation (see also Appendix 2).‘
To eliminate boundary effects in the electric field gradient calculation, the original cubic unit
cell of 128 atoms and lattice constant a=12.3 A was duplicated and then translated to create
a set of 27 identical cells, with the cell of interest at the center. The electric field gradient

tensor, given by

eZ [ 3x,x; |
Vi}anzzr; 21_%}

k Iy I
where x, are the components of the displacement vector between the Al nucleus at which the
electric field gradient is to be calculated, and the ions of the lattice with charge Z, , was then
calculated at each Al site in the central cell. The summation was performed over ions within
a sphere of radius R < a, and for a particular charge assignment for the Al, Cu, and Fe(Ru)

ions. The electric field gradient tensor components were diagonalized to yield the largest
latt __ xglatt

—-—VW”—, and the angle © between the z-axis of the EFG principal

component V2 n=
axis system and the z'-axis of the unit cell reference frame defined in the model for the
approximant.

While it is reasonable to assume that the valence assignments for Al and Cu are the same

as normally found in metals, namely Al** and Cu™, the valence assignment for the transition
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metal is less certain due- to the uncertain d-shell band structure in the alloy. For this reason,
we performed calculations assuming three different valences of the Fe(Ru) ion: 1+, 2+, and
3+. The distributions of V**, 1, and 8 are shown in Fig.s 5.16, 5.17, and 5.18 respectively.
One may notice that the overall distribution and means values of V** are not extremely
sensitive to the Fe(Ru) valence, though the details of the distribution are. We therefore chose
one the three valence assignments for further analysis, specifically AlI**, Cu'*, Fe(Ru)".

The bin widths in the V** histogram reflect the uncertainty in the electric field gradient
calculation. Since the electric field gradient is calculated out to only the fifth nearest
neighbor shell, and the contribution due to the nth shell falls off as 1/r, we estimated the
uncertainty to be about 15% of 500e/a’, the contribution due to the first coordination shell.

(3) We obtained the semi-empirical value of v_;’ based on the NQR data of Fig. 5.9(a).

We found ;; = 4.31 MHz, and v&* (1-y_) = 1.05 MHz based on the distribution of Fig.

5.16(a), giving

Vi =V +VE (1—y,) = 5.36 MHz (5.10)

(4) Using the above value for \T;' , and assuming V§ = \7;'— , one may write eqn. (5.7) as
3eQ .

vy =536 MHz-m—le“l(l ~v.)8() (5.11)

where all quantities, n and V2", are known and presented in Fig.s 5.16 and 5.17. Based eqn.
(5.11), we calculated the distribution of v, arid compared it directly to the NQR data, as
shown in Fig. 5.19.

Having discussed the details of the electric field gradient calculation, we observe that
semi-empirical value V& = 5.36 MHz corresponds to an electric field gradient of
V2 =1.77x10" esu-cm™, which is of the order of magnitude expected for the
electric field gradient generated by a 3p-wave at the Al site. In fact, for a single 3p-electron

in an atom one has [36]:
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Eqn. (5.11), superimposed on the NQR spectrum for Al,,Cu,,Ru,,. The heights of the
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experimental value. The different 1 values for the non-equivalent sites have been taken into
account through the function g(n ) (see Chapter 3).
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4e/ 1
Vel = i — 5.12
24 <r> (5.12)

By using <1/r*>=1.28/a} (a,=0.529 A) as obtained from the hyperfine structure of optical
spectra of Al neutral atoms [61] one has V5 =3.3x10'" esu-cm™. It is encouraging that the
apparent spacial localization of the Al 3p-electrons is consistent with the poor metallic
character of these quasicrystals.experimental value.

We now emphasize the main point. of the above calculation: the above model assumes
that the total electric field gradient at a nuclear site is determined primarily by the electronic
contribution, and that the width of the NQR spectrum is determined by the distribution of
V2 through the distribution of local environments. That the widths of the simulated and
experimental NQR spectra of Fig. 5.19 are similar lends support to this picture.

However, the structural model of Cockayne, which we applied to the above calculation, does
not result in a continuous distribution of v values. Since the model has only 8 non-
equivalent Al sites in its unit cell, this is perhaps an indication that, for modeling the NQR
spectra of quasicrystalline structures, a higher order crystalline approximant is needed to
obtain a simulate& spectrum that appears continuous.

One may estimate the minimum number of non-eciuivalent Al sites in AlCuFe and AlCuRu
quasicrystals, based on reasonable assumptions about the intrinsic linewidths for each non-
equivalent site. We assumed that two mechanisms contributed to the intrinsic NQR
linewidths: dipolar broadening due to interactions between nearest neighbors of like and
unlike nuclei, and quadrupolar broadening due to defects and strains.

The dipolar contributions may be approximated by the Van Vleck second moment for

powder lines, given by [35]
S— 1
Ao =3y'WIA+ D2~ (ke nuclei) (.13)

k ik

— 1
Ao® = {5YiH*S(S+D 2 (unlike muclei) (5.14)
LR




90

where v, and y refer to the gyromagnetic ratios of the unlike spins I and S, and the
summation is taken over all nearest neighbors k. Since the summation terms fall off as 1/1°,
the summation is essentially determined by the first nearest neighbor distance. In addition,
the larger nuclear spin I of Al will make I(I+1) for the Al-Al interactions more than twice as
large as S(S+1) for the Al-Cu interactions. Therefore, one may neglect interactions from
unlike nuclei. The Al-Al distances in Cockayne's structural model [58] average 2.5 A, and
one finds an average of 3 - 4 nearest neighbors. From eqn. (5.13) one finds a dipolar

linewidth given by 20 = VAn? /2r ~ 2 kHz.

The intrinsic linewidth due to strain and defect induced quadrupolar broadening depends
on the concentration of defects C, the average distance from the resonant nucleus to the
defect d, and the nuclear properties of the resonant nucleus [59]. Assuming C and d of the
cubic LaAl, Laves phases to be similar to the corresponding values in quasicrystals, one may
use the >’ Al NQR linewidth of 100 kHz [57] found in these materials as and estimate of the
intrinsic linewidth due to defects and strains. .

By comparison of the dipolar and defect induced linewidths, one can see that the dipolar
effects are negligible.

To place a lower limit on the number of non-equivalent aluminum sites, one notices that
the lack of any resolvable fine structure in the NQR spectra of Fig. 5.9 indicates that the
intrinsic linewidth due to each non-equivalent aluminum site is larger than the difference in
frequency between neighboring resonance lines. Though setting a criterion for the
resolvability of the component NQR lines is somewhat arbitrary, we took as a reasonable
upper limit on the average separation between component NQR resonances the value §/2,

where 3 is the FWHM of the intrinsic linewidth due to defects and strains. Dividing the full

frequency range of the distribution, A, by the separation between adjacent NQR resonance
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lines, one gets an estimate on the number of component resonance lines n, and therefore the

number of non-equivalent sites:
A

2 s
=572
For A =2.5 MHz from Fig. 5.9, and & = 100 kHz as discussed above, one gets n > 50

(5.16)

non-equivalent Al sites.
4. Distribution of EFG Principal Axis Orientations from *’ Al NMR in AIPdMn Single
Grain

As mentioned earlier, the NMR spectra of the AIPdMn sample show no angular
dependence in either the central lines or the satellites. This is qualitatively consistent with the
distribution of electric field gradient principal axis ‘orientations for Al sites in the AICuFe(Ru)
1/1 approximant, shown in Fig. 5.18. The figure indicates that there exist several orientations
for the principal axis systems at the aluminum sites. Intuitively, one only expects an angular
dependence of the NMR line to be observed if a large fraction of the nuclei posses the same
principal axes, thus favoring a particular direction. When no direction is favored, as indicated
in Fig. 5.18, one'expects no angular dependence of the NMR line.
We stress that a wide distribution of electric field gradient components, Vv, and n, without a
distribution of principal axes, is not sufficient to explain the lack of angular dependence,
through a "washing out" of the structure of the powder pattern that might obscure shifts in
the resonance frequencies. To test this possibility, we simulated the >’ Al NMR spectrum of
the single grain assuming a distribution of v,, similar to that used for simulations in the
AlCuFe and AICuRu systems, and assuming only a fixed prihcipal axis orientation with
probability 1 (see Appendix 1). Fig. 5.20 shows that the shape of the simulated single grain
NMR spectrum is markedly different from the single grain AIPdMn data taken at 24 MHz,

seen in Fig.s 5.10 and 5.11. The simulation shows that the structure of the satellites is
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system z-axis and the external field H,.




93

smoothed out by the gaﬁssian distribution of v, resulting in gaussian broadening of the

individual satellites, and that for orientations of the principal axis system with the magnetic
field of © = 0° and 90°, the shift in the satellite resonances is readily detectable. Both these
results are inconsistent with the data.

That the AIPdMn powder and single grain spectra are nearly identical (Fig. 5.11) again
suggests that the very structure of the quasilattice in the single grain, despite the well defined
symmetry axes determined by the high degree of long-range positional order, creates a
distribution of local electric field gradient principal axes that rivals that of a powder.

5. ®Cu NMR and Local Symmetry at the Cu Site

A priori, one expects the copper central lines to be determined primarily by the second order
quadrupole interaction, since the larger Z of copper compared to aluminum makes it even
more sensitive to distortions of the inner electronic shells by the electric field gradients of the
lattice ions [34]. However, the field dependence of the copper central lines has been difficult
to verify, due to the weak ®** Cu signal at the lowest resonance condition, and to the
overlapping of the copper central lines with the aluminum satellites (Fig. 5.4-5.8).

One may‘ still proceed to analyze the copper NMR lines by studying the data at the lowest
frequency at which the copper lines are still detectable, where, due to the 1/v dependence of
the second order quadrupole interaction, the quadrupole effects are maximized. Thus we
examine the NMR spectra at 24 MHz shown in Fig.s 5.4 - 5.8 (b).

One should note that, if both aluminum and copper lines are determined primarily by the
second order quadrupole interactions, the ratio of their central line widths will be the same

for all resonance conditions. From Chapter 3 the width of the central line, A, assuming a

dominance of quadrupole effects, is given by A = (a— %)9;2 /v,, and the ratio for aluminum

and copper central linewidths is
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2 ‘
63A 3 63VQ
A _ _(2_7____ (5.17)

27
A 87y,

where a = I(I+1) is 15/4 for copper and 35/4 for aluminum, and where ;; is an average

quadrupole coupling frequency. The above ratio is therefore field independent. From the
NMR data of Fig.s 5.4 - 5.8, one finds ®*A/A~3-4 at 82 T,and “A/7A~1-2 at 24
MHz. We considered this to be reasonably consistent with the field independence of the

above equation, and attributed the variation to difficulty in separating the Al and Cu central
linewidths at 24 MHz. Taking the 8.2 T value ®A/”’A =3 and v, =2.1 MHz

By, #37v, = 6.3 MHz | (5.18)
If one takes the value ®®A/?’A ~1-2, on the other hand, one finds q ~3-5MHz,

suggesting the copper £3/2 <> £1/2 NQR resonances should be detectable within the +5/2
<> +3/2 NQR spectra of Fig. 5.9. However, the lack of additional peaks in Fig. 5.9 may be

taken as indication that ®v,, is not in the range of 3 - 5 MHz.

One may then compare the average electric field gradients at the nuclear sites for Al and
Cu, to determine if the chemical ordering of the quasilattice yields similar local environments

for the two nuclei. Note that for ®Cu,

_;_ ;);ch 27QF?__TS{]

and for %7 Al,

and therefore

63VQ 10 63Q 63 Vluot

27 3 2710 [27x rtot
Vo Q|7

(5.19)

where IV‘;'! = IV;I - IVZI;’n (1-v.). As mentioned previously, for many nuclei in a wide variety

of metals and alloys, the ratio of the electronic to the lattice contributions of the total electric

field gradient is 3 - 4 [60]. From the NQR data of AlCuFe and AlCuRu, one finds a ratio = 5
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for the aluminum nucleus. Assuming the copper nuclei exhibit nearly the same behavior, one

may write eqn. (5.19) as
®ve _10 2Q (1-%y,) [PV
e 3 7Q0-Ty) [y

Calculating the ratio of the gradients using *’v, =2.1 MHz, ®v, = 6.3 MHz, Q= 0.140 x
Q Q

(5.20)

10*cem?, ®Q =0.209 x 10 em?, (1-7"y,)=13.3, (1-*y_) = 16, one finds

'63 V;an = Ol| 27 Vzl:n

(5.200)

This would indicate that the average gradient at the copper sites due to lattice charges is
much smaller than that of aluminum. Before comparing this unexpected result with a
theoretical estimate of IV;:“I at the copper sites, we want to be sure that the copper NMR
signal measured is representative of all copper nuclei in the sample, and not of merely a small
fraction.

To do this, we studied the areas under the copper and aluminum central lines at 24 MHz.
The area under the NMR line may be calculated by eqn. (3.4), which gives the area under the
full resonance line, including the quadrupole satellites. Because the area under the full
resonance line could be determined experimentally for copper, we proceeded to analyze the
central lines by correcting eqn. (3.4) to give the area under the central line only. The
magnetic dipole transition matrix element, I(I+1) - m(m-1), gives the intensities for the m <>
m-1 transitions, and results in line intensities for copper in the ratios 3 : 4 : 3, and for
aluminum of 5 : 8 : 9: 8 : 5. On the basis of these ratios, the central line contributes 40% of
the total line intensity in copper, and 26% for aluminum. Using eqn. (3.3), one may then

write for the ratio of the areas under the central lines, denoted by A,
“A+®A  3(®y)’ +3(%y)’ 33+1) 040 ©N
A (77y)? $($+1) 026 #N

(5.21)

where N is the total number of copper or aluminum nuclei. For the alloys

Al Cu Ru,, x=15, 17,20, and Al Cu,,Fe,,, eqn. (5.21) gives values of
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Cu A 63 A +65 A
T‘XM =i ~0.15-0.21, 0.24 respectively. To determine the integrated line

intensities A, ®A, ® Awe measured the areas beneath the central lines and above the Al
satellite background in all field scan spectra at 24 MHz. For both the AICuRu and AlCuFe
Cu A 63 A +65 A

systems we obtained HE}@ =—wx ~0.1520.04. The resulting agreement between

theory and experiment indicatés that a large fraction of the copper nuclei do indeed
experience lower gradients on average than aluminum.

To compare the result of eqn. (5.20b) with a theoretic calculation, we performed a
simulation of IVE“I at the copper sites in the AlICuFe 1/1 approximant model discussed
previously, to detennine the distribution of gradients.. The simulation was performed as

described earlier for aluminum NQR, but this time was performed for the copper sites. Fig.

5.21 gives the [V}

histograms for three charge configurations of Fe(Ru), and one finds the
mean values of the aluminum (from data of Fig. 5.16) and copper lattice gradients to be such
that [PV ~ 0.8V,

The discrepancy between the result of eqn. (5.20b) and the electric field gradient model
calculation is almost one order of magnitude, and appears to be outside experimental
uncertainty even considering the uncertainties in studying the copper NMR line. One is
therefore lead to the conclusion that the assumptions inherent in eqn. (5.20b) are not all valid.

There are two primary assumptions that require re - examination. The first assumption is that

valra-y v

the semi - empirical ratio ~ 5 determined for aluminum applies to copper

as well, an assumption applied to a lack of copper NQR spectra through which one could

obtain such a result. We note that if this ratio were ~ 2 for copper, as is reasonable according

to [60 Vianden], one finds

| 63 ylat
z

=057 Vi
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for ®Cuisa

in reasonable agreement with the computed ratio of 0.8. The fact that v
smaller fraction of the lattice contribution than for 2’ Al would then imply that the wave
function of the valence/conduction electrons around the copper ions is much more s - like

than for aluminum. The second assumption is that the Sternheimer antishielding factor
(1-v.), values of which have been found in the non - interacting electron approximation [59
Cohenl], is 3.3 for Al** and 16 Cu*, giving a ratio 7(1—6371,)/ (1-*"y,) = 4.8. The accuracy of
these vales is difficult to determine [59]. We note that a value of the copper (1—-v,) thatis
30% lower than our assumed value of 16, combined with the above ratio ~ 2 for the

electronic and lattice gradients of copper, gives
l63 VZ“I — 07I 27 V;ni :

in reasonable agreemeﬂt with the simulation results.
Further work on ® Cu NMR - NQR is needed to clarify this issue. This work should
focus on NMR measurements taken at 5 T, a field value intermediate to those of our study

and at which the copper lines will be easily detectable, and NQR measurements above 6

MHz, to check for a copper #3/2 <> +1/2 NQR line.
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CHAPTER 6. KNIGHT SHIFT, RELAXATION TIME, MAGNETIC
SUSCEPTIBILITY, AND THE ELECTRONIC STRUCTURE

In this chapter, we discuss the electronic properties of AlICuFe and AICuRu quasicrystals
through studies of magnetic susceptibility, Knight shift values, and nuclear spin-lattice
relaxation times. In particular, we discuss an AICuRu compositional, and medium pressure
study of the NMR parameters, in the light of Biggs et al.'s hypothesis of pseudogap fine
structure, and compare with conclusions from a high-temperature study by Hill et al.

A. Results
The magnetic susceptibilities of all three AICuRu quasicrystals of the batch #1
quasicrystals were measured by Ostensen [62] as a function of temperature, and are
presented in Fig. 6.1. One can see that the tempefature independent contribution to the
‘susceptibilities for all three samples are diamagnetic and the same to within experimental
uncertainty, as given in Table 6.1. |

%7 Al Knight shifts K, were measured in the AlCuFe and AlCuRu batch #1 samples from
analysis of the NMR lineshape data given in Fig. 5.4 - 5.8, and the results are given in Table
5.1. The anisotropic Knight shift, K_, was also discussed in Chapter 5 and found to be zero
within experimental uncertainty. |

Fig. 6.2 shows the nuclear spin-lattice relaxation data for the *” Al, ®Cu, *Cu nucleiin a
typical batch #1 sample. The solid lines represent fits to the relaxation laws, discussed in
Chapter 3 for the case of magnetic dipole relaxation, and given by eqns. (3.52) and (3.53).
From this procedure, we obtained the fit parameter W, ,, from which the spin-lattice
relaxation rate 2W,, may be determined. The high qualify of the fit indicates that spin-lattice
relaxation is dominated by magnetic, rather than quadrupolar, relaxation mechanisms. The

relaxation laws for quadrupolar relaxation were also applied, but found to yield inadequate

fits. The values W,, are summarized in Table 6.2 for two temperatures.
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- Fig. 6.1 Magnetic susceptibility measurements in Al,,Cu,,Ru,, (x), AlCu,,;Ru,, (+),
Al ,Cu, Ru, (open square ) for batch #1 samples.

Table 6.1 Total (%,), core (X...) and Pauli (%, ) molar susceptibilities for Al,,Cu,Ru,,,
Al,Cu,Ru,,, Al,Cu,Ru, batch#1 samples.

X %o (emu/mol) %aia (emu/mol) %p (emu/mol)
x10¢6 x10¢ x10¢
15 -24 -28 b
17 24 -28 b
20 -24 -28 5
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Fig. 6.2 Semi-log plot of the recovery of the normalized nuclear magnetization,
M(0) —M(t)
220) = 28D ol
M(x)
at two different temperatures: (a) Al central line relaxation; (b) ®Cu central line relaxation;
(c) ®Cu central line relaxation. The full solid curves are theoretical fits by using eqns.
(3.53.1) and (3.52.1) for ¥ Al and ®%Cu respectively. The values of W,, obtained from
least squares fits are given in Table 6.2.

owing a "short" saturating RF pulse sequence in Al Cu,Ru, at 8.2 T and
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Table 6.2 Fit parameters W,, for the batch #1 samples obtained by fitting >’ Al, ®Cu, and
Cu relaxation data to recovery laws of eqns. (3.52.1) and (3.53.1). Spin-lattice relaxatlon

rate is given by 2W,,.

Sample | 27Wm (Hz) | $3Wm (Hz) | $SWm (Hz) | $3wWm/SSwWm

15 0.25+0.02 | 0.51+0.02 | 0.52+0.02 0.97 +£0.08

17 0.20+0.01 | 0.45+0.02 | 0.42+0.01 1.08 + 0.07

77K 20 0.21£0.01 | 0.46+0.02 | 0.46+0.01 1.00 £ 0.07
C 0.20+0.01 | 0.34+0.02 | 0.40+0.02 0.86 + 0.09

QC 0.19£0.01 | 046+0.02 | 0.43+0.01 1.07 +0.07

15 1.57+005 | 40 02 | 48 +03 0.84 +0.09

17 1.59£004 | 37 02 | 44 03 0.84 +0.09

300 K 20 1384004 | 38 02 | 50 04 0.8 £0.1
C 094004 | 30 02 | 39 0.2 0.8 +0.1
QC 070£004 | 23 +01 | 24 0.1 0.95 + 0.06
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Fig. 6.3 shows the dependence of 2W,, for >’ Al as a function of temperature for the
Al ,Cu, Ry, and AlCu,Ru,, samples, the two compositions reported by Biggs et al. to
have ¥ values that differed by a factor of two (Chapter 2), and for the crystalline and
quasicrystalline phases of AICuFe. The data show no measurable dependence of 2W,, on the
composition of the alloy (Fig. 6.3(a)), or on the long-range order (Fig. 6.3(b)). In the case of
AlCuFe, the temperature dependence of 2W,, is linear up to room temperature, as expected
for a relaxation mechanism due to conduction electrons, whereas both AlCuRu samples show
deviation from the linear extrapolation of the low temperature data.

In order to further study the nature of the relaxation rate at high temperature, we
performed 2W,, measurements above 300 Kina high purity (see Fig. 6.4) AlCu,;,Ru,,
sample (batch #2) reported by Swenson [46] to have specific heat properties in very good
agreement with those of Biggs et al. Fig. 6.5 shows our data on a semi-log scale, compared
with data taken by Hill et al. for Biggs' Al,,Cu,,Ru,, sample. There is no difference within
experimental uncertainty between the temperature data of the two samples, and above 300 K
the data shows marked deviation from linear behavior.

As an alternative to a compositional study (see Chapter 2), where one has the additional
complication of attempting to maintain consistent levels of sample quality, we performed a
study pressure study of the NMR properties on a Al ,Cu,,Ru,, sample (batch #3) of high
phase purity (see Fig. 6.6). ' Al and * Cu Knight shifts and relaxation times were studied as
a function of pressure up to 2,000 atm., the maximum value attainable with the helium gas
compression system used. Fig. 6.7 shows the ¥’ Al central lines at several helium gas
pressures. As described later, based on Biggs et al.'s interpretation of the y variation in
AICuRu and the dominance of s-band terms in the Knight shift, we looked for a shift of the

#7 Al line on the order of the half width of the line. Fig. 6.7 shows no measurable shift of the

line over the pressure range we achieved. In addition, the relaxation rates 2'WM shown in
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samples.
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Fig. 6.4 X-ray scan of Al Cu,,Ru,, batch #2 sample used for high temperature NMR
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Fig. 6.8, which should be even more sensitive to changes of the DOS than the position of the
%7 Al central line, show no change with pressure within the uncertainty of the data. We
emphasize that before the data can be interpreted, one must discuss how the Fermi energy
changes with pressure in AICuRu quasicrystals.
B. Analysis and Interpretation of Experimentél Results

1. Magnetic susceptibility |

The magnetic susceptibilities for the AICuRu samples were analyzed to obtain the Pauli
- susceptibility, %, which in a nearly free elec‘tron model is proportional to the DOS at the
Fermi level.

The total experimental susceptibility X, may be separated into temperature dependent

and independent parts
Xew = Xo +%(T) 6.1)

where the temperature independent part %, may be written

XO =XP +xcorc +Xcond (62)
and the temperature dependent Curie-Weiss term is given by
C .
Ty=— 6.3
D =7"% (6.3)

The values y, are shown in Table 6.1 and are the same to within experimental uncertainty.
The C values for each AICuRu sample were on the order of 10~ - 10™° emu K/g, implying a
concentration of local moments of ~ 107 at% [16 Kittel]. As this is consistent with the
99.99% purity level of the elemental constituents used in making the alloys, we attribute
these moments to small concentrations of magnetic impurities in the sample.
In the nearly free electron model, one may write the Pauli susceptibility as
T = 3 (o = Xume) (6.4)

The values of ., have been estimated in the elements for several ionization states of the

atom, through relativistic Hartee-Fock calculations [39]. For an alloy system
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Fig. 6.8 *Cu spin-lattice relaxation rate 2W,, taken in Al ,Cu,,Ru, batch #3 sample at 77
K and H, = 8.0 T, as a function of helium gas pressure. Saturation was achieved by 40 n/2
pulses, consistent with the long saturation condition of recovery law eqn. (3.52.2).
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A,B,C,, the total dia£nagnetic contribution from all ions may be estimated by the weighted

sum

_ (0% (A) + Ve (B) + 21 () 65)
X+y+z

core

where .. (A) is the diamagnetic contribution from ion A. 'We assumed non-ionized atomic
configurations, consistent with the very low density of conduction electron states in these
materials, and give the values of %, based on eqn. (6.5), and Y, based on eqn. (6.4), in
Table 6.1.

We caution, however, that the y, magnitudés obtained in this way are highly
approximate, due to uncertainties in the calculations of the % ___(A), the approximate nature
of eqn. (6.5), and the uncertain ionization states within the quasicrystai. If one takes the
ionization states Al>*, Cu'*, Ru'" used previously in the model for the electric field gradient,
one obtains values for ¢, which are negative, and therefore unacceptable. We interpreted
this as an indication that the x;, values of Table 6.1 should be taken only as approximate
upper limits to the Pauli susceptibility.

2. NMR Results

The deviation of the *’ Al spin-lattice relaxation rates at room temperature from a linear
extrapolation of the data at low temperature in the AICuRu alloys (Fig. 6.3) indicates the
presence of an additional relaxation mechanism at high temperatures. The low temperature
behavior exhibits the linear behavior consistent with behavior seen in other quasicrystalline
systems [12], [9], where the dominant relaxation mechanism was due to conduction electron
- relaxation. We focus first on the low temperature behavior, and discuss the high temperature
behavior later.

When the dependence of 2W,, on temperature is linear, the slope of the line is denoted
(T,T)™ where T, =1/2W,,. By fitting to the low temperature 2 Al data up to 77 K, one
finds the (T,T) " tobe 5.2+ 0.3 and 5.5+ 0.3 x 10 s'K™ for Al,Cu,,Ru,, and




112

Al Cu, Ru respectiv.ely, and 5.2+0.3and4.9+0.3 x 107 s”'K™' for the crystalline and
quasicrystalline phases of Al Cu,,Fe,,, respectively. Thus we find no change in (T,T)™
with sample composition or long range order.

Before moving to a discussion of the NMR parameter, magnetic susceptibility, and
electronic structure, we note that analysis methods of the Knight shift and spin-lattice
relaxation data reported in the literature vary. It is important to discuss these alternate
approaches and compare them with our own methods, discussed in Chapter S for the Knight
shift, and in the previous section for the spin-lattice relaxation time.

Hippert [12] and Drews [9] both studied AlICuFe and obtained ¥’ Al (T,T)™ values
considerably different from our own, the variations stemming from the different recovery
laws used to obtain 2W,,. Hippert et al. obtained (T,T)"' =17 x 10~ s K™ for both
crystalline and quasicrystalline phases of Al,,Cu,, Fe,, s, and reported that the standard
recovery law for short irradiation of the central line, given by eqn. (3.53.1) did not yield
acceptable fits. They fit their data to

f(t) = oe™Mt 4 Be 1Pt 4y 30t (6.6)
i.e. replacing the fixed coefficients of eqn. (3.53.1) by parameters that were allowed to vary
in the fit, and obtained coefficients o = 0.25, § = 0.47, y = 0.28, as compared with o = 0.029,
B=0.178, y = 0.794 of Chapter 3. This point is important, because Hippert suggests that the
inadequacy of the standard recovery law might be explained by a distribution of spin-lattice
relaxation times that arises from a distribution of electronic environments. Our results, on the
other hand, as well as the results of Hill [15], indicate good agreement between the standard
recovery laws, from which we concluded that no effect arising from a distribution of
relaxation times is present. In addition, Drews et al. reported that their relaxation data,

obtained by saturating the central Al line with multiple pulses, could be adequately fit with a
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simple exponential recover with and additional constant to correct for incomplete saturation
of the line, given by |

f(t)= A +Be?™ 6.7)
and on the basis of this they obtained the value (T,T)™" =73 x 10 s”K™, which is an order
of magnitude larger than our own. Our magnetization recovery data of Fig. 6.2 clearly
indicate non-exponential recover, and Hill [63] has shown that the data of Drews et al. may
be adequately fit by the standard recovery laws of Chapter 3, resulting in (T,T)™ =4.9 x 107
s"'K™'. This is in very good agreement with our own value of (4.9 £ 0.3) x 107 s7'K™'. We
conclude that the most satisfying interpretation of the relaxation data therefore arises through
analysis based on the standard recovery laws we have presented in Chapter 3.

Other measurements of ”” Al K have been reported in both AlCuFe and AlCuRuy,
though no previous measurements have included the effects of the quadrupole interaction on
the central line position. Hippert et al. reported K, < 0.01% in AlCuFe from a plot of the
spin echo intensity at 7 T, and Drews et al. reported a value K, =0.02 +0.03 % from the
- same method. Hill et al. achieve greater precision by obtaining the Fourier transform
spectrum of the *’ Al central line and 9 T, and found K, = 0.015 %. The above values were

all found by the expression

(6.8)

where v is the frequency at the center of the 2’ Al resonance in the quasicrystal, and v is
the resonance frequency of a diamagnetic reference. However, when the nucleus is has
strong quadrupolar coupling, the above expression must be corrected for second order
quadrupole effect, which contributes a term that varies as 1/v? [39]. For small Knight shifts,

these corrections can be significant even at high frequency. Such corrections are included in

the K, values given in Table 5.1, which were obtained from the NMR lineshape simulations,

by virtue of the second order quadrupole effects being included in the calculation of the
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resonance frequencies. We therefore conclude by noting that the systematic error introduced
by not including quadrupole effects may be seen, by comparing K, from Table 5.1 with the
shifts given above, to be 60 - 70%. '

3. Magnetic Susceptibility, NMR, and the Pseudogap
Analysis of the %, K,.., and (T,T)™' values in the AlCuFe and AlCuRu alloys may be

performed by a direct comparison with aluminum metal. We note the following values for
aluminum metal: y, =30 x 10~° emwmole, K, =0.164 %, and (T,T)"' = 540 x 10~
s'K™ [39]. Table 6.3 lists ratios of the aluminum values to the values found in the AlCuFe

and AlCuRu alloys.each parameter depends upon either the total electronic density of states

at the Fermi energy D(E)--as in the case of xp-éor the s- and d-band DOS
D, (E;), D,(E;)--as in the case of K, and (T,T)"'[64]:

One may interpret the results of Table 6.3 based on the following equations, which show

how X, < D(Eg) (6.9)
K, =u;D,(E.)HY +u,D,(E.)HY +x, HY /u, (6.10)

(T =a K? +a K3 +a,, (1D, (E. )HE )’ (6.11)

Table 6.3 Ratios of Pauli susceptibility ¥, isotropic Knight shift K, and (T,T)' for
aluminum metal and the AlCuFe and AlCuRu alloys (batch #1 samples)

Sample meted o I xp | ™K, /K, | TEDTEDT | mealy s | Korringa
Ratio
Al.Cu,.Ru,. 6 6.3 832 6.8b 2.7
AlCu,.Ru,, 6 6.7 100 5.9b 2.9
Al..Cu,,Ru,. 6 6.7 91 12 b 2.7
Al..Cu,.Fe,,(C) - 10 91 4.7¢ 1.3
Al..Cu,.Fe(QC) - 10 100 4.4¢ 1.3

a Determined from table 6.1 for 77K valve
b Taken from Biggs [31]
¢ Taken from Biggs [65]
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The quantities H}Y ., are the magnetic hyperfine fields at the nucleus due respectively to the

s- and d-band electrons, and to the electronic orbit; % is the Van Vleck susceptibility; and
O, 400 are prefactors of the s-, d-, and orbital terms. The s-band terms arise from the so-
called contact hyperfine interaction, which is due to unpaired s-band conduction electrons
interacting with the nucleus through the coupling of the electronic and nuclear moments.
Since only s-band electrons have non-zero probability of being at the nuclear site, this
contribution is typically the dominant one. However, it is possible for non-s electrons to
contribute to the Knight shift and relaxation rate by polarizing paired electrons within the
closed atomic s—shelis, creating perturbations in the s-band wave function that depend largely
on the d-band [39]. These "core polarization" eﬁ‘écts are temperature dependent. Finally, the
orbital contribution arises from the orbital magnetic moment of the conduction electrons
induced by the applied magnetic field. This effect is essentially temperature independent, and
results in a second order term that becomes appreciable in the d-band transition metals with
half filled bands [39].
We analyzed the values of Table 6.3 as follows. For aluminum metal, the s-band

contributions dominate the NMR parameters, allowing one to write

K,, = tD,(E)H (6.12)

(1) =a Ki (6.13)

. : : 4nkp [ ¥y
where in a non-interacting electron model o, = m :Y— [34], where the gammas

represent the gyromagnetic ratios of the nucleus and electron. For the *” Al nucleus in

AlCuRu and AlCuFe quasicrystals, the temperature independence of the > Al NMR line
below room temperature (Fig. 5.3(b)), as well as the fact that the (T, T) ™ ratios of Table 6.3

are on the same order of magnitude as the square of the K, ratios, suggest a simple s-band

description. The ratios in Table 6.3 then become ratios of the s-band densities of states at the
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Fermi level. Since aluminum metal may be considered to be a free electron metal, the ratios
therefore reflect a reduction in the available number of electronic orbitals at the Fermi surface
in the quasicrystal. Values larger than one, as found in Table 6.3, are therefore indicative of a
pseudogap. In addition, one should notice that the ratios of %, and the linear coefficients of
the specific heat y are nearly equal, consistent With a nearly free electron picture where both
quantities are proportional to D(EF); the total density of states. We note, however, that
none of the measurements that we performed on the Al Cu,,Ru, batch #1 sample reflected
the factor of 2 change reported by Biggs et al in the measurement of y. Our data therefore
are consistent with the presence of a pseudogap, but not with pseudogap fine structure.

The s-band model is in reasonable agreement not only with the relative values of K, and
(Tl T) _], but with their absolute values as well. One measure of this is the Korringa ratio,
which is defined as the ratio A = T,TKZ, /c,, where the numerator is determined by
experimental values. In the ideal case of a non-interactihg electron gas, A= 1. Inreality,
deviations from 1 are common in even the simplest metals, and may often be attributed to
electron - electron interactions. For example, in the alkali metals, A ranges from 0.66 to 1.7
[39]. For the ¥’ Al nucleus, o,y =3.88 x 107 sK, resulting in A values that range from 1.3 to
2.9 for the AICuRu and AlCuFe alloys. We therefore take this as further evidence that the s-
band model is appropriate.

Though no predictions exist for the depth of the pseudogap in realistic transition metal
quasicrystals [29], Carlsson reports preliminary results performed using one-electron
potentials and an idealized reciprocal space model for the 1/1, 2/1, 3/2, ... , 8/5 approximants
[33]. The calculations indicate that the pseuddgaps range from approximately 1/3 of the free

electron value for the 1/1 approximant, to less than 1/10 for the 3/2 approximant. We may

determine the depth experimentally based on the values of Table 6.3. One finds that the K

ratios indicate that the density of states for AICuRu quasicrystals is 1/6 - 1/7 of the free
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electron value, and that for AlCuFe crystalline approximant and quasicryalline states it is 1/10
the free electron value. In addition, the lack of any difference between our experimental
values of the pseudogap depth for the AlCuFe 3/2 approximant and quasicrystalline phases
indicates that the electronic properties of the quasicrystal may in fact be determined by it
intermediate range order, since the local atomic order of a quasicrystal and its approximants
are nearly the same. This is in agreerhent with the NMR results of Hippert et al. who found
almost identical Knight shifts and relaxation times for the AICuFe and AlCuLi quasicrystals
and their 3/2 approximants [12], as well as with theoretical investigations of Fujiwara et al.
[29], who show that both pseudogaps and fine structure exist in the density of states for both
the AICuLi quasicrystal and its 3/2 approximant. |
4. NMR Pressure Study of Al Cu, Ru,, and Pseudogap Fine Structure

Having given evidence that the NMR parameters may be described by a simple s-band
model, in which the Knight shift K, and the spin-lattice relaxation rate 2W,, are
respectively proportional to D_(E;) and D?(E;), one may proceed to analyze the NMR data
of Fig. 6.7 and 6.8, taken as a function of pressure.

We first estimate the change in the Fermi energy éxpected for the quasicrystal as the
pressure is increased to 2,000 atm. For aluminum metal, which is dominated by the s-band
term in both the Knight shift and the felaxation rate, Kushida [66] has shown that the

pressure dependence of the Fermi energy to be

dE, 2
E, "3 (1+03)pdP (6.14)
. . : e 1{oVv )
where B is the isothermal compressibility, defined as B = "V(EF) . Since the NMR
T

parameters of the AICuRu quasicrystal may also be described by an s-band model, we will
assume that the above equation applies to the quasicrystal as well. To estimate the

compressibility B for AlICuRu, we use measurements of the elastic modulus reported by
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Koester et al. The compressibility B is related to the elastic modulus E, and Poisson's ratio p,

by the expression [67]
31-2p)

B=—"7% - (615)

Taking p ~ 1/3 as found in many metals and alloys below their elastic limit, one finds B ~
1/E. Koester [68] reports that E ~ 1.10 x 10° atm for Al ,Cu,,Fe,,, and we therefore find
~ 0.9 x 10~ atm'l. We note that this value is reasonable as it is intermediate to that of
aluminum (B = 1.38 x 10~° atm!) and ruthenium (B = 0.31 x 10~ atm'!). We estimate the
Fermi energy by noting that the Fermi wave vector k in AIMn, AlLiCu, and AlFe crystalliné
approximants are 1.75 A", 1.64 A™', and 1.73 A" respectively [29], and we take these
values as indicative of k in AICuRu quasicrystals. Taking k. ~ 1.7 A™', the nearly free
electron model [69] gives the Fermi energy as E, = (13.6 eV)(k.a,)> = 10 eV, where
a, = 0529A. Given the above values, one therefore expects a shift in the Fermi energy over
a pressure range of 2,000 atm to be |
dE; =(0.92 x x 107 atm1)(2/3)(1.3)(2,000)(10eV) ~ 0.02 eV (6.16)

We note that thé shift in the Fermi energy as estimated above should allow one to probe
pseudogap fine structure on the order of 0.02 eV, since in an s-band model K, «« D, (E;)
and 2W,, « D?(E,). /

One may estimate the effects of pressure on K, assuming pseudogap fine structure on
the order of 0.02 eV, by noting that the pressure dependence of D, should dominate the

pressure dependence of H!Y. This may be seen by taking

(?&se_) v %) 6.17)
P Jo ov J; ©.
Therefore, one has, by inserting eqn. (6.12) into eqn. (6.17)
(&K, j D, (Eg) . 4 ath)
Zhiso | _ Zs\voF) s 6.
( aP . VBIJ‘B av Hs +D5(EF) aV : ( 18)

which may also be written in terms of the fractional changes
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dKiso_st‘*_dH:‘f
K, D, HY

150

(6.19)

For aluminum metal, Kushida [66] reported that appiying a pressure of 8,000 atm resulted in
an ¥’ Al fractional Knight shift of

dK,, .
—i: =001 (6.20)
and that the fractional changes of D, and H' differ only by a factor of 1/2, i.e.
dd, _LdH[ (621
D, 2 H¥ 21

For ¥ Al in the AICuRu quasicrystals over a pressure range of 2,000 atm, a factor of 2

change in the density of states would give

dD, | S
St ~1 (6.22)

Since H!' is an average of s-band electron states over the Fermi surface, it may be written
8x 2
n _ 28
HY ==, (w0l (6.23)
and we assume that dH™ /H"™ will be similar for the quasicrystal and for aluminum metal.
Under this model, the change of D, should dominate the Knight shift, and one should

therefore expect
—0 5 (6.24)

The effect of a factor of 2 change in D, should therefore result in a shift in the central line of
dv~dK,, v, (6.25)
which for K, = 0.024% (Table 5.1) and v, = 88.8 MHz one finds dv ~ 20 kHz. This is
roughly the half width of the 50 kHz *” Al central line in Fig. 6.7. We conclude that the
pseudogap fine structure should result in a measurable shift of the 2’ Al resonance within the

pressure range we achieved.




120

The effects of pseudogap fine structure of the spin lattice relaxation rate follow directly
from the behavior of the Knight shift in an s-band model, where 2W,, ««K? . Therefore a
- factor of 2 change in D, should result in a factor of 4 change in 2W,,.

Having established that changes in pressure over the range we used shift the Fermi energy
~ 0.02 eV, and that the consequences of a factor of 2 change in D, are readily detectable,
the lack of any pressure dependence in Fig.s 6.7 and 6.8 appear inconsistent with pseudogap
fine structure in Al ,Cu,,Ru,, quasicrystals. Recall that the change of sign in the
thermopower of Al Cu, Ru,; was explained qualitatively [31], [18] by the existence of
pseudogap fine structure on a scale less than k(300 K) = 0.02 eV. If one interprets the
NMR results as indicating no pseudogap fine struéture exists, then one needs to return to the
thermopower data and explain the change in sign with a more sophisticated theory than that
given in Chapter 2. On the other hand, since NMR parameters are primarily dependent on D,
rather than the total density of states D = D_ + D, one might argue that if fine structure
occurred in the d- but not in the s-band, the NMR result could be reconciled with both
specific heat data and thermopower data. However, it seems implausible that the symmetry
of the wavefunction should determine the presence or absence of pseudogap fine structure.
We therefore conclude that fine structure in D, should it exist, occurs on an energy scale
larger than that which would explain the anomalous thermopower results in Al ,Cu,,Ru,,
reported by Biggs et al. |
S. High Temperature NMR

Through low temperature NMR measurements we have found evidence for the
pseudogap in both K, and 2W,, measurements. However, the compositional study results
of Table 6.3, as well as the NMR pressure study of Al Cu,,Ru,,, show no evidence of
pseudogap fine structure. Hill et al. [15] have recently analyzed Knight shift and spin-lattice

relaxation data up to 1,100 K and have proposed a method for that emphasizes and
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interpretation of the data as the result of pseudogap fine structure. We will briefly discuss

their methods and conclusions.

Fig. 6.5 compares our 2W,, data for Al Cu,,Ru, with those of Hill et al. for
Al Cu, Ru,,. The good agreement between samples is consistent with the results of Table
6.3, which indicate no dependence of NMR properties on composition. In addition, the
results verify the deviation from linear behavior in 2W,, at room temperature and above. Hill
et al. reported that above 700 K, a dramatic temperature dependence of the Knight shift is
observed, where the Knight shift changes by nearly a factor of 3 up to a temperature of 1,100 |
K. Such a strong temperature dependence of the Knight shift is unuéual, though it has been
seen in normal metals such as cadrhium. |

Hill et al. analyze their data with the following expressions:

_ n’k3 D"(E;)

2WM-WO(T+——-3 DE) T (§.26)
_ k2| D*(E,) (D'(EF))Z-) \

KBO—KBO(O){H 5 | D (EF)f DEL) Jr 6.27)

where the derivatives of the density of states arise from higher order corrections that are
expected to occur if the density of state exhibits high curvature, i.e. fine structure [15].

However, the corrections were obtained by approximating integrals of the form
w of '
LD(EF)—daE E | (6.28)
where Of/CE is the derivative of the Fermi function

1

f(E)= 55—
(E) e E-ErVksT |

(6.29)
Such integrals may be approximated by series expansions in temperature if the density of
states does not vary too rapidly on a scale of kT [69]. Hill et al therefore apply the above
equations to data from 150 K to 500 K, and obtain the following derivative ratios from fits

using the above equations: D"(E;)/D(E;) =490 eV~ and D'(E;)/D(E;) =+ 22 eV-L.
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Hill et al. calculated the width of the pseudogap assuming these derivatives and

approximating the shape of the pseudogap with a parabola, and found a full width at half

maximum of 0.26 eV. We note that this width is 10 times larger than the 0.02 eV upper limit
necessary to account for the change in sign of the thermopower reported by Biggs et al. [3»1].

We note, however, that the temperature dependence of the Knight shift in cadmium metal
was explained by KasoWsld [70] without assuming fine structure in the pseudogap. In
Kasowski's model, the pseudogap was created by the unusually strong crystal potential in
cadmium, which causes a decrease in the density of states at the Fermi level as compared with
that of the free electron value. The temperature dependence of the Knight shift was
adequately explained by the temperature dependence of the atomic potential, determined by
the thermal vibrations of the atoms through the Debeye-Waller factor. At higher
temperatures the thermal motions of the nuclei reduce the effective potential and make the
density of states come closer to the free electron value. It is therefore conceivable that the
temperature dependence of the Knight shift in quasicrystalline Al Cu,,Ru,, may be explained
without assuming fine structure in the pseudogap, as Hill et al. do.

We conclude that the results of Hill et al. yield an approximate pseudogap width that is an
order of magnitude too large to explain the anomalous thermopower data of Biggs et al.
However, the width is qualitatively consistent with the lack of any detectable pressure
dependence we observed in the NMR parameters of Al Cu, Ru,; up to pressures of 2,000
atm. All the NMR available therefdre consistently suggest a lack of pseudogap fine structure

on a scale that would explain the anomalous thermopower and specific heat data of Biggs et

al.
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CHAPTER 7. SUMMARY AND CONCLUSIONS

?” Al NMR spectra in the AlCuFe and AlICuRu quasicrystalline and crystalline
approximant phases give clear evidence for a quasicontinuous distribution of electric field
gradient (EFG) tensor components at the aluminum sites. The quadrupole perturbed NMR
spectra were analyzed with a lineshape simulation program, and we found that a gaussian
distribution of quadrupole coupling constants gave satisfactory agreement with the
experimental data. Guided by the quadrupole interaction strengths inferred from the NMR
spectra, we were able to observe, for the first time in quasicrystals, the ?” A1 NQR spectrum
at 42 K. The NMR and NQR data were found to be in good agreement, and both
unambiguously indicate the existence of a very wide distribution of quadrupole interactions at
the alurninﬁm sites. A model calculation of the aluminum electric field gradients in AICuRu
was successful in explaining the observed quadrupole interactions. In particular, we
concluded that the unusually wide distribution of quadrupole resonance frequencies in the
NQR spectrum may be explained by a multiplicity of non-equivalent aluminum sites within
the quasilattice, which gives rise to a wide distribution of EFG values associated with the
contribution of the surrounding ionic charges. The average EFG value is largely determined
by the Al atomic p - wave function, which is assumed to be the same for all aluminum sites.
We obtained a lower limit of approximately 50 non - equivalent aluminum sites, based on a
reasonable value for the width of each NQR component of the spectrum due to lattice defects
and strains. In addition, ¥ Al NMR in a single grain AIPdMn quasicrystal gave evidence that
a distribution of local EFG principal axis orientations exists, and shows no preference for
direction within experimental uncertainty.  Cu NMR was less conclusive, but indicated that
the average experimental EFG at the copper sites is significantly less than the average EFG at
the aluminum sites. Since the calculation of the lattice contribution to the EFG yields

comparable results at the aluminum and copper sites, we tentatively concluded that the
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difference observed shc;uld be ascribed to a more s - like symmetry of the valence electronic
wave function at the copper sites with respect to the aluminum sites.

The values of the ?” Al Knight shift, relaxation time, and bulk magnetic susceptibility
measurements, confirm the existence of a pseudogap in the electronic density of states in both
AlCuFe and AICuRu, consistent with the large overlap of the highly symmetric pseudo-
Brillouin zone boundary and the Fermi surface. In AlCuFe, the 3/2 approximant phase had
Knight shift and relaxation time measurements that are the same as those for the quasicrystal,
within experimental uncertainty. This is consistent with the view that the electronic
properties are determined by intermediate - range, rather than long - range, order. In
AICuRu, no dependence of Knight shift or relaxation rate on copper concentration occurred
within experimental uncertainty, and we found no pressure dependence in either the *’ Al/
$3Cu Knight shift or spiri - lattice relaxation times up to 2,000 atm. We conclude that, on an
energy scale of = 0.02 eV, the s - band density of states in AICuRu shows no unusually rapid
variations of the kind previously proposed to account for specific heat and thermopower data

in the AlCuRu system.
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APPENDIX 1: NMR LINESHAPE SIMULATION PROGRAM

We now describe in detail the NMR lineshape simulation program, which, given the
distributions of parameters vy, n, K, K., and € that describe the Knight shift and
quadrupole interactions, will calculate a composite NMR powder pattern.

In Chapter 3, the NMR spectrum for a single non-equivalent site and fixed orientation 6,
¢ of the electric field gradient principal axis system with the static field was described and
shown in Fig. 3.2. The intensity for each m <> m - 1 transition is given by the magnetic
dipole matrix element I(I + 1) - m(m - 1), and the frequency at which each transition occurs is
given in Chapter 3 by eqn.s (3.28) - (3.33).

The powder pattern is simulated over a frequency range [v,, v,] by dividing the interval
into N, intervals of width Av |

v, =V,

Ay = —2—1 Al.l
\Y N, (AL1)

and by dividing space into increments of solid angle of value

ACX6,¢) = ABAPsind (Al.2)
where
T
AD=Ad= N_z | (A1.3)

We typically took N, = N, = 100.

The simulated NMR spectrum is best described as a histogram with bin widths Av, and
with an intensity I(v,) given by the sum over I(I + 1) - m(m - 1) for all nuclear transitions
V6,4), given by eqn.s (3.28) - (3.33), that meet the resonance condition within the width of
the histogram bin, i.e. v, < W0,¢) < v, + Av. For powders, the grains are oriented at random,

and the number of grains oriented at angle 0 is proportional to AQ/4r. Therefore, the

simulated lineshape is determined by

1(v,) < Z§(I(I +1) - m(m-1))

A8, ¢)

“an (Al.4)
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where it is understood that a contribution to the sum over theta and phi occurs only when the
resonance condition is met. As a programming shortcut, one may notice from the formulas

for the transition frequencies that the angular dependence of all the terms is described by

linear combinations of the spherical harmonics Y,,(6,¢), Y,,(6,4),Y,;(6,4). The symmetries

of these terms allow one to reduce the angular sum over all space, in eqn. (A1.4), to the first

octant.
The above algorithm describes how an NMR lineshape may be calculated given full

knowledge of the distribution of transition frequencies. To include distributions over the

electric field gradient tensor components v,, 1, additional loops were added to the program.

Powder patterns were calculated for specific values of v, and 7, and the final composite -

powder pattern was obtained from the weighted sum

1,(v) = 2. F(vg)G(I(V,) (AL3)

voon

where it is understood that I(v,) was determined from a single non-equivalent site with v,

and n, and where F and G are distribution functions of the tensor parameters.

The FORTRAN codes for both field and frequency scans follow.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeee
c sim6.for _ v
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeeee
c June 8, 1993
c Ananda Shastri
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeee

Contents
I. Introduction
II. Program Description

A. Field Scan Simulation

B. First and Second Order
Quadrupole Effects

C. Convolution: Used for
Distribution of Sites

QOO0 000o0a0
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c
¢ I Introduction

C m—eenameeno-

¢ sim4.for calculates the NMR spectrum for quasicrystalline

¢ materials following the method of Warren , et.al [1].

¢ Standard line shape numerical synthesis methods have

¢ been taken from papers [2-4]. Reference [4] gives explicit

¢ formulas for the first and second order contributions to

¢ level spacings and was used for programming these interactions.
¢ For a description of the workings of the program, programming
c shortcuts used, testing, and problems, see A. Shastri's notebook
¢ "Al-Pd-Mn NMR" .

II. Program Description

A. Field Scan Simulation. This program was written
to simulate NMR field scans for a powder. The program takes
input parameters from an input file that
must be formatted in the following way:

OO0 006060600606

1 2 3 4
c1234567890123456789012345678901234567890 (This line for reference only.)
c
c carrier frequency (Hz) = 24.e6
cnuclear gamma factor (Hz/Tesla) = 11.094¢6
nuclear spinl = 2.5
asymmetry parameter eta= 0.
mean nuQ (Hz) = 1.6e6
deviation of nuQ (Hz) = .22e6
theta,phi division = 100.
integral tolerance = .01
number of field points = 100.
beginning field (Tesla) = 1.9
ending field (Tesla)= 2.3
beginning eta = 0.
ending eta = 0.1

B. First and Second Order Quadrupole Effects. The mechanisms
that alter line spacings from the Zeeman level spacings are
first and second order quadrupole effects only. We assume
that the anisotropic Knight shift is negligible.

QOO0 0000060000600 O0O06O0O0
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C. Convolution: Used for Distribution of Sites. For materials
that have a broad distribution of inequivalent sites, a distri-
bution over those sites must be included in the program to
"smear"” the line. This is done by a loop that calls the
lineshape generating subroutinge for a range of nuQ values,
and weights the resulting lineshape with a gaussian
weighting factor. The distribution over nuQ is uniform,

O 0000000

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCeeee
¢ References

¢ [1] W.W.Warren et.al. PRB, 32, 7614 (1985)

¢ [2] J.F.Bauger et.al. J.Chem. Phys., 50, 4914 (1969)

¢ [3] H.Ebert et.at. J.PhysF., 16, 1287 (1987)

¢ [4] P.C.Taylor et.al., J Mag Res., 2, 305 (1970)

¢ [5] RB.Creel et.al,, J.Chem.Phys., 60, 2310 (1974)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCe

external LineShape

double precision Hprime, pi,num,xx

double precision field(300),spect(300),spectrum(300),etasum(300)

double precision func,LineShape,error,hQmean,gbar,etabeg,etaend

double precision I,m,eta,nu0,nuQ,divsn,dH,Hbeg,Hend,dTheta,dPhi,nul |
integer N <
character*34 al 5
parameter (pi=3.1415926)

read(5,30) al,nu0,al,gbar,al,l al,nuQ,al,sigmaf;,
# al,divsn,al,error,al,num,al, Hbeg,al Hend,al,
# etabeg,al,etaend

write(6,20) 'TitleText: ', nu0,1, etabeg,nuQ,sigmaf,divsn,error,num
write(6,*) " Simulation"'
20 format(al4,''d7.2,''d7.2,''d7.2,'d7.2,'"'d7.2,'".d7.2
# ,',d7.2,'",d7.2)

dTheta=Pi/2./divsn
dPhi= Pi/2./divsn
esq=eta*eta

do eta=etabeg,etaend,0.1

xxbeg=nuQ-5*sigmaf
xxend=nuQ+5*sigmaf
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xxinc=10*sigmaf/60.
do xx=xxbeg,xxend,xxinc
call LineShape(Hbeg,Hend,num,xx,nu0,gbar,dTheta,dPhi,], eta,
# esq,field,spect, MaxH)
gauss—exp(-(xx-an)*(xx-an)/2/51gmaf/sxgmai)/sxgmaﬂsqrt(Z*
* Pi)
do j=1,MaxH
spectrum(j)=spectrum(j)-+gauss*spect(j)
enddo
enddo
do j=1,MaxH
etasum(j)=etasum(j)+spectrum(j)
enddo
enddo

xnorm=0.

do j=1,MaxH
xnorm=xnorm-+etasum(j)

enddo

xnorm=xnorm/MaxH

do j=1,MaxH
spectrum(j)=spectrum(j)/xnorm
write(6,10) field(j),spectrum(j)

enddo

10  format(el5.7,e15.7)
30 format(a34,g15.7)
end

ceceeeceeceeecceeceecececececceceeceecececececececeecceececececcecceecee

subroutine LineShape(Hbeg, Hend,xnum, xnu,xnu0,gbar,dTheta,dPhi,I,e,esq,

* field,spect,MaxH)
implicit integer (j-n)
implicit double precision (a-i,0-z)
double precision spect(300),field(300)
double precision x1(20),x2(20),x3(20),x4(20),x13b(200)
double precision x19(40000),x20(40000),x21(40000)
double precision x22(1000),x23(1000)
parameter (Pi=3.1415926)

dH=(Hend-Hbeg)/(xnum-1.)
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f=1*(1+1.)

=0

do 100 x=-L1

it

x1(G)=x-.5
xX2(j)=2*f-6*x*(x-1.)-3.
x3(j)=4*f-24*x*(x-1.)-9.
x4()=f-x*(x-1.)
MaxM=j

continue

k=0
ij=0 |

do 200 Theta=dTheta/2. Pi/2.,dTheta
k=k+1 ’

x5=cos(Theta)

X7=x5*x5

x6=3*x7-1.

x8=x7*x7

x9=1+x7

x10=1-x7

x12=x9*x9

x13=x10*x10

x13b(k)=sin(Theta)

MaxTh=k

mm=0

do 300 Phi=dPhi/2.,Pi/2. dPhi

mm=mim-+1

ii=ii*1

x14=cos(2*Phi)

x15=x14*x14

x16=1.-x15

x19(jj)=x13-2./3.*e*(1.-x8)*x14+4./9 *esq*xT*x16
+1./9.*esq*x12*x15

x20(jj)=x10*(x7+2./3. *e*xT*x14+1 ,/9,*esq*x7*x1 5

+1./9.*esq*x16)

x21(jj)=x6-e*x10*x14

MaxPh=mm

continue

continue
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=0
do 400 H=Hbeg,Hend,dH
1
x22(j)=H*gbar
x23(3)=xnu*xnu/8./x22(j)
MaxH=]

400 continue

Max=MaxTh*MaxPh
do 700 j=1,MaxH

powpat=0.
do 800 k=1,MaxM
do 900 I=1,Max
lI=1+int((l-1)/MaxPh)
rl=-xnu/2.*x1(k)*x21(1)
r2=x23()*(.25*x2(k)*x19(1) - x3(k)*x20(1))

freq=x22(j)+r1+r2
chi=(freq-xnu0)/gbar
dchi=dH-chi
if{dchi.gt.0.d0.and.chi.gt.0.d0) powpat=powpat+
# 2./Pi*x4(k)*dTheta*dPhi*x13b(ll)/dH
900 continue

800 continue

H=Hbeg+(j-1)*dH
fieldG)=H
spect(j)=powpat
700  continue
10 format(e15.7,e15.7)
return
end

€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeee
c sim7.for

¢ Same as sim6 except this is a frequency scan

¢ Normalization of components patterns corrected

c July 6, 1993.
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CCCCCCCCCCCCCCCCCCCCCCTCCCCCCCCCCCCCCCCCeeeCCeeeeceee
c July 6, 1993
c Ananda Shastri
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee
Contents
I. Introduction
II. Program Description
A. Frequecny Scan Simulation
B. First and Second Order
Quadrupole Effects
C. Convolution: Used for
Distribution of Sites

I. Introduction

¢ sim4.for calculates the NMR spectrum for quasicrystalline

¢ materials following the method of Warren , et.al [1].

¢ Standard line shape numerical synthesis methods have

¢ been taken from papers [2-4]. Reference [4] gives explicit

¢ formulas for the first and second order contributions to

c level spacings and was used for programming these interactions.
¢ For a description of the workings of the program, programming
¢ shortcuts used, testing, and problems, see A. Shastri's notebook
¢ "Al-Pd-Mn NMR" . '

O 0O 006006 00606006O0O0

II. Program Description

A. Frequency Scan Simulation. This program was written
to simulate NMR freq scans for a powder. The program takes
input parameters from an input file that
must be formatted in the following way:

O 000000020

1 2 3 4

c1234567890123456789012345678901234567890 (This line for reference only.)
c

¢  reference frequency (Hz) = 90.963¢6

cnuclear gamma factor (Hz/Tesla) = 11.094¢6

c nuclear spinI = 2.5

¢  asymmetry parameter eta= 0.1
c mean nuQ (Hz) = 1.6e6
c deviation of nuQ (Hz) = .22e6
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theta,phi division = 100.
integral tolerance = .01
number of freqcy points = 100.
beginning freq (Hz )= 89.e6
ending freq (Hz )= 94.e6

beginning eta = 0.1
ending eta = 0.4

B. First and Second Order Quadrupole Effects. The mechanisms
that alter line spacings from the Zeeman level spacings are
first and second order quadrupole effects only. We assume
that the anisotropic Knight shift is negligible.

C. Convolution: Used for Distribution of Sites. For materials
that have a broad distribution of inequivalent sites, a distri-
bution over those sites must be included in the program to
“smear” the line. This is done by a loop that calls the
lineshape generating subroutine for a range of nuQ values,
and weights the resulting lineshape with a gaussian
weighting factor(the lineshape subroutine generates
patterns normalized in the frequency domain.

The distribution over eta is uniform.

OO0 000606006 0000000606006 O00606O06BO006

CCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
¢ References

¢ [1] W.W.Warren et.al. PRB, 32, 7614 (1985)

¢ [2] J.F.Bauger et.al. J.Chem.Phys., 50, 4914 (1969)

¢ [3] H.Ebert et.at. J.Phys.F., 16, 1287 (1987)

¢ [4] P.C.Taylor et.al, J.Mag Res., 2, 305 (1970)

¢ [5] R.B.Creel et.al., J.Chem.Phys., 60, 2310 (1974)

¢ [6] P.C.Taylor et.al.,J.Chem.Phys.,
CCCCCCCLCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

external LineShape

double precision Hprime,pi,num,xx

double precision carfr(300),spect(300),spectrum(300),etasum(300)
double precision func,LineShape,error,hQmean,gbar, etabeg, etaend
double precision I,m,eta,nu0,nuQ,divsn,dx xbeg,xend,dTheta,dPhi nul.
integer N

character*34 al

parameter (pi=3.1415926)

read(5,30) al,nu0,al,gbar,al,l,al,nuQ,al,sigmaf,
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# al,divsn,al;error,al,num,al,xbeg,al,xend,al,
# etabeg,al,etaend

write(6,20) 'TitleText: ', nu0,I etabeg, nuQ,sigmaf,divsn,error,num
write(6,*) " Simulation™
20 format(ald,''d7.2,'',d7.2,'"d7.2,'" d7.2,'" d7.2, ' ,d7.2
# ,'d7.2,'",d7.2)

dTheta=Pi/2./divsn
dPhi= Pi/2./divsn
esq=eta*eta

write(6,*) 'entering eta loop' !kill
do eta=etabeg,etaend,0.1

xxbeg=nuQ-5*sigmaf
- xxend=nuQ+5*sigmaf
xxinc=10*sigmaf/60.
if{eta.eq.etabeg) write(6,*) 'entering nuQ loop' tkill
do xx=xxbeg xxend,xxinc
if(>xx.eq.xxbeg) write(6,*) 'calling lineshape' !kill
call LineShape(xbeg,xend,num,xx,nu0,gbar,dTheta,dPhi, I eta,
# esq,carfr,spect, MaxH)
if(xx.eq.xxbeg) write(6,*) 'returned from lineshape’
gauss—exp(—(xx—an)*(xx-an)/2/31gmaf7 sigmaf)/sigmaf/. sqrt(2*
* Pi)
“do j=1,MaxH
spectrum(j)=spectrum(j)+gauss*spect(j)
enddo
enddo
do j=1,MaxH
etasum(j)=etasum(j)+spectrum(j)
enddo
enddo

xnorm=0.

do j=1,MaxH
xnorm=xnorm-+etasum(j)

enddo

xnorm=xnorm/MaxH
do j=1,MaxH
spectrum(j)=spectrum(j)/xnorm
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write(6,10) carfr(j),spectrum(j)
enddo

10  format(el5.7,e15.7)
30 format(a34,g15.7)
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee
subroutine LineShape(xbeg,xend,xnum,xnu,xnu0,gbar,dTheta,dPhi,1,e,esq,
* carfr,spect,MaxH)
implicit integer (j-n)
implicit double precision (a-i,0-z)
double precision spect(300),carfr(300)
double precision x1(20),x2(20),x3(20),x4(20),x13b(200)
double precision x19(40000),x20(40000),x21(40000)
double precision x22(1000),x23(1000)
parameter (Pi=3.1415926)

dx=(xend-xbeg)/(xnum-1.)
dH=dx/gbar
=I*(1+1.)

j=0
do 100 x=-1,1
51
x1()=x-.5
X2(j)=2*f-6*x*(x-1.)-3.
x3()=4*f-24*x*(x-1.)-9.
x4()=f-x*(x-1.)
MaxM=j

100  continue

k=0

=0

do 200 Theta=dTheta/2. Pi/2.,dTheta
k=k+1

x5=cos(Theta)

x7=x5*x5

x6=3*x7-1.

x8=x7*x7

x9=1+x7

x10=1-x7
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x12=x9*x9
x13=x10*x10
x13b(k)=sin(Theta)
MaxTh=k

mm=0

do 300 Phi=dPhi/2.,Pi/2.,dPhi

mm=mm-+1

ii=ij+1

x14=cos(2*Phi)

x15=x14*x14

x16=1.-x15

x19(jj)=x13-2./3.*e*(1.-x8)*x14+4./9. *esq*x7*x16
+1./9.*esq*x12*x15

x20(1))=x10*(x7+2./3.*e*x7*x14+1./9. *esq*x7*x15

+1./9.*esq*x16)

x21(jj)=x6-e*x10*x14

MaxPh=mm

continue

continue

j=0

do 400 x=xbeg,xend,dx
AR

carfr(j)=x

x22(j)=xnu0
x23(j)=xnu*xnu/8./x22(j)
MaxH=j

continue

Max=MaxTh*MaxPh

do 700 j=1,MaxH
powpat=0.
do 800 k=1 MaxM
do 900 I=1, Max
I=1+int((1-1)/MaxPh)
rl1=-xnu/2 *x1(k)*x21(1)
r2=x23(G)*(.25*x2(k)*x19(1) - x3(k)*x20(1))
freq=x22(j)+r1+12
chi=(freq-carfr(j))
dchi=dx-chi
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if{dchi.gt:0.d0.and.chi.gt.0.d0) powpat=powpat+

# 2 /Pi*x4(k)*dTheta*dPhi*x13b(ll)/dH
900 continue
800 continue
spect(j)=powpat
700  continue
=1

do x=xbeg,xend,dx
sum=sum-+spect(j)*dx
i+

enddo

do x=xbeg,xend,dx
spect(j)=spect(j)/sum
enddo

10 format(e15.7,e15.7)
return
end
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APPENDIX 2. ELECTRIC FIELD GRADIENT CALCUALATION PROGRAM

As described in Chapter 5, we simulated the electric field gradients at Al and Cu sites in
the 1/1 approximant model of Cockayne et al. The coordinates of the non-equivalent sites
are given in Table 5.2, from which all the atomic sites within the crystal may be calculated by

application of the P2;3 symmetry operations of the approximant [58].

EFG Calculation for AlCuFe, AICuRu Approximants

Coordinates are generated from table 1 given in
the paper by E. Cocayne et. al. J. Non-Crys. Solids 153-154,
(1993) 140-144.

O 00000

ccceeeeeeeeceeeeeeeceeeceeeceececececeeccceecccececceeeeccece

Versions and Changes

11/17/93, version#3, changed input of ion charges
nl,n2,n3 so that
they can be read from file efgsym.

11/11/93, version #3, diagonalizes the full efg tensor
New subroutines are efgtensor, Jacobi, eigsrt (modified
from _Numerical Recipes_ version to order the
eigenvalues according to the rule |Vzz[>|Vyy[>|Vxx|).

11/6/93, version #2, instead of simply a single box
with one vertex at the origin, a routine added
to translate box to each of 26 positions around
original box. This is to eliminate the finite
boundary effects of first calculation. Subroutines
added are Vector(trans) and Move(trans,jmax,E).
11/1/93, version #1, calculates Vzz for all Al atoms in
the approximant. Atoms are arranged in a unitless
cube of side a=1, with center at the origin.

OO0 0000606060606 0006006000060 O0

CCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCee

external gensite,check,vector,move,efgtensor,jacobi,eigsrt
dimension B(200,3), B2(5400,3), trans(27,3)
dimension V(3,3),Q(3,3),P(3)
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character*2 C(200), C2(5400), Nuc
character*3 D(200), D2(5400), Sym
real*8 xn1,xn2,xn3

parameter(pi=3.1415926)

n=3

jsite=1

read(5,1) xnl,xn2,xn3

write(6,*) xnl,xn2 xn3
format(f5.2,5x,15.2,5x,f5.2)
read(5,10,end=20) Nuc, Sym, x,y,z
format(4x,a2,6x,a2,3x,{5.3,2x,15.3,2x,15.3)
if (Nuc.eq."**") goto 20

call gensite(jsite,x,y,z,B,C,D,Nuc,Sym)
call gensite(jsite,y,z,x,B,C,D,Nuc,Sym)
call gensite(jsite,z,x,y,B,C,D,Nuc,Sym)
jmax=jsite

goto 5

continue

jmax=jmax-1
junit=jmax

call vector(trans)
call move(trans,B,C,D,B2,C2,D2 jmax)

do k=1,junit
kk=13*junit+k
i{C2(kk).eq.'Al')then
call efgtensor(junit,jmax kk,xn1,xn2,xn3,B2,C2,V)
call Jacobi(V,n,n,P,Q)
call eigsrt(P,Q,n,n)
theta=acos(Q(1,3))*180/pi
write(6,*) kk,P(1),P(2),P(3),theta
endif
enddo
end

CCCCCCCCCCCCCCCCCCCCCCeeceeeeceeccececececeeccececeeeee

C

C
C
C
C

subroutine gensite

This subroutine genefates the coordinates of the
Al, Cu, and Fe(Ru) atoms based upon the symmetry
of the site as given in Table 1 of Cockayne's paper.




c
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe

subroutine gensite(jsite,x,y,z,B,C,D,Nuc,Sym)

dimension B(200,3)
character*2 C(200), Nuc
character*3 D(200), Sym

xX2=x

y2=y

z2=z

call check(jsite,x2,y2,22,B,C,D,Nuc,Sym)
x2=0.5+x

call check(jsite,x2,y2,z2,B,C,D,Nuc,Sym)
x2=-X

y2=0.5+y

22=0.5-z

call check(jsite,x2,y2,22,B,C,D,Nuc,Sym)
x2=0.5-x

y2=-y

z2=0.5+z

call check(jsite,x2,y2,z2,B,C,D,Nuc,Sym)

return
end

CCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCTCCCCCCe

O 0006 0000000

subroutine check

This subroutine checks the atomic coordinates
generated by the symmetry rules in subroutine
gensite and makes sure that the coordinate is
in the unit cube and that the coordinate is not
a duplicate of a previous symmetry operation.
If the coordinate is not in the unit cube, the
appropriate translation is performed to move
it into the cube.

CCCCCCCCCCLCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCe




10

146

subroutine check(jsite,x2,y2,22,B,C,D,Nuc,Sym)

parameter(tol=5e-4)
dimension B(200,3), A(3)
character*2 C(200), Nuc
character*3 D(200), Sym

A(1)=x2

AQ2)=y2
AQG)=22

do k=1,3
if (0..1e.A(k).and. A(k).le.1.) then
goto 10
else if (1..le. A(k).and. A(k).le.2.) then
A(k)=A(k)-1.
goto 10
else if (-1..le.A(k).and.A(k).1t.0.) then
A)=AK)+1.
goto 10
else
write(6,*) 'error 2'
endif
continue
enddo

x2=A(1)
y2=A(2)
22=A(3)

if (jsite.ne.1) then
do k=1, jsite-1
xx=abs(x2-B(k,1))
. yy=abs(y2-B(k,2))
zz=abs(z2-B(k,3))
if (xx.It.tol.and.yy.It.tol.and.zz It.tol)then
goto 30
endif
enddo
B(jsite,1)=x2
B(jsite,2)=y2
B(jsite,3)=22
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C(jsite)=Nuc
D(jsite)=Sym
else
B(jsite,1)=x2
B(jsite,2)=y2
B(jsite,3)=22
C(jsite)=Nuc
D(jsite)=Sym
endif
jsite=jsite+1
30 continue
return
end
CCCCCCCCLLOCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
subroutine Vector(trans)

This subroutine produces the 27 translation vectors

that will translate the unit cube to other postions

so as to completely surround the central cube, thereby
eliminating surface effects. The vectors are the permutations
of -1,0,1.

a0 0600000

CCCCCCCCCCCCLLCeeeeeceeeeceececeeeccecceeceeeeeceeccececceccecce

subroutine vector(trans)
dimension trans(27,3)

=1
do k=-1,1
do I=-1,1
do m=-1,1
trans(j,1)=k
trans(j,2)=1
trans(j,3)=m
1
enddo
enddo
enddo
returm
end
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeee
c subroutine move(trans,B,C,D,B2,C2,D2,jmax)
c
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This subroutine move the oringinal unit box of atoms
by each of the translation vectors produced in Vector.
It keeps track which positions are occupied by which
atoms.

O 000606

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
subroutine move(trans,B,C,D,B2,C2,D2,jmax)

dimension trans(27,3), B(200,3), B2(5400,3)
character*2 C(200), C2(5400)
character*3 D(200), D2(5400)

do j=1,27
do k=1,jmax
kk=(j-1)*jmax+k
C2(kk)y=C(k)
D2(kk)=D(k)
do I=1,3
B2(kk,1)=B(k,)+trans(j,l)
enddo
enddo
enddo
jmax=kk
return
end
€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee
subroutine efgtensor

This subroutine calculates the 9 component of the
electric field gradient tensor and sums over all
the ions in within a sphere of radius 1 (in units of
the lattice constant a=12.3 A

OO0 000006

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
subroutine efgtensor(junit,jmax,kk,xn1,xn2 xn3,B2,C2,V)
dimension B2(5400,5400),x(3),V(3,3)

character*2 C2(5400)
real*8 xnl,xn2 xn3,xn

do mm=1,3
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do nn=13
V(mm,nn)=0.
do I=1, jmax
if (1.eq.kk) goto 30
if (C2(1).eq.'Al') then
xn=xnl
goto 25
else if (C2(1).eq.'Cu') then
xn=xn2
goto 25
else if (C2(1).eq.'Fe') then
xn=xn3
goto 25
else
write(6,*) ‘error 1'
endif
25 continue
do jj=1,3
x(jj)=B2(Ljj)-B2(kkjj)
enddo
r=sqrt(x(1)*x(1)+x(2)*x(2)+x(3)*x(3))
if{(r.gt.1.) goto 30
if{mm.eq.nn)then
VO=xn*(3*x(mm)*x(mm)/r/r-1)/r/t/r
else .
VO=xn*3*x(mm)*x(nn)/r/t/r/t/r
endif
V(mm,nn)=V(mm,nn)+V0
30 continue
enddo
enddo
enddo

doj=1,3
dok=1,3
Write(6,*) -V(o ’j,l’l’k,l)=|’v(i,k)
enddo
enddo

O 00060

return

end
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
c subroutine jacobi.for from _Numerical Recipes_
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C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCeeeeece

SUBROUTINE JACOBI(A,N,NP,D,V,NROT)
PARAMETER (NMAX=100)
DIMENSION A(NP,NP), D(NP), V(NP,NP), B(NMAX),Z(NMAX)
DO 12 IP=1,N
DO 11 IQ=1N
V(IP,IQ)=0.
11 CONTINUE
V(IP,IP)=1.
12 CONTINUE
DO 13 IP=1,N
B(IP)=A(IP,IP)
D(IP)=B(IP)
Z(IP)=0.
13 CONTINUE
NROT=0
DO 24 I=1,50
SM=0.
DO 15 IP=1,N-1
DO 14 IQ=IP+1,N
SM=SM+ABS(A(IP,1Q))
14  CONTINUE
15 CONTINUE
IF(SM.EQ.0.)RETURN
IF(LLT.4)THEN
TRESH=0.2* SM/N**2
ELSE
TRESH=0.
ENDIF
DO 22 IP=1,N-1
DO 21 IQ=IP+1,N
G=100.*ABS(A(IP,IQ))
IF((1.GT.4).AND.(ABS(D(IP))+G.EQ.ABS(D(IP)))
* AND.(ABS(D(IQ))+G.EQ.ABS(D(IQ))))THEN
A(IP,IQ)=0.

ELSE IF(ABS(A(IP,IQ)). GT.TRESH) THEN
H=D(1Q)-D(IP)
IF(ABS(H)+G.EQ.ABS(H)) THEN

T=A(IP,IQYH
ELSE |
THETA=0.5*H/A(IP,IQ)
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T=1./(ABS(THETA)+SQRT(1.+THETA**2))
IF(THETA LT.0)T=-T
ENDIF
C=1./SQRT(1+T**2)
S=T*C
TAU=S/(1.+C)
H=T*A(P,IQ)
Z(IPy=Z(IP)-H
Z(IQ=Z(1Q)*H
D(IP)=D(IP)-H
DIQ)=D(IQ)+H
A(IP,1Q)=0.
DO 16 J=1,IP-1
G=A(,IP)
=A(J,IQ)
A(,IP)=G-S*(H+G*TAU)
A(J,IQ)=H+S*(G-H*TAU)
16 CONTINUE
DO 17 J=IP+1,1Q-1
G=A(IP,])
H=A(J,IQ)
A(IP,])=G-S*(H+G*TAU)
A(J,IQ)=H+S*(G-H*TAU)
17 CONTINUE
DO 18 J=IQ+1,N
G=A(IP,))
H=A(1Q,J)
A(IP,J)=G-S*(H+G*TAU)
A(IQ,))=H+S*(G-H*TAU)
18 CONTINUE
DO 19 J=1,N
G=V({,IP)
H=V(J.IQ)
V(J,IP)=G-S*(H+G*TAU)
V(1,IQ)=H+S*(G-H*TAU)
19 CONTINUE
NROT=NROT+1
ENDIF
21  CONTINUE
22 CONTINUE
DO 23 IP=1,N
B(IP)=B(IP)+Z(IP)
D(IP)=B(IP)
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Z(1P)=0.

23 CONTINUE
24 CONTINUE

PAUSE '50 iterations should never happen'

RETURN

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCeeee
subroutine eigsrt.for from _Numerical Recipes_ (NR)
This subrouine sort the eigenvalues of the
EFG tensor and defines the x-,y-,z-axes such that
[Vzz]>|Vyy|>|Vxx|. The NR recipes routine had to be
slightly modified at points within the program, and
these points are indicated within the code.

O 00000606

CCCCCceeeeeeececeeeeecececeecceeecceceeeeccceceeececcceceeecece

SUBROUTINE EIGSRT(D,V,N,NP)
DIMENSION D(NP), V(NP,NP),e(3)

DO 13 I=1,N-1
K=1
P=abs(D(I))
DO 11 J=I+1,N
IF (abs(D(7)).GE.P)THEN
K=] .
P=abs(D(J))

nn=j
ENDIF

11 CONTINUE
p=d(nn)
IF(K.NE.)THEN
D(K)=D(I)
D(I)=P
DO 12 J=1,N
P=V({.])
V(JI,D=V(J.K)
V(@I K)=P

12  CONTINUE
ENDIF

13 CONTINUE
RETURN
END



