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Controlled Shock Loading for Micrestructural Correlation of Dynamic
Damage Behavior

D. Dennis-Koller

Los Alamos National Laboratory

Materials performance is recognized as being central to many emergent technologies.
Future technologies will place increasing demands on materials performance with respect
to extremes in stress, strain, temperature, and pressure. In this study, the dynamic ductile
damage evolution of OFHC Cu is explored as a test bed to understand the role of spatial
cffects due to loading profile and defect density. Well characterized OFHC Cu samples
of 30 pm, 60 pm, 100 um, and 200 pm grain sizes were subjected to plate impact
uniaxial strain loading at 1.5 GPa. This spall geometry produced early stage (insipient)
damage in the Cu samples that could be correlated to microstructural features in
metallographic analysis. The recovered damaged microstructure was examined using
traditional 2D metallographic techniques (optical and electron microscopy) as well as 3D
x-ray microtomography. Calculated spall strength from the free surface velocimetry
(VISAR) showed no change with respect to changes in grain size, however, the
magnitude of the peak after the first pull-back as well as rate of re-acceleration are
dependent on grain size and can be correlated to damage observed in the recovered
samples. These results reveal a critical length scale for the transition from a nucleation
dominated regime to a growth dominated regime for the damage evolution process. The
results show that for samples with small (30 um) and large (200 um) grain sizes the
growth of voids is dominated by coalescence, whereas for medium (60 pm and 100 um)
grain sizes the growth is restricted to a much slower process of individual void growth.
Electron backscatter diffraction reveals that voids preferentially nucleate at grain
boundaries with high misorientation angles while special boundaries (low angle >'1 and
high angle }'3) proved to be resistant to void nucleation. Based on these findings,
mechanisms for the void nucleation/growth and coalescence are proposed.
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A collaboratlve experlmental and theoretical center of expertlse focused on the
study of the meso to macro-scale dynamic ductile damage and failure of metallic
materials .

Goal: Explain and predict the ductile damage process in polycrystalline metallic materials from
the nucleation of pores through ultimate failure for any dynamic loading profile applied to

materials of national strategic and economic importance for application specific design of new
materials.
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1. Can we partition deterministic processes (controllable) Vs.
stochastic (random) processes?

2. Can we develop a multi-scale understanding of these
processes?

3. Can we control these behaviors through processing?

Can we capture the essential physics in our models?

To do this, we want to understand the connections between loading
environment and the characteristics of a material
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These data frequently show that material
response in dependent on strain rate

Good understanding up to 103/s

Would like to extend that understanding to
10°-107/s

These data are extrapolated to high strain
rates to predict dynamic failures
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Wave interactions in the material place the material in a

=
_ localized state of tension which can exceed the tensile strength
'mpactoly SRSk of the material and lead to damage.
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)8 OPa Flat top

These simulations illustrate current damage model
capabilities

Koller and Cerreta, J. Appl. Phys, Nov. 2003

” Harstad et. al, Plasticity Proceedings, Jan 2009.
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* Experiment shows that plate impact experiments can be used to explore a range of peak pressure
states while maintaining the same strain rate on the release.

* When the 9501 booster was added the duration of the tensile pulse was shortened and the
material spalled just as was seen in the plate impact experiment using a triangle wave with a
similar strain rate on release.
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Free Surface Velocity (mm/jis)

Comparison: Cu driven by P-022 Plane Wave Lens
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Koller and Cerreta, APS SCCM
Proceedings, 2005.

Hypothesis: kinetic and spatial parameters have an important role in

« Los Alamos dynamic damage evolution
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VISAR - All Experiments
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velocity

Spall strength (acoustic approach

linear approx. Novikov 1966) :
1

quﬁg

- 0= 5 PoColAuy

Onset stress (to account for el-pl behavior Stepanov 1976):

-1
o= pOCLAufs(l + &)
C‘0
15t phenomenological correction factor (to compensate for
differences in spall plate thickness Romanchenko and
Stepanov 1980): 1 1
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2" phenomenological
correction factor (correction for A

h
distortion due to el-pl O=|——
properties of material. Kanel C;, C,
1984):
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Experiment Grain size Impactor Impact Spall strength
z-Quartz mm | velocity GPa
(mm/us)
15-1430 30 um 2.027 0.134 3.998 1.38
1s-1440 60 um 2.027 0.133 4.030 1.36
1s-1476 100 um 2.056 0.138 4.034 131
- Los Alamos 1s-1434 200 um 2.025 0.131 3.899 1.38
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Defines a nucleation rate:

N = N, exp

Defines a growth rate - B

R 9 \R
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We need models like this that incorporate the plastic flow and
microstructural effects.

See work by Lebensohn for new model tracking triaxiality of stress
states which leads to conditions that allow some voids to continue
to grow and others to stagnate.

[1] R.A. Lebensohn, M.I. Idiart, P. Ponte Castafieda and P.G.
Vincent:"Dilatational viscoplasticity of polycrystalline solids with
intergranularcavities". Philosophical Magazine, in press.

[2] R.A. Lebensohn: "Modeling ductile damage of polycrystallinematerials".
Keynote Lecture, IUTAM Symposium on Linking Scales inComputations: .
from Microstructure to Macro-scale Properties, Pensacola,FL, USA, May
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Shot 1s-1430 (30 um)

Shot 1s5-1440 (60 um)

Shot 1s-1476 (100 um)
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Fig. 6 (a) Void area fraction as function of the grain size. (b) void size distribution.
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Growth only 25 -

et Mechanisms are additive
1 and give rise to a cumulative
A . damage rate which is

dependent on triaxiality of
stress state, and defect
distribution under tensile
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30um & 2o, 4 f 60 um AN 100 um

i Experiment Grain size Number of Void area Avg Void
voids fraction (%) diameter
(um)

1s-1430 30 um 236 0.496 38.1

1s-1440 60 um 343 0.249 22.7
1s-1476 100 um 267 0.416 33.0

1s-1434 200 um 111 0.507 55.1



* Using simple wave interaction
calculations (without damage
models). We are designing
experiments to probe the
evolution of the tensile pulse and
its effect on damage state.

Tensile stress

Same peak stress
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Same time in tension At
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Shot 1s-1434 (200 um) Va=0.509%

1.5mm Cu 89 m/s (100 um) V,=0.59 %

- VISAR comparison for tensile pulse rate study
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Shock loading and microstructure are intimately connected
to yield a dynamic material response.

A critical length scale exists where mechanisms of ductile

damage formation transition from individual void growth to
coalescence dominated.

An understanding of mechanisms dominating damage

regimes is necessary to quantitatively interpret velocimetry
results.

Voids are preferentially nucleated at grain boundaries
between 15°-55°

Plastic work observed in the microstructure indicates that

the stress evolution plays a critical role in the resultant
| age.
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