

LA-UR- 11-03843

*Approved for public release;
distribution is unlimited.*

Title: Accelerator production of the therapy isotope Actinium-225 at 800 MeV

Author(s): J.W. Weidner, H.T. Bach, L.J. Bitteker, M. Cisneros, A. Couture, D. Dry, M.E. Fassbender, M. Gallegos, G.S. Goff, R. Grizo, K.D. John, S.G. Mashnik, J.L. Ullmann, W. Taylor, L.E. Wolfsberg, S. Wender, R.S. Baty and F.M. Nortier

Intended for: 7th Symposium on Targeted Alpha Therapy, Berlin, Germany, July 17-19, 2011

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

ABSTRACT

Accelerator production of the therapy isotope ^{225}Ac at 800 MeV

J.W. Weidner, H.T. Bach, L.J. Bitteker, M. Cisneros, A. Couture, D. Dry, M.E. Fassbender, M. Gallegos, G.S. Goff, R. Grizo, K.D. John, S.G. Mashnik, J.L. Ullmann, W. Taylor, L.E. Wolfsberg, S. Wender, R.S. Baty and F.M. Nortier,

Los Alamos National Laboratory, Los Alamos, New Mexico, USA

While the radiotherapy isotopes ^{225}Ac and ^{213}Bi have shown tremendous cancer fighting potential, their widespread use in radiotherapy has been restricted by the limited availability of ^{225}Ac . Presently the worldwide ^{225}Ac supply of around 1 Ci per year comes almost exclusively from two ^{229}Th sources located at Oak Ridge National Laboratory (ORNL) and the Institute for Transuranium Elements (ITU). The anticipated growth in future ^{225}Ac demand has recently led to the investigation of a number of alternative production methods including accelerator production routes. The work presented here is part of a wider evaluation of high energy accelerator production routes, employing intense 100 MeV, 200 MeV and 800 MeV proton beams and thorium targets for the large-scale production of ^{225}Ra , ^{225}Ac and ^{229}Th . Such beams are available at the Los Alamos National Laboratory (LANL) and Brookhaven National Laboratory (BNL).

This presentation describes the investigation of a high energy accelerator approach using intense 800 MeV proton beams. Cross sections were measured for production of relevant isotopes via $^{232}\text{Th}(\text{p},\text{x})$ nuclear reactions. Theoretical cross sections using codes such as CEM are compared with the measured data as well as with other existing data. Expected production yields and purity levels derived from the measured cross sections show very promising options for large-scale production with varying levels of product quality.

Additional experiments to measure the $^{232}\text{Th}(\text{p},\text{x})^{225}\text{Ac}$ production cross sections in the proton energy range below 200 MeV are still in progress.

Accelerator Production of the Therapy Isotope Actinium-225 at 800 MeV

Accelerator Production of ^{225}Ac at 800 MeV

J.W. Weidner, H.T. Bach, L.J. Bitteker, M. Cisneros, A. Couture, D. Dry, M.E. Fassbender, M. Gallegos, G.S. Goff, R. Grizo, K.D. John, S.G. Mashnik, J.L. Ullmann, W. Taylor, L.E. Wolfsberg, S. Wender, R.S. Baty

and F.M. Nortier

Los Alamos National Laboratory, New Mexico, U.S.A.

NATIONAL LABORATORY

EST. 1943

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

7th Symposium on Targeted Alpha Therapy, July 2011

Slide 1
LA-UR 11-xxxx

Main Driver for this Effort

- 211At and ^{225}Ac or ^{213}Bi (decay product of ^{225}Ac) are considered for moving forward towards clinical trials**
- Predicted annual need far exceeds the world-wide supply of $\sim 1\text{Ci}$**

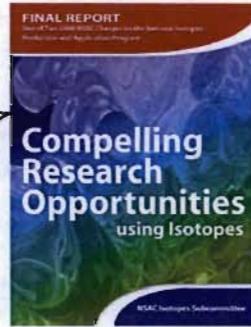
Year	Amount (mCi)	Program
2008	750	Clinical trials/R&D support
2009	1,600	Clinical trials (1 multi-center) /R&D support
2010	3,100	Clinical trials (2 multi-center) /R&D support
2011	4,600	Clinical trials (2 multi-center) /R&D support
2012	7,400	Clinical trials (3 multi-center)/R&D support
2013	15,000	One approval; Clinical trials(2 multi-center)/R&D
2014	50,000+	Two approvals; Clinical trials/R&D support

NATIONAL LABORATORY

EST. 1943

Operated by Los Alamos National Security, LLC for NNSA

7th Symposium on Targeted Alpha Therapy, July 2011



Slide 2
LA-UR 11-xxxx

Main Driver for this Effort (continued)

First of 6 Recommendations for Charge 1 of NSAC Isotopes Subcommittee

Medicine#1:
Invest in new production approaches of alpha-emitters with highest priority for Ac-225. Extraction of the thorium parent from U-233 is an interim solution that needs to be seriously considered for the short term until other production capacity can become available.

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

7th Symposium on Targeted Alpha Therapy, July 2011

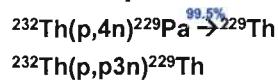
Slide 3
LA-UR 11-2449

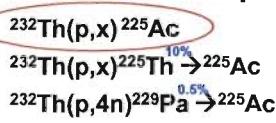
Goals

- Evaluate higher energy accelerator production routes using **thorium targets** by means of cross section measurement
- Concentrate on 100 MeV, 200 MeV and **800 MeV** beams available at the IPF (LANL), BLIP (BNL) and MTS (LANL)
- Make available accurate production cross sections to the isotope production community.

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED


7th Symposium on Targeted Alpha Therapy, July 2011


Slide 4
LA-UR 11-2449

Two Possible Production Approaches

Th-229 production

Ra-225/Ac-225 production

NATIONAL LABORATORY

EST 1943

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

7th Symposium on Targeted Alpha Therapy, July 2011

Slide 5
LA-UR 11-xxxx

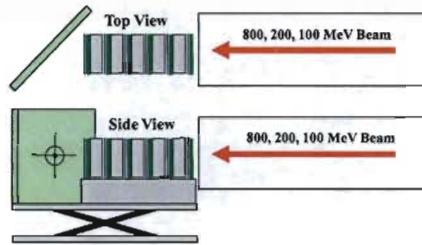
Various $^{225}\text{Ac}/^{229}\text{Th}$ Production Routes

Facility	Nuclear Reaction
Reactor (thermal neutrons)	$^{226}\text{Ra}(3\text{n},\gamma)^{229}\text{Ra} \rightarrow {}^{229}\text{Ac} \rightarrow {}^{229}\text{Th}$
Reactor (fast neutrons)	$^{226}\text{Ra}(\text{n},2\text{n})^{225}\text{Ra} \rightarrow {}^{225}\text{Ac}$
Accelerator (low energy particles)	$^{226}\text{Ra}(\text{p},2\text{n})^{225}\text{Ac}$ $^{226}\text{Ra}(\alpha,\text{n})^{229}\text{Th}$ $^{232}\text{Th}(\text{p},x)^{229}\text{Th}$ $^{230}\text{Th}(\text{p},x)^{229}\text{Th}$
Accelerator (high energy protons)	$^{232}\text{Th}(\text{p},x)^{225}\text{Ac}$ $^{232}\text{Th}(\text{p},x)^{225}\text{Ra} \rightarrow {}^{225}\text{Ac}$ $^{232}\text{Th}(\text{p},x)^{229}\text{Th}$
Accelerator (electrons)	$^{226}\text{Ra}(\gamma,\text{n})^{225}\text{Ra} \rightarrow {}^{225}\text{Ac}$

NATIONAL LABORATORY

EST 1943

Operated by Los Alamos National Security, LLC for NNSA


UNCLASSIFIED

7th Symposium on Targeted Alpha Therapy, July 2011

Slide 6
LA-UR 11-xxxx

Basic Measurement Approach

Isotope	Half Life
Pa-229	1.5 d
Th-229	7880 y
Th-228	1.9 y
Th-227	18.7 d
Ac-227	21.8 y
Ra-225	14.8 d
Ac-225	10 d
Ra-223	11.4 d

- Thorium samples and proton fluence monitor foils are irradiated in three different proton beams
- Samples are assayed via various counting methods
- Decay of isotopes of interest is followed over time to obtain production cross sections

NATIONAL LABORATORY

EST. 1943

Operated by Los Alamos National Security, LLC for NNSA

7th Symposium on Targeted Alpha Therapy, July 2011

UNCLASSIFIED

Slide 7
LA-UR 11-xxxx

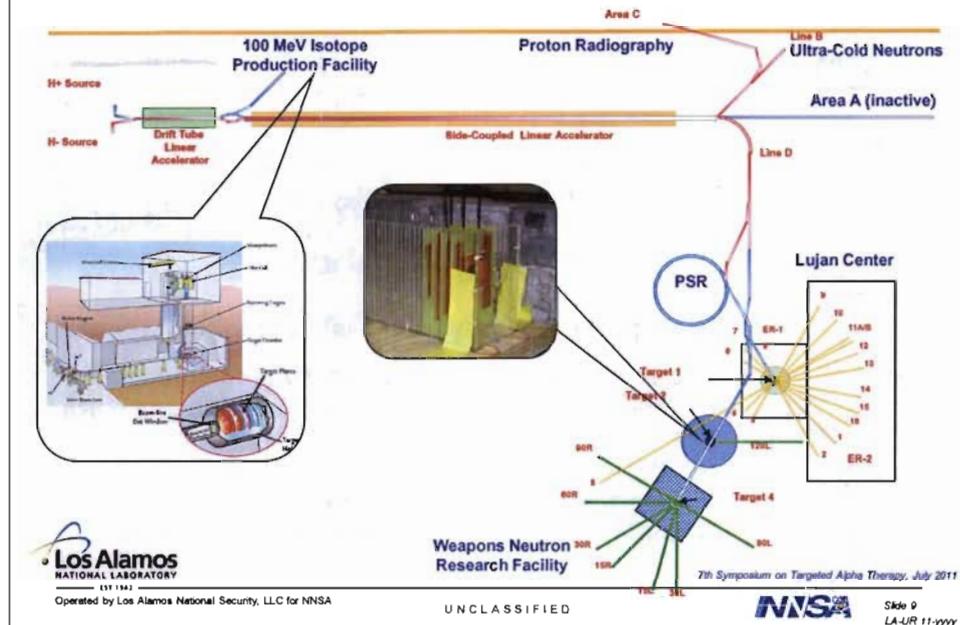
800 MeV Thorium Sample Irradiations

- Single-energy measurement at 800 MeV
- 3 thorium samples (50 μ m thick) and 1 aluminum fluence monitor were activated
- The 1 hour irradiation at proton a current of 80 nA was completed on December 1st, 2009

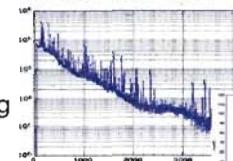
PhD student, John Weidner

NATIONAL LABORATORY

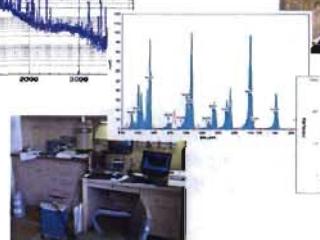
EST. 1943


Operated by Los Alamos National Security, LLC for NNSA

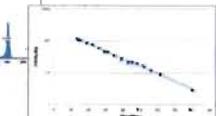
UNCLASSIFIED


Slide 8
LA-UR 11-xxxx

LANSCE Accelerator Complex Overview



Various Counting and Analysis Approaches


- ☐ Exploratory chemistry separation of actinides

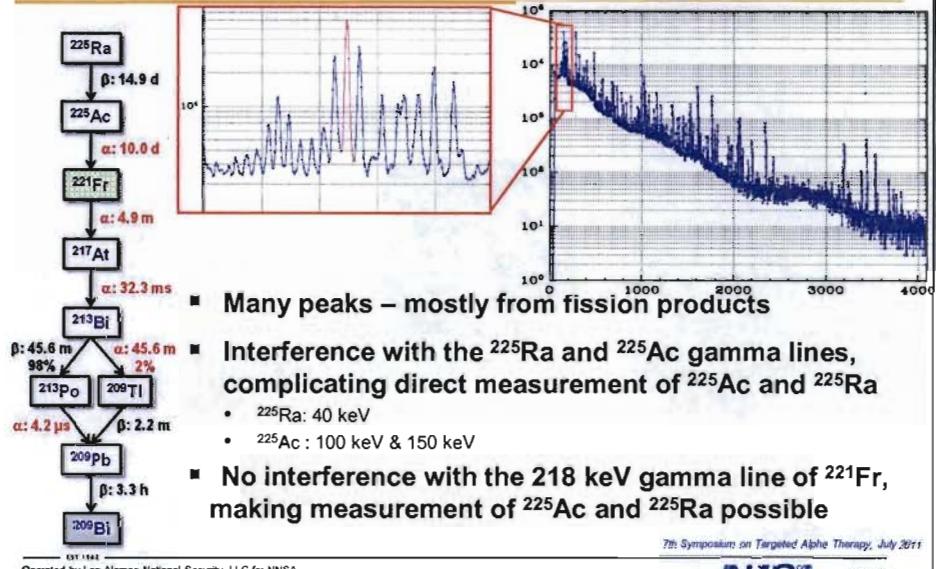
- ☐ Alpha and gamma counting

- ☐ γ - γ coincidence counting of ^{227}Ac

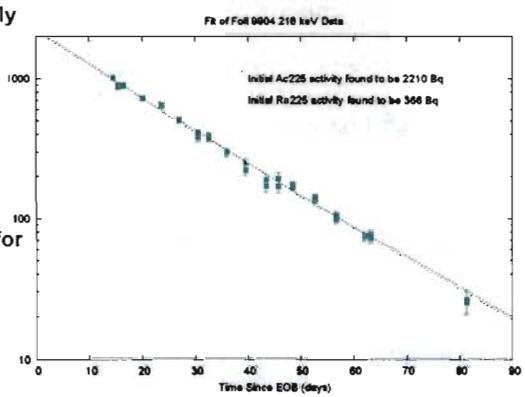
- ☐ Exploratory γ - γ coincidence counting with GEANIE in parallel with nondestructive counting

- ☐ Chemical separation and α -counting of ^{227}Ac

Operated by Los Alamos National Security, LLC for NNSA


UNCLASSIFIED

7th Symposium on Targeted Alpha Therapy, July 2011


Slide 10
LA-UR 11-3339

800 MeV γ -counting and analysis: Ra-225 & Ac-225

800 MeV γ -counting and analysis: Ra-225 & Ac-225

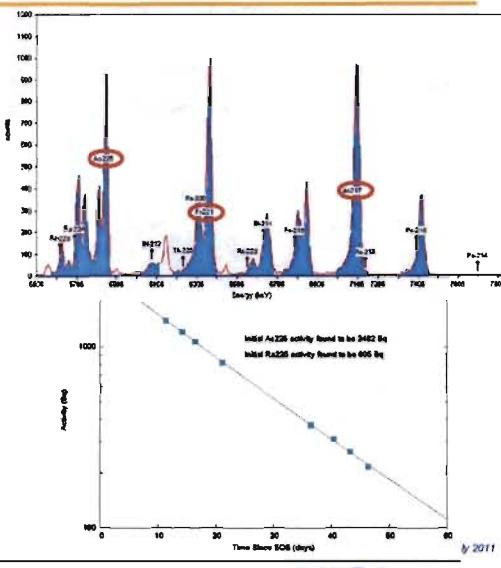
- Two samples counted nondestructively on two different detectors
 - HPGe coaxial and HPGe planar
- Two analysis software codes
 - RAYGUN and SPECANAL
- Parent-daughter decay/growth curve for $^{225}\text{Ra} \rightarrow ^{225}\text{Ac}$ fitted to measured ^{221}Fr activity data to obtain ^{225}Ra and ^{225}Ac activities at OEB
- The ^{225}Ra results are considered acceptable but not as accurate as a direct measurement

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

7th Symposium on Targeted Alpha Therapy, July 2011

Slide 12 NNSA

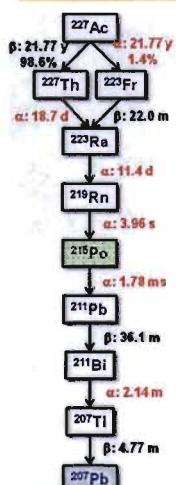

Slide 12
LA-UR-11-2999

800 MeV α -counting and analysis: Ac-225

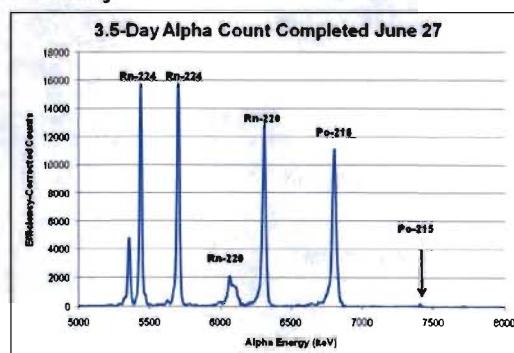
One sample dissolved for preliminary separation chemistry tests

Subjected a near-massless sample, prepared from 50 μ L aliquot of Ac/Ra eluant, to α -counting

Despite careful preparation, overlapping peaks still required manual de-convolution in order to determine ^{225}Ac activity


EST 1943 Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED


Slide 13
LA-UR 11-xxxx

800 MeV α -counting and analysis: Ac-227 (21.7 y)

The α -counting sample was subjected to a 3.5 day long count on June 27th, 2010 (7 months later)

Spectrum shows that the ^{215}Po peak can be used to measure ^{227}Ac activity

EST. 1943 Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 14
LA-UR 11-xxxx

Production Cross Sections at 800 MeV

Reaction	Cross Section (mb)	Measurement Method	Literature values (mb)	Theoretical values (CEM) (mb)
$^{232}\text{Th}(\text{p},\text{x})^{225}\text{Ac}$	13.5 ± 0.7	γ, α	$20.3 \pm 5.1^*$	15.0
$^{232}\text{Th}(\text{p},\text{x})^{225}\text{Ra}$	3.0 ± 0.3	$\gamma_{\text{indirect}}, \alpha_{\text{indirect}}$	None	1.54
$^{232}\text{Th}(\text{p},\text{x})^{227}\text{Ac}$	15.2 ± 1.1	α	None	11.0
$^{232}\text{Th}(\text{p},\text{x})^{227}\text{Th}$	12 ± 1	γ	None	18.6
$^{232}\text{Th}(\text{p},\text{x})^{223}\text{Ra}$	7.0 ± 0.6	γ	None	11.6

*Titarenko et al. (2002), INDC(CCP)-434

New data for $^{223,225}\text{Ra}$, ^{227}Ac , and ^{227}Th

Manuscript for publication is in preparation

NATIONAL LABORATORY

EST. 1943

Operated by Los Alamos National Security, LLC for NNSA

7th Symposium on Targeted Alpha Therapy, July 2011

UNCLASSIFIED

Slide 15

NNSA

Slide 15

LA-UR 11-xxxx

800 MeV production potential at the future MTS

Assumptions:
MTS Design Beam Current: 1250 μA
(800 MeV protons)

Target: 3 g/cm² thick thorium metal

NATIONAL LABORATORY

EST. 1943

Operated by Los Alamos National Security, LLC for NNSA

Isotope	$T_{1/2}$	Expected Yields
^{225}Ra	14.8 d	230 mCi/day (~140 mCi of pure ^{225}Ac)
^{225}Ac	10 d	1.5 Ci per day (0.14% ^{227}Ac)
^{223}Ra	11.4 d	700 mCi per day
^{227}Th	18.7 d	730 mCi per day
^{227}Ac	21.7 y	800 mCi per year

7th Symposium on Targeted Alpha Therapy, July 2011

UNCLASSIFIED

Slide 16

NNSA

Slide 16

LA-UR 11-xxxx

Summary

- LANL measurements are aimed at evaluating production potential of ^{225}Ac in natural Th targets using 100, 200, 800 MeV beams – for IPF, BLIP and spallation production routes (MTS).
- 800 MeV results include new cross section data for $^{223,225}\text{Ra}$, ^{227}Ac , and ^{227}Th .
- Production cross sections for ^{225}Ra and ^{225}Ac show promise from a large scale production perspective.
- Assuming the MTS design beam current:
 - Expected daily production of ^{225}Ra is 230 mCi from which ~140 mCi of pure ^{225}Ac can be recovered.
 - Expected daily production of ^{225}Ac is 1.5 Ci, with a ^{227}Ac contamination level of 0.14%.
- The usefulness of the directly produced ^{225}Ac is still uncertain.
- Promising production options for ^{223}Ra also exists.

NATIONAL LABORATORY

EST. 1945

Operated by Los Alamos National Security, LLC for NNSA

7th Symposium on Targeted Alpha Therapy, July 2011

UNCLASSIFIED

Slide 17
LA-UR 11-xxxx

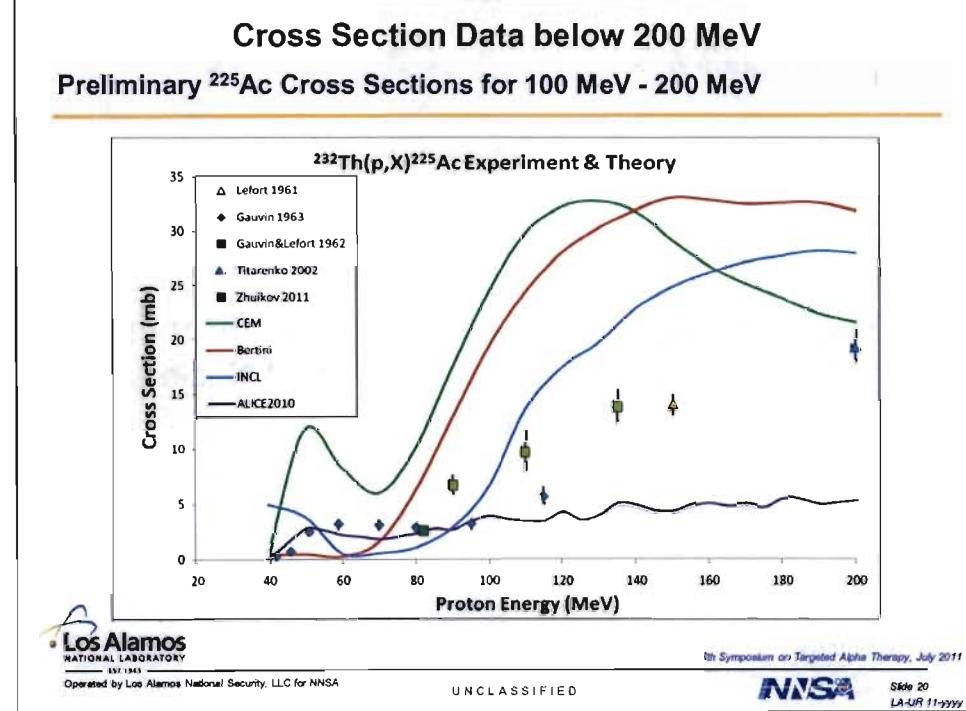
Acknowledgements

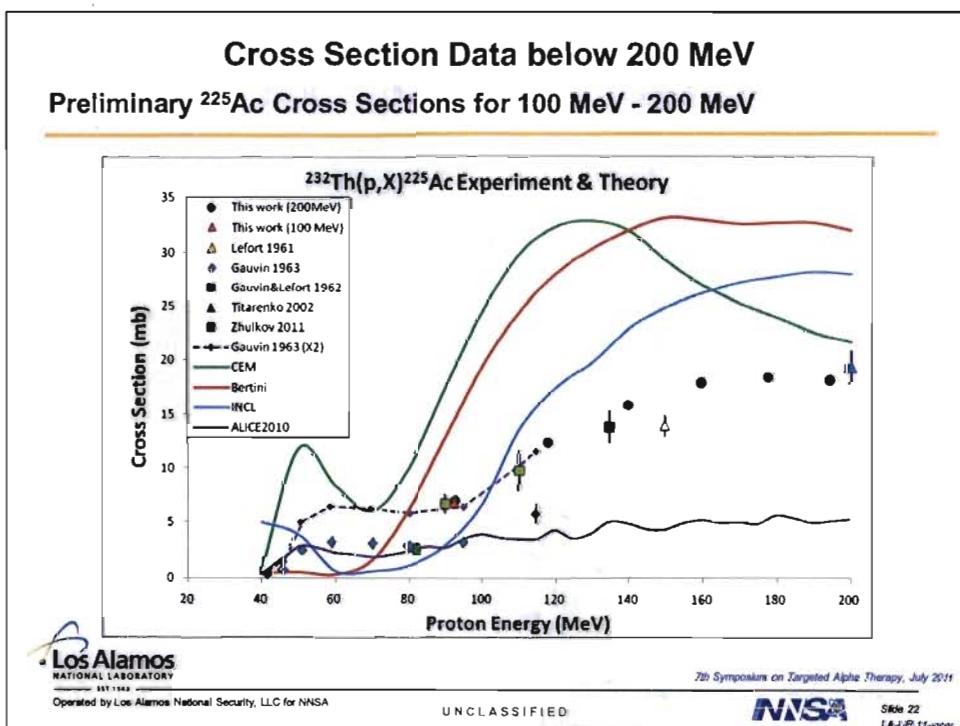
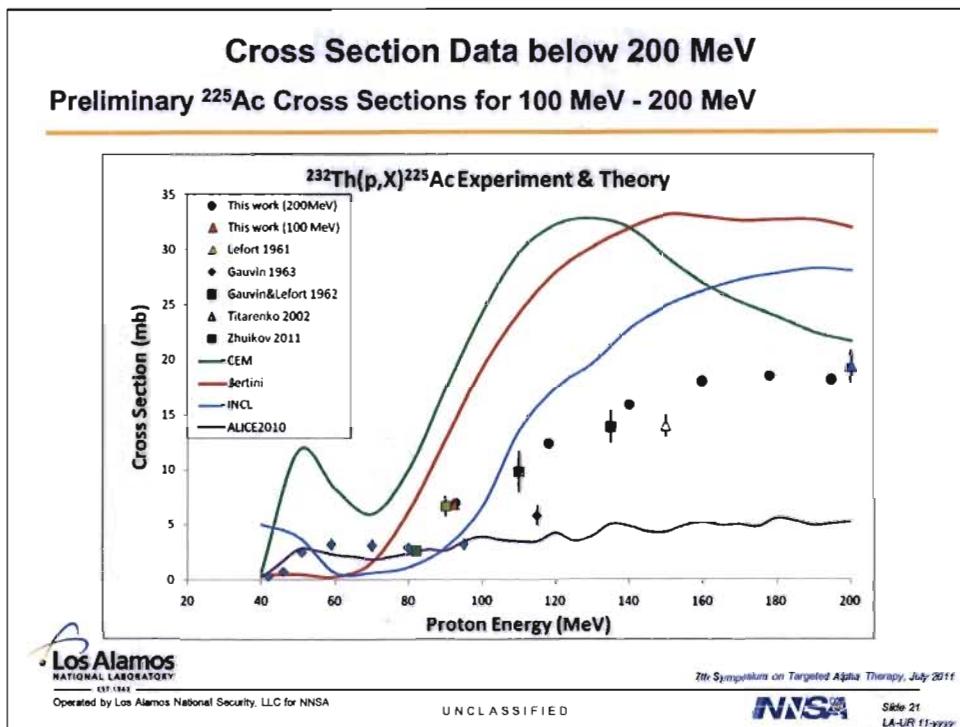
This work is supported by U.S. Department of Energy, Office of Science, Office of Nuclear Physics

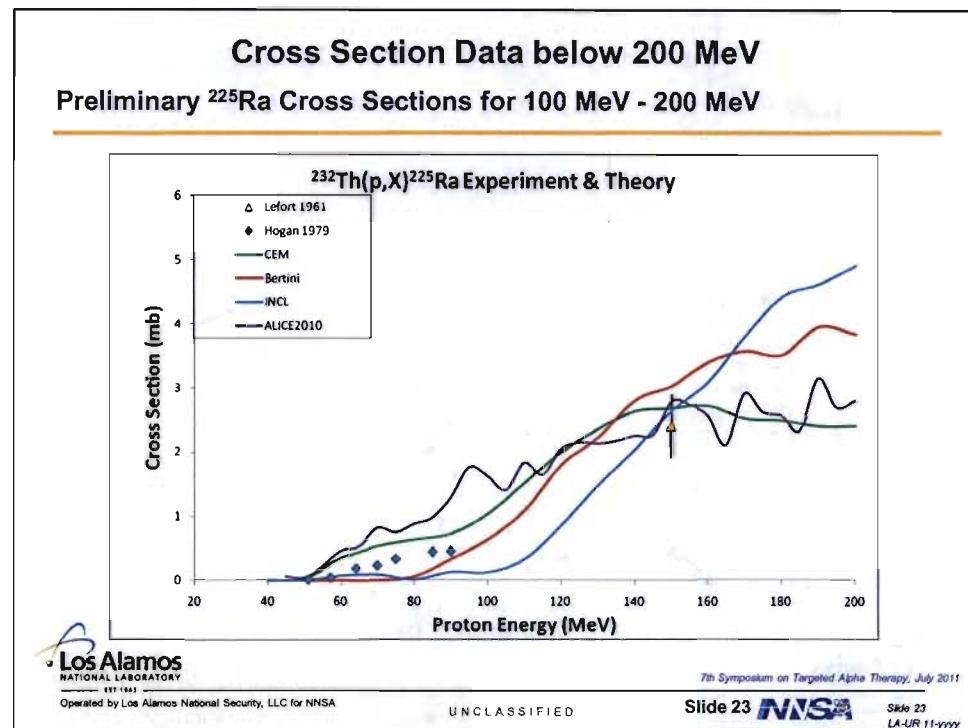
NATIONAL LABORATORY

EST. 1945

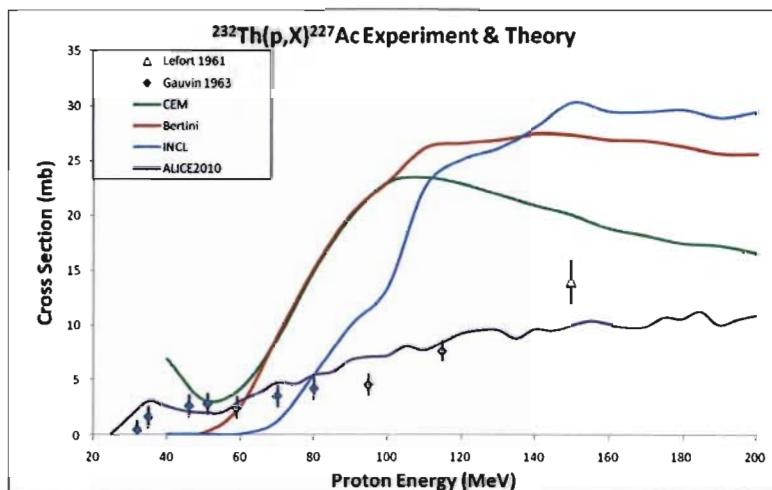
Operated by Los Alamos National Security, LLC for NNSA


7th Symposium on Targeted Alpha Therapy, July 2011



UNCLASSIFIED



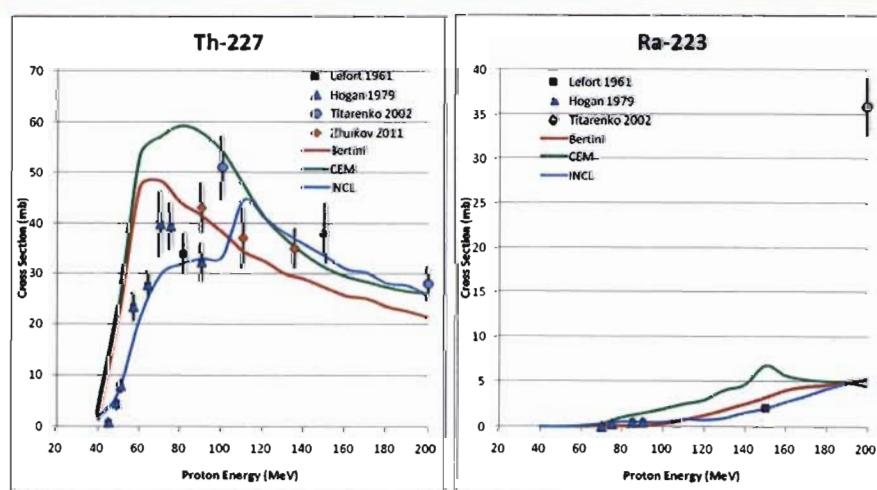
Slide 18
LA-UR 11-xxxx


Additional slides

Existing ^{227}Ac Cross Sections below 200 MeV

Los Alamos
NATIONAL LABORATORY
EST. 1943

Operated by Los Alamos National Security, LLC for NNSA


UNCLASSIFIED

7th Symposium on Targeted Alpha Therapy, July 2011

Slide 25
LA-UR 11-xxxx

Existing ^{227}Th & ^{223}Ra Cross Sections below 200 MeV

Los Alamos
NATIONAL LABORATORY
EST. 1943

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

7th Symposium on Targeted Alpha Therapy, July 2011

Slide 26
LA-UR 11-xxxx