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Pipe-Bomb Validation Experiments  
 

Ramp temperature and pressure independently to failure 
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Pipe Material Properties (Experimental)  
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Inversion Procedure to extract 
constitutive model Cauchy-Stress Logarithmic-Strain Curves  

from Measured Stress-Strain Behavior in Experiments 
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Mesh and Solver Sensitivity Study 
in modeled cylinder necking/failure in tension tests 

 

• negligible sensitivity to mesh size & aspect 
ratios and solver parameters (including  
Hourglass treatment options) 
in portion of material curves traversed in 
Pipe bomb calculations     
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Predicted Range of Pipe-Bomb Failure Pressures due to 
Variability of Material Stress-Strain Curves at Tested Temps. 

(Each curve  a run of pipe bomb model) 

Case T_max P_max (psi) dt (sec) 
EQPS_max

* Status # Procs cpu-hrs res Adaptive 

try3-rt 20 1484.5 1.60E-11 0.601 192 0.368 1.00E-06 feti 

try4-rt 20 1482.8 9.00E-13 0.571 192 0.308 1.00E-06 feti 

try5-rt 20 1485.2 9.00E-13 0.575 high 192 0.324 1.00E-06 feti 

try6-rt 20 1485 9.00E-13 0.549   192 0.348 1.00E-06 feti 

try39-rt 20 1483.9 9.00E-13 0.587 192 0.402 1.00E-06 feti 

try40-rt 20 1474.8 9.00E-13 0.555 Low 192 0.309 1.00E-06 feti 

    

try14-100 100 1227.1 1.00E-11 0.586 High 192 0.441 1.00E-06 feti 

try15-100 100 1208.7 9.00E-13 0.528 Low 192 0.546 1.00E-06 feti 

try16-100 100 1225.3 9.00E-13 0.561 192 0.31 1.00E-06 feti 

try36-100 100 1226.3 8.60E-12 0.559 192 0.335 1.00E-06 feti 

try37-100 100 1222.9 1.60E-08 0.549 192 0.284 1.00E-06 feti 

    

try11-200 200 1102.1 1.70E-09 0.529 High 192 0.335 1.00E-06 feti 

try12-200 200 1085.8 9.00E-13 0.426 192 2.62 1.00E-06 feti 

try13-200 200 1088.6 1.30E-06 0.469 192 2.26 1.00E-06 feti 

try34-200 200 1089.9 9.00E-13 0.442 192 0.453 1.00E-06 feti 

try35-200 200 1081.7 9.00E-13 0.402 Low 192 0.342 1.00E-06 feti 

    

try17-400 400 1010.3 1.00E-12 0.394 192 0.393 1.00E-06 feti 

try18-400 400 1007.2 1.00E-12 0.386 192 0.325 1.00E-06 feti 

try19-400 400 1005.7 3.00E-09 0.432 192 0.312 1.00E-06 feti 

try32-400 400 1001.9 1.00E-12 0.373 Low 192 2.479 1.00E-06 feti 

try33-400 400 1014 1.00E-12 0.384 High 192 0.369 1.00E-06 feti 

    

try22-600 600 869.2 1.00E-12 0.409 Low 192 0.361 1.00E-06 feti 

try23-600 600 880.1 4.00E-07 0.49 192 2.54 1.00E-06 feti 

try24-600 600 884.7 1.20E-09 0.523 High 192 0.359 1.00E-06 feti 

    

try25-700 700 705.1 1.00E-12 0.617 High 192 0.431 1.00E-06 feti 

try26-700 700 694.8 1.00E-12 0.605 Low 192 0.431 1.00E-06 feti 

try27-700 700 695.5 1.00E-12 0.606 192 0.443 1.00E-06 feti 

    

try29-800 800 448 3.50E-11 0.501 192 0.476 1.00E-06 feti 

try30-800 800 440.8 1.00E-12 0.632 Low 192 0.431 1.00E-06 feti 

try31-800 800 448.8 1.00E-12 0.645 High 192 0.414 1.00E-06 feti 



Pipe Bomb Simulation Difficulties 

weeks 

days 

Magnified 

• Pipe wall failure indicated when the 

quasi-static calculations reach a physical 

instability point 

– when the internal pressure exceeds the 

material’s resisting force no static equilibrium 

is attainable and no inertia terms to stabilize 

the calculation through breakup 

• large sensitivity to mesh and solver settings 

• excessive run times 

• highly distorting elements 

 

runaway 

response 



Solver Accuracy and Speed Assessment for 

Accurate Curve “Strength” Rankings 

Test & 
temperature 
cases 
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(CPU time*) 
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Failure psi 
(CPU time*) 

     

try26-700C 704.0 (40.30) 702.0 (20.3) 703.8 (5.87) 703.7 (5.24) 

try27-700C 704.9 (40.29) 704.1 (19.1) 704.2 (5.28) 704.2 (6.21) 
     

try3-20C 1485.9 (21.1) 1490.70 (12.1) 1484.5 (7.8) 1484.5 (9.78) 

try6-20C 1486.3 (15.2) 1487.20 (4.6) 1485.0 (2.9) 1485.0 (4.39) 

try5-20C 1486.4 (16.0) 1492.60 (41.3) 1485.2 (20.7) 1485.2 (8.26) 

     

* CPU times reported in Adagio output file via global output variable 

cpu_time. CG and FETI sims. were run on 192 processors of Red Sky  

 

• Results effectively 

unchanged when solver 

tolerance is changed 

from 10-5 to 10-6 (for 4tt 

mesh).  

• CPU time not >> for 10-6 

• Use 10-6 for production 

calcs.  

• Various hourglass treatments also 

investigated 
 

• verified to not have significant effect  

on predicted failure pressures 



Pipe Bomb Calculation Verification 
Mesh Refinement Studies 

Number of Elements 

thru thickness of wall 
1 2 4 6 

# Elements (1/4 model) 32,368 276,080 2,173,600 7,458,912 

Pressure at Fail (psi) 1069 873 818.3 

818.7* (*didn’t 

finish, 16 days 

on 400cpu’s) 
Pipe model 

1tt 2tt 4tt 6tt 

Geometrically similar meshes 



Calculation Verification 
Mesh Study Results 

• Coarsest 3 meshes => 1.8 empirical order of 

convergence 

• estimate for numerical solution uncertainty:  

± 21psi = ± 2.5% of Pfail on 4tt mesh 

Calculated Failure Pressures 

• This plot is a stand-in 

for updated plot from 

new sims. now running 

• Coarsest 3 meshes => 1.8 empirical order of 

convergence 

• estimate for numerical solution uncertainty:  

± 21psi = ± 2.5% of Pfail on 4tt mesh 

Other calculated damage quantities 

not as well behaved due to 

element/mesh deformations 
 

• Von Mises stresses 

• Tearing parameters 

• Equivalent plastic strain 



Coupled Thermo-Mechanical simulations 

help Design Experiments and Thermocouple Locations 

to Reconstruct Temperature Field by Interpolation  

Model  

• Pipe radiatively heated by plate 

• Convection neglected 

• Viewfactors change as pipe 

bulges toward plate at hot spot 

 

         Side view, top half of pipe 

Front view, 

¼ symmetry 

 
 

 
 

 

(drawing and TC locations not to scale) 
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Experiment Design 

Quantities 

• Size & location of plate 

relative to pipe 

• # of thermocouples and 

locations to adequately 

reproduce temperature 

field on pipe surface 

• in conjunction with 

design of interpolation 

method 

Temperature Contours 

Thermocouples 

(23 total, front  

& back) 

8 Linear to Cubic  

interpolation 

patches (C0 

continuous) 



Significant Uncertainties in the 
Model Validation Problem 

• material property variability (temperature dependent) 
 

• pipe-wall thickness variability  
 

• discretization related solution error 
 

• uncertainty due to error in temperature BC mapped/interpolated 

from TCs 

– used the coupled thermal-mechanical model in a “nearby” problem 

to estimate and correct the interpolation bias error 

with estimated uncertainty in the bias correction 
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Simulation UQ Rollup 
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this 

• Experimental failure pressures were similarly cast as segregated 

aleatory and epistemic uncertainties (P-Box representations) 

for Real Space validation comparisons 

(Real Space approach presented in 2012 ASME V&V symposium) 

 

• The UQ was made affordable by decoupling and linearizing the 

UQ sources and by using affordable 1tt coarse-mesh model with 

discretization bias correction + uncertainty. 

 

• These compromises not thought to change the validation 

conclusions in this case (still being confirmed) 

 

• Other solid mechanics problems with load controlled failures 

may have many of the challenging computational and UQ 

aspects of this problem, and may benefit from the UQ and V&V 

approaches presented here 
 
 

 

Concluding Remarks 


